Difference between revisions of "User:Tohline/SSC/Structure/WhiteDwarfs"
(Create "white dwarf" page) |
|||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
=White Dwarfs= | |||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Mass-Radius Relationships== | |||
The following summaries are drawn from Appendix A of [http://adsabs.harvard.edu/abs/2009ApJS..184..248E Even & Tohline (2009)]. | |||
== | ===Chandrasekhar mass=== | ||
Chandrasekhar (1935) was the first to construct models of spherically symmetric stars using the equation of state | [http://adsabs.harvard.edu/abs/1935MNRAS..95..207C Chandrasekhar (1935)] was the first to construct models of spherically symmetric stars using the [[User:Tohline/SR#Time-Independent_Problems|barotropic equation of state appropriate for a degenerate electron gas]], namely, | ||
<div align="center"> | |||
{{User:Tohline/Math/EQ_ZTFG01}} | |||
</div> | |||
In so doing, he demonstrated that the maximum mass of an isolated, nonrotating white dwarf is <math>M_\mathrm{Ch} = 1.44 (\mu_e/2)M_\odot</math>, where {{User:Tohline/Math/MP_ElectronMolecularWeight}} is the number of nucleons per electron and, hence, depends on the chemical composition of the white dwarf. A concise derivation of <math>M_\mathrm{Ch}</math> (although, at the time, it was referred to as <math>M_3</math>) is presented in Chapter ''XI'' of [[User:Tohline/Appendix/References#C67|Chandrasekhar (1967)]], where we also find the expressions for the characteristic Fermi pressure, {{User:Tohline/Math/C_FermiPressure}}, and the characteristic Fermi density, {{User:Tohline/Math/C_FermiDensity}}. The derived analytic expression for the limiting mass is, | |||
<div align="center"> | <div align="center"> | ||
<math>\mu_e^2 M_\mathrm{Ch} = 4\pi m_3 \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{3/2} \frac{\mu_e^2}{B_\mathrm{F}^2} = 1.14205\times 10^{34} ~\mathrm{g}</math>, | <math>\mu_e^2 M_\mathrm{Ch} = 4\pi m_3 \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{3/2} \frac{\mu_e^2}{B_\mathrm{F}^2} = 1.14205\times 10^{34} ~\mathrm{g}</math>, | ||
</div> | </div> | ||
where the coefficient, | <span id="m3">where the coefficient,</span> | ||
<div align="center"> | |||
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>, | |||
</div> | |||
represents a structural property of <math>n = 3</math> polytropes (<math>\gamma = 4/3</math> gasses) whose numerical value can be found in Chapter ''IV'', Table 4 of [[User:Tohline/Appendix/References#C67|Chandrasekhar (1967)]]. We note as well that [[User:Tohline/Appendix/References#C67|Chandrasekhar (1967)]] identified a characteristic radius, <math>\ell_1</math>, for white dwarfs given by the expression, | |||
<div align="center"> | |||
<math> | |||
\ell_1 \mu_e \equiv \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{1/2} \frac{\mu_e}{B_\mathrm{F}} = 7.71395\times 10^8~\mathrm{cm} . | |||
</math> | |||
</div> | |||
===The Nauenberg Mass-Radius Relationship=== | |||
[http://adsabs.harvard.edu/abs/1972ApJ...175..417N Nauenberg (1972)] derived an analytic approximation for the mass-radius relationship exhibited by isolated, spherical white dwarfs that obey the zero-temperature white-dwarf equation of state. Specifically, he offered an expression of the form, | |||
<div align="center"> | |||
<math> | |||
R = R_0 \biggl[ \frac{(1 - n^{4/3})^{1/2}}{n^{1/3}} \biggr] , | |||
</math> | |||
</div> | |||
where, | |||
<table align="center" border="0" cellpadding="8"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
n | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
\equiv | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{M}{(\bar{\mu} m_u) N_0} , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
N_0 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
\equiv | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{(3\pi^2\zeta)^{1/2}}{\nu^{3/2}} \biggl[ \frac{hc}{2\pi G(\bar\mu m_u)^2} \biggr]^{3/2} = \frac{\mu_e^2 m_p^2}{(\bar\mu m_u)^3} \biggl[ \frac{4\pi \zeta}{m_3^2 \nu^3} \biggr]^{1/2} M_\mathrm{Ch} , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
R_0 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
\equiv | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
(3\pi^2 \zeta)^{1/3} \biggl[ \frac{h}{2\pi m_e c} \biggr] N_0^{1/3} = \frac{\mu_e m_p}{\bar\mu m_u} \biggl[ \frac{4\pi \zeta}{\nu} \biggr]^{1/2} \ell_1 , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
{{User:Tohline/Math/C_AtomicMassUnit}} is the atomic mass unit, {{User:Tohline/Math/MP_MeanMolecularWeight}} is the mean molecular weight of the gas, and <math>\zeta</math> and <math>\nu</math> are two adjustable parameters in Nauenberg's analytic approximation, both of which are expected to be of order unity. By assuming that the average particle mass denoted by [[User:Tohline/Appendix/References#C67|Chandrasekhar (1967)]] as <math>(\mu_e m_p)</math> is identical to the average particle mass specified by [http://adsabs.harvard.edu/abs/1972ApJ...175..417N Nauenberg (1972)] as <math>(\bar\mu m_u)</math> and, following Nauenberg's lead, by setting <math>\nu = 1</math> and, | |||
<div align="center"> | |||
<math>\zeta = \frac{m_3^2}{4\pi} = 0.324142</math>, | |||
</div> | |||
in the above expression for <math>N_0</math>, we see that, | |||
<div align="center"> | |||
<math> | |||
(\bar\mu m_u)N_0 = M_\mathrm{Ch} . | |||
</math> | |||
</div> | |||
Hence, the denominator in the above expression for <math>n</math> becomes the Chandrasekhar mass. Furthermore, the above expressions for <math>R_0</math> and <math>R</math> become, respectively, | |||
<div align="center"> | |||
<math> | |||
\mu_e R_0 = m_3(\ell_1 \mu_e) = 1.55686\times 10^9~\mathrm{cm} , | |||
</math> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<math> | |||
R = R_0 \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} . | |||
</math> | |||
</div> | |||
Finally, by adopting appropriate values of <math>M_\odot</math> and <math>R_\odot</math>, we obtain essentially the identical approximate, analytic mass-radius relationship for zero-temperature white dwarfs presented in Eqs. (27) and (28) of [http://adsabs.harvard.edu/abs/1972ApJ...175..417N Nauenberg (1972)]: | |||
<div align="center"> | |||
<math> | |||
\frac{R}{R_\odot} = \frac{0.0224}{\mu_e} \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} , | |||
</math> | |||
</div> | |||
<span id="ChandrasekharMass">where,</span> | |||
<div align="center"> | |||
<math> | |||
\frac{M_\mathrm{Ch}}{M_\odot} = \frac{5.742}{\mu_e^2} . | |||
</math> | |||
</div> | |||
===Eggleton Mass-Radius Relationship=== | |||
[http://adsabs.harvard.edu/abs/1988ApJ...332..193V Verbunt & Rappaport (1988)] introduced the following approximate, analytic expression for the mass-radius relationship of a "completely degenerate <math>\ldots</math> star composed of pure helium" (''i.e.,'' <math>\mu_e = 2</math>), attributing the expression's origin to Eggleton (private communication): | |||
<div align="center"> | |||
<math> | |||
\frac{R}{R_\odot} = 0.0114 \biggl[ \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{-2/3} - \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{2/3} \biggr]^{1/2} \biggl[ 1 + 3.5 \biggl(\frac{M}{M_p}\biggr)^{-2/3} + \biggl(\frac{M}{M_p}\biggr)^{-1} \biggr]^{-2/3} , | |||
</math> | |||
</div> | |||
where <math>M_p</math> is a constant whose numerical value is <math>0.00057 M_\odot</math>. This "Eggleton" mass-radius relationship has been used widely by researchers when modeling the evolution of semi-detached binary star systems in which the donor is a zero-temperature white dwarf. Since the [http://adsabs.harvard.edu/abs/1972ApJ...175..417N Nauenberg (1972)] mass-radius relationship discussed above is retrieved from this last expression in the limit <math>M/M_p \gg 1</math>, it seems clear that Eggleton's contribution was the insertion of the term in square brackets involving the ratio <math>M/M_p</math> which, as [http://adsabs.harvard.edu/abs/2004MNRAS.350..113M Marsh, Nelemans & Steeghs (2004)] phrase it, "allows for the change to be a constant density configuration at low masses ([http://adsabs.harvard.edu/abs/1969ApJ...158..809Z Zapolsky & Salpeter 1969])." | |||
==Highlights from Discussion by Shapiro & Teukolsky (1983)== | |||
Here we interleave our own derivations and discussions with the presentation found in [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>]. | |||
In our [[User:Tohline/SSC/Structure/Polytropes#MassRadiusRelation|accompanying discussion]], we have shown that the equilibrium radius of an isolated polytrope is given, quite generally, by the expression, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~R_\mathrm{eq} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[\biggl(\frac{G}{K_n}\biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} | |||
\biggl[ \frac{4\pi}{(n+1)^n} \biggr]^{1/(n-3)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{(1-n)/(n-3)} \xi_1 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Inverting this provides the following expression for the total mass in terms of the equilibrium radius: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ M_\mathrm{tot}^{1-n} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~R_\mathrm{eq}^{3-n}\biggl(\frac{G}{K_n}\biggr)^n | |||
\biggl[ \frac{4\pi}{(n+1)^n} \biggr] \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{1-n} \xi_1^{n-3} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{G}{(n+1)K_n}\biggr]^{n/(1-n)} | |||
( 4\pi )^{1/(1-n)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{(n+1)K_n}{4\pi G}\biggr]^{n/(n-1)} | |||
\biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
As is shown by the following boxed-in equation table, this expression matches equation (3.3.11) from [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>], except for the sign of the exponent on <math>~\xi_1</math>, which is demonstratively correct in our expression. | |||
<!-- <table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center"> | |||
Equation extracted from §3.3 (p. 63) of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
[[File:ST83Eq3_3_11.png|600px|Equation 3.3.11 from ST83]] | |||
</td> | |||
</tr> | |||
</table> | |||
--> | |||
<div align="center"> | |||
<table border="1" cellpadding="5" width="80%"> | |||
<tr><td align="center"> | |||
Equations extracted<sup>†</sup> from §3.3 (p. 63) and §2.3 (p. 27) of [http://adsabs.harvard.edu/abs/1983bhwd.book.....S Shapiro & Teukolsky (1983)]<p></p> | |||
"''Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects''"<p></p> | |||
(New York: John Wiley & Sons) | |||
</td></tr> | |||
<tr> | |||
<td align="center"> | |||
<!-- [[File:ST83Eq3_3_11.png|600px|Equation 3.3.11 from ST83]] --> | |||
<!-- [[Image:AAAwaiting01.png|400px|center|Norman & Wilson (1978)]] --> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~M</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4\pi R^{(3-n)/(1-n)} \biggl[ \frac{(n+1)K}{4\pi G} \biggr]^{n/(n-1)} \xi_1^{(3-n)/(1-n)} \xi_1^2 |\theta^'(\xi_1)| \, . | |||
</math> | |||
</td> | |||
<td align="right"> | |||
(Eq. 3.3.11) | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<!-- [[File:ST83Eq3_3_12.png|600px|Equation 3.3.12 from ST83]] --> | |||
<!-- [[Image:AAAwaiting01.png|400px|center|Norman & Wilson (1978)]] --> | |||
<math>~\Gamma = \tfrac{4}{3} \, ,</math> | |||
<math>~n = 3 \, ,</math> | |||
<math>~\xi_1 = 6.89685 \, ,</math> | |||
<math>~\xi_1^2|\theta^'(\xi_1)| = 2.01824 \, .</math> | |||
(Eq. 3.3.12) | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<!-- [[File:ST83Eq2_3_23.png|600px|Equation 2.3.23 from ST83]]<br />--> | |||
<!-- [[Image:AAAwaiting01.png|400px|center|Norman & Wilson (1978)]] --> | |||
<math>~\Gamma = \frac{4}{3} \, ,</math> | |||
<math>~K = \frac{3^{1 / 3} \pi^{2 /3}}{4} \frac{\hbar c}{m_u^{4 / 3}\mu_e^{4 / 3}} = \frac{1.2435 \times 10^{15}}{\mu_e^{4 /3}} ~\mathrm{cgs} \, .</math> | |||
(Eq. 2.3.23) | |||
</td> | |||
</tr> | |||
<tr><td align="left"><sup>†</sup>Each equation has been retyped here exactly as it appears in the original publication.</td></tr> | |||
</table> | |||
</div> | |||
Given that (see equation 3.3.12 of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>]; see the boxed-in equation table) in the relativistic limit, <math>~\Gamma = \gamma_g = 4/3</math> — that is, <math>~n=3</math> — and acknowledging as [[#m3|we have above]] that, for isolated <math>~n = 3</math> polytropes, | |||
<div align="center"> | <div align="center"> | ||
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>, | <math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>, | ||
</div> | </div> | ||
<!-- <table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center"> | |||
Equation extracted from §3.3 (p. 63) of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
[[File:ST83Eq3_3_12.png|600px|Equation 3.3.12 from ST83]] | |||
</td> | |||
</tr> | |||
</table> | |||
--> | |||
this polytropic expression for the mass becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ K_3 }{\pi G}\biggr]^{3/2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Separately, [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] show that the effective polytropic constant for a relativistic electron gas is (see their equation 2.3.23, reprinted above in the boxed-in equation table), | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~K_3</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{3\pi^2}{2^6}\biggr)^{1/ 3} \biggl[ \frac{ \hbar^3 c^3 }{ m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} | |||
= \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<!-- <table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center"> | |||
Equation extracted from §2.3 (p.27) of [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
[[File:ST83Eq2_3_23.png|600px|Equation 2.3.23 from ST83]] | |||
</td> | |||
</tr> | |||
</table> | |||
--> | |||
Together, then, the [<b>[[User:Tohline/Appendix/References#ST83|<font color="red">ST83</font>]]</b>] analysis gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ 1 }{\pi G}\biggr]^{3/2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Given that the definitions of the characteristic Fermi pressure, {{ User:Tohline/Math/C_FermiPressure }}, and the characteristic Fermi density, {{ User:Tohline/Math/C_FermiDensity }}, are, | |||
<div align="center"> | |||
<math>A_\mathrm{F} \equiv \frac{\pi m_e^4 c^5}{3h^3} </math><br /><p></p> | |||
<math>\frac{B_\mathrm{F}}{\mu_e} \equiv \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \, ,</math> | |||
</div> | |||
we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} | |||
\biggl[ \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \biggr]^2 \biggl[\frac{3h^3}{2\pi m_e^4 c^5} \biggr]^{3 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} | |||
\biggl\{ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \cdot | |||
\frac{2^{12} \pi^4 m_p^4}{3^4} \biggl( \frac{m_e c}{h} \biggr)^{12} \cdot \frac{3^3h^9}{2^3\pi^3 m_e^{12} c^{15}} | |||
\biggr\}^{1 / 2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} | |||
\biggl[ \frac{ m_p }{m_u \mu_e } \biggr]^{2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \mu_e^2 M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} | |||
\biggl[ \frac{ m_p }{m_u } \biggr]^{2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
which matches the [[#Chandrasekhar_mass|expression presented above]] for the Chandrasekhar mass if we set <math>~m_u = m_p</math>. | |||
=See Also= | |||
* [https://ui.adsabs.harvard.edu/abs/1930LEDPM...9..944S/abstract Edmund C. Stoner (1930)], The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 7, Volume 9, Issue 60, p. 944-963: ''The Equilibrium of Dense Stars'' | |||
* [https://ui.adsabs.harvard.edu/abs/1931ApJ....74...81C/abstract S. Chandrasekhar (1931)], ApJ, 74, p. 81: ''The Maximum Mass of Ideal White Dwarfs'' | |||
* [https://ui.adsabs.harvard.edu/abs/1966PhRvL..17..816O/abstract J. P. Ostriker, P. Bodenheimer & D. Lynden-Bell (1966)], Phys. Rev. Letters, 17, 816: ''Equilibrium Models of Differentially Rotating Zero-Temperature Stars'' | |||
<table border="0" align="center" width="100%" cellpadding="1"><tr> | |||
<td align="center" width="5%"> </td><td align="left"> | |||
<font color="green">… work by Roxburgh (1965, Z. Astrophys., 62, 134), Anand (1965, Proc. Natl. Acad. Sci. U.S., 54, 23), and James (1964, ApJ, 140, 552) shows that the</font> [Chandrasekhar (1931, ApJ, 74, 81)] <font color="green">mass limit <math>~M_3</math> is increased by only a few percent when uniform rotation is included in the models, …</font> | |||
<font color="green">In this Letter we demonstrate that white-dwarf models with masses considerably greater than <math>~M_3</math> are possible if differential rotation is allowed … models are based on the physical assumption of an axially symmetric, completely degenerate, self-gravitating fluid, in which the effects of viscosity, magnetic fields, meridional circulation, and relativistic terms in the hydrodynamical equations have been neglected.</font> | |||
</td></tr></table> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 15:34, 9 August 2019
White Dwarfs
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Mass-Radius Relationships
The following summaries are drawn from Appendix A of Even & Tohline (2009).
Chandrasekhar mass
Chandrasekhar (1935) was the first to construct models of spherically symmetric stars using the barotropic equation of state appropriate for a degenerate electron gas, namely,
<math>~P_\mathrm{deg} = A_\mathrm{F} F(\chi) </math> |
|
where: <math>F(\chi) \equiv \chi(2\chi^2 - 3)(\chi^2 + 1)^{1/2} + 3\sinh^{-1}\chi</math> |
|
and: |
<math>\chi \equiv (\rho/B_\mathrm{F})^{1/3}</math> |
In so doing, he demonstrated that the maximum mass of an isolated, nonrotating white dwarf is <math>M_\mathrm{Ch} = 1.44 (\mu_e/2)M_\odot</math>, where <math>~\mu_e</math> is the number of nucleons per electron and, hence, depends on the chemical composition of the white dwarf. A concise derivation of <math>M_\mathrm{Ch}</math> (although, at the time, it was referred to as <math>M_3</math>) is presented in Chapter XI of Chandrasekhar (1967), where we also find the expressions for the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, and the characteristic Fermi density, <math>~B_\mathrm{F}</math>. The derived analytic expression for the limiting mass is,
<math>\mu_e^2 M_\mathrm{Ch} = 4\pi m_3 \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{3/2} \frac{\mu_e^2}{B_\mathrm{F}^2} = 1.14205\times 10^{34} ~\mathrm{g}</math>,
where the coefficient,
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,
represents a structural property of <math>n = 3</math> polytropes (<math>\gamma = 4/3</math> gasses) whose numerical value can be found in Chapter IV, Table 4 of Chandrasekhar (1967). We note as well that Chandrasekhar (1967) identified a characteristic radius, <math>\ell_1</math>, for white dwarfs given by the expression,
<math> \ell_1 \mu_e \equiv \biggl( \frac{2A_\mathrm{F}}{\pi G} \biggr)^{1/2} \frac{\mu_e}{B_\mathrm{F}} = 7.71395\times 10^8~\mathrm{cm} . </math>
The Nauenberg Mass-Radius Relationship
Nauenberg (1972) derived an analytic approximation for the mass-radius relationship exhibited by isolated, spherical white dwarfs that obey the zero-temperature white-dwarf equation of state. Specifically, he offered an expression of the form,
<math> R = R_0 \biggl[ \frac{(1 - n^{4/3})^{1/2}}{n^{1/3}} \biggr] , </math>
where,
<math> n </math> |
<math> \equiv </math> |
<math> \frac{M}{(\bar{\mu} m_u) N_0} , </math> |
<math> N_0 </math> |
<math> \equiv </math> |
<math> \frac{(3\pi^2\zeta)^{1/2}}{\nu^{3/2}} \biggl[ \frac{hc}{2\pi G(\bar\mu m_u)^2} \biggr]^{3/2} = \frac{\mu_e^2 m_p^2}{(\bar\mu m_u)^3} \biggl[ \frac{4\pi \zeta}{m_3^2 \nu^3} \biggr]^{1/2} M_\mathrm{Ch} , </math> |
<math> R_0 </math> |
<math> \equiv </math> |
<math> (3\pi^2 \zeta)^{1/3} \biggl[ \frac{h}{2\pi m_e c} \biggr] N_0^{1/3} = \frac{\mu_e m_p}{\bar\mu m_u} \biggl[ \frac{4\pi \zeta}{\nu} \biggr]^{1/2} \ell_1 , </math> |
<math>~m_u</math> is the atomic mass unit, <math>~\bar{\mu}</math> is the mean molecular weight of the gas, and <math>\zeta</math> and <math>\nu</math> are two adjustable parameters in Nauenberg's analytic approximation, both of which are expected to be of order unity. By assuming that the average particle mass denoted by Chandrasekhar (1967) as <math>(\mu_e m_p)</math> is identical to the average particle mass specified by Nauenberg (1972) as <math>(\bar\mu m_u)</math> and, following Nauenberg's lead, by setting <math>\nu = 1</math> and,
<math>\zeta = \frac{m_3^2}{4\pi} = 0.324142</math>,
in the above expression for <math>N_0</math>, we see that,
<math> (\bar\mu m_u)N_0 = M_\mathrm{Ch} . </math>
Hence, the denominator in the above expression for <math>n</math> becomes the Chandrasekhar mass. Furthermore, the above expressions for <math>R_0</math> and <math>R</math> become, respectively,
<math> \mu_e R_0 = m_3(\ell_1 \mu_e) = 1.55686\times 10^9~\mathrm{cm} , </math>
and,
<math> R = R_0 \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} . </math>
Finally, by adopting appropriate values of <math>M_\odot</math> and <math>R_\odot</math>, we obtain essentially the identical approximate, analytic mass-radius relationship for zero-temperature white dwarfs presented in Eqs. (27) and (28) of Nauenberg (1972):
<math> \frac{R}{R_\odot} = \frac{0.0224}{\mu_e} \biggl\{ \frac{[1 - (M/M_\mathrm{Ch})^{4/3} ]^{1/2}}{(M/M_\mathrm{Ch})^{1/3}} \biggr\} , </math>
where,
<math> \frac{M_\mathrm{Ch}}{M_\odot} = \frac{5.742}{\mu_e^2} . </math>
Eggleton Mass-Radius Relationship
Verbunt & Rappaport (1988) introduced the following approximate, analytic expression for the mass-radius relationship of a "completely degenerate <math>\ldots</math> star composed of pure helium" (i.e., <math>\mu_e = 2</math>), attributing the expression's origin to Eggleton (private communication):
<math> \frac{R}{R_\odot} = 0.0114 \biggl[ \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{-2/3} - \biggl(\frac{M}{M_\mathrm{Ch}}\biggr)^{2/3} \biggr]^{1/2} \biggl[ 1 + 3.5 \biggl(\frac{M}{M_p}\biggr)^{-2/3} + \biggl(\frac{M}{M_p}\biggr)^{-1} \biggr]^{-2/3} , </math>
where <math>M_p</math> is a constant whose numerical value is <math>0.00057 M_\odot</math>. This "Eggleton" mass-radius relationship has been used widely by researchers when modeling the evolution of semi-detached binary star systems in which the donor is a zero-temperature white dwarf. Since the Nauenberg (1972) mass-radius relationship discussed above is retrieved from this last expression in the limit <math>M/M_p \gg 1</math>, it seems clear that Eggleton's contribution was the insertion of the term in square brackets involving the ratio <math>M/M_p</math> which, as Marsh, Nelemans & Steeghs (2004) phrase it, "allows for the change to be a constant density configuration at low masses (Zapolsky & Salpeter 1969)."
Highlights from Discussion by Shapiro & Teukolsky (1983)
Here we interleave our own derivations and discussions with the presentation found in [ST83].
In our accompanying discussion, we have shown that the equilibrium radius of an isolated polytrope is given, quite generally, by the expression,
<math>~R_\mathrm{eq} </math> |
<math>~=</math> |
<math>~\biggl[\biggl(\frac{G}{K_n}\biggr)^n M_\mathrm{tot}^{n-1} \biggr]^{1/(n-3)} \biggl[ \frac{4\pi}{(n+1)^n} \biggr]^{1/(n-3)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{(1-n)/(n-3)} \xi_1 \, . </math> |
Inverting this provides the following expression for the total mass in terms of the equilibrium radius:
<math>~ M_\mathrm{tot}^{1-n} </math> |
<math>~=</math> |
<math>~R_\mathrm{eq}^{3-n}\biggl(\frac{G}{K_n}\biggr)^n \biggl[ \frac{4\pi}{(n+1)^n} \biggr] \biggl[(-\theta^') \xi^2\biggr]_{\xi_1}^{1-n} \xi_1^{n-3} </math> |
<math>~\Rightarrow~~~ M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{G}{(n+1)K_n}\biggr]^{n/(1-n)} ( 4\pi )^{1/(1-n)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} </math> |
|
<math>~=</math> |
<math>~4\pi R_\mathrm{eq}^{(3-n)/(1-n)}\biggl[\frac{(n+1)K_n}{4\pi G}\biggr]^{n/(n-1)} \biggl[(-\theta^') \xi^2\biggr]_{\xi_1} \xi_1^{(n-3)/(1-n)} </math> |
As is shown by the following boxed-in equation table, this expression matches equation (3.3.11) from [ST83], except for the sign of the exponent on <math>~\xi_1</math>, which is demonstratively correct in our expression.
Equations extracted† from §3.3 (p. 63) and §2.3 (p. 27) of Shapiro & Teukolsky (1983)
"Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects"
(New York: John Wiley & Sons) | ||||
|
||||
<math>~\Gamma = \tfrac{4}{3} \, ,</math> <math>~n = 3 \, ,</math> <math>~\xi_1 = 6.89685 \, ,</math> <math>~\xi_1^2|\theta^'(\xi_1)| = 2.01824 \, .</math> (Eq. 3.3.12) |
||||
<math>~\Gamma = \frac{4}{3} \, ,</math> <math>~K = \frac{3^{1 / 3} \pi^{2 /3}}{4} \frac{\hbar c}{m_u^{4 / 3}\mu_e^{4 / 3}} = \frac{1.2435 \times 10^{15}}{\mu_e^{4 /3}} ~\mathrm{cgs} \, .</math> (Eq. 2.3.23) |
||||
†Each equation has been retyped here exactly as it appears in the original publication. |
Given that (see equation 3.3.12 of [ST83]; see the boxed-in equation table) in the relativistic limit, <math>~\Gamma = \gamma_g = 4/3</math> — that is, <math>~n=3</math> — and acknowledging as we have above that, for isolated <math>~n = 3</math> polytropes,
<math>m_3 \equiv \biggl(-\xi^2 \frac{d\theta_3}{d\xi} \biggr)_\mathrm{\xi=\xi_1(\theta_3)} = 2.01824</math>,
this polytropic expression for the mass becomes,
<math>~ M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ K_3 }{\pi G}\biggr]^{3/2} \, . </math> |
Separately, [ST83] show that the effective polytropic constant for a relativistic electron gas is (see their equation 2.3.23, reprinted above in the boxed-in equation table),
<math>~K_3</math> |
<math>~=</math> |
<math>~ \biggl( \frac{3\pi^2}{2^6}\biggr)^{1/ 3} \biggl[ \frac{ \hbar^3 c^3 }{ m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} = \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 3} \, . </math> |
Together, then, the [ST83] analysis gives,
<math>~ M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ 1 }{\pi G}\biggr]^{3/2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} \, . </math> |
Given that the definitions of the characteristic Fermi pressure, <math>~A_\mathrm{F}</math>, and the characteristic Fermi density, <math>~B_\mathrm{F}</math>, are,
<math>\frac{B_\mathrm{F}}{\mu_e} \equiv \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \, ,</math>
we have,
<math>~ M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \biggr]^{ 1 / 2} \biggl[ \frac{8\pi m_p}{3} \biggl( \frac{m_e c}{h} \biggr)^3 \biggr]^2 \biggl[\frac{3h^3}{2\pi m_e^4 c^5} \biggr]^{3 / 2} </math> |
|
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl\{ \frac{3 h^3 c^3 }{2^9\pi m_u^4 \mu_e^4 } \cdot \frac{2^{12} \pi^4 m_p^4}{3^4} \biggl( \frac{m_e c}{h} \biggr)^{12} \cdot \frac{3^3h^9}{2^3\pi^3 m_e^{12} c^{15}} \biggr\}^{1 / 2} </math> |
|
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{ m_p }{m_u \mu_e } \biggr]^{2} </math> |
<math>~\Rightarrow ~~~ \mu_e^2 M_\mathrm{tot}</math> |
<math>~=</math> |
<math>~4\pi m_3 \biggl[\frac{ 2A_F }{\pi G}\biggr]^{3/2} \frac{\mu_e^2}{B_F^2} \biggl[ \frac{ m_p }{m_u } \biggr]^{2} \, , </math> |
which matches the expression presented above for the Chandrasekhar mass if we set <math>~m_u = m_p</math>.
See Also
- Edmund C. Stoner (1930), The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 7, Volume 9, Issue 60, p. 944-963: The Equilibrium of Dense Stars
- S. Chandrasekhar (1931), ApJ, 74, p. 81: The Maximum Mass of Ideal White Dwarfs
- J. P. Ostriker, P. Bodenheimer & D. Lynden-Bell (1966), Phys. Rev. Letters, 17, 816: Equilibrium Models of Differentially Rotating Zero-Temperature Stars
… work by Roxburgh (1965, Z. Astrophys., 62, 134), Anand (1965, Proc. Natl. Acad. Sci. U.S., 54, 23), and James (1964, ApJ, 140, 552) shows that the [Chandrasekhar (1931, ApJ, 74, 81)] mass limit <math>~M_3</math> is increased by only a few percent when uniform rotation is included in the models, … In this Letter we demonstrate that white-dwarf models with masses considerably greater than <math>~M_3</math> are possible if differential rotation is allowed … models are based on the physical assumption of an axially symmetric, completely degenerate, self-gravitating fluid, in which the effects of viscosity, magnetic fields, meridional circulation, and relativistic terms in the hydrodynamical equations have been neglected. |
© 2014 - 2021 by Joel E. Tohline |