Difference between revisions of "User:Tohline/Appendix/Ramblings/T4Integrals"

From VistrailsWiki
Jump to navigation Jump to search
(Begin presentation of T4 coordinates)
 
(→‎Integrals of Motion in T4 Coordinates: Abandon this discussion because the defined coordinates are not orthogonal)
 
(8 intermediate revisions by the same user not shown)
Line 2: Line 2:


=Integrals of Motion in T4 Coordinates=
=Integrals of Motion in T4 Coordinates=
[[User:Tohline/Appendix/Ramblings/T3Integrals|In an accompanying Wiki document]], we have derived the properties of an orthogonal, axisymmetric, ''T3'' coordinate system in which the first coordinate, <math>\lambda_1</math>, defines a family of concentric oblate-spheroidal surfaces whose (uniform) flattening is defined by a parameter <math>q \equiv R_\mathrm{eq}/Z_\mathrm{pole}</math>. In a [[User:Tohline/Appendix/Ramblings/T3Integrals/QuadraticCase|separate, but related, Wiki document]], we attempt to derive the <math>3^\mathrm{rd}</math> isolating integral of motion for massless particles that move inside a flattened, axisymmetric potential whose equipotential surfaces align with <math>\lambda_1 = \mathrm{constant}</math> surfaces in the special (quadratic) case when <math>q^2 = 2</math>.  While examining this special case, we noticed that, in T3 Coordinates, the <math>h_1</math> and <math>h_2</math> scale factors are only a function of the coordinate ratio <math>\lambda_1/\lambda_2</math>.  This has led us to wonder whether it might be more fruitful to search for the <math>3^\mathrm{rd}</math> isolating integral using a coordinate system in which one of the coordinates is defined by this T3-coordinate ratio.  It is with this in mind that we explore the development of a new ''T4'' coordinate system.
[[User:Tohline/Appendix/Ramblings/T3Integrals|In an accompanying Wiki document]], we have derived the properties of an orthogonal, axisymmetric, ''T3'' coordinate system in which the first coordinate, <math>\lambda_1</math>, defines a family of concentric oblate-spheroidal surfaces whose (uniform) flattening is defined by a parameter <math>q \equiv R_\mathrm{eq}/Z_\mathrm{pole}</math>. In a [[User:Tohline/Appendix/Ramblings/T3Integrals/QuadraticCase|separate, but related, Wiki document]], we attempt to derive the <math>3^\mathrm{rd}</math> isolating integral of motion for massless particles that move inside a flattened, axisymmetric potential whose equipotential surfaces align with <math>\lambda_1 = \mathrm{constant}</math> surfaces in the special (quadratic) case when <math>q^2 = 2</math>.  While examining this special case, we noticed that, in T3 Coordinates, the <math>h_1</math> and <math>h_2</math> scale factors are only a function of the coordinate ratio <math>\lambda_1/\lambda_2</math>.  This has led us to wonder whether it might be more fruitful to search for the <math>3^\mathrm{rd}</math> isolating integral using a coordinate system in which one of the coordinates is defined by this T3-coordinate ratio.   


It is with this in mind that we explore the development of a new ''T4'' coordinate system.  From the very beginning we will restrict the T4-coordinate definition to the special case of <math>q^2 = 2</math> because, at present, we think that the coordinate T3-coordinate ratio <math>\lambda_1/\lambda_2</math> is only interesting in the quadratic case.  (See, for example, the polynomial root derived to complete the [[User:Tohline/Appendix/Ramblings/T1Coordinates#Second_Special_Case_.28cubic.29|T1-coordinate inversion for the cubic case]] <math>q^2=3</math>; it is another combination of the T3 coordinates that appears to be relevant in the cubic case.)
<div align="center">
<b><font color="red" size="+3">
STOP!
</font></b>
<b><font color="red" size="+1">
(7/06/2010)
</font></b>
</div>
<b><font color="red" size="+2">
As defined, below, this is ''not'' an orthogonal coordinate system.
</font></b>


==Definition==
==Definition==
In what follows, the coordinates <math>(\lambda_1,\lambda_2,\lambda_3)</math> refer to [[User:Tohline/Appendix/Ramblings/T3Integrals|T3 Coordinates]].  Let's define a set of orthogonal ''T4 Coordinates'' such that,
In what follows, the coordinates <math>(\lambda_1,\lambda_2,\lambda_3)</math> refer to [[User:Tohline/Appendix/Ramblings/T3Integrals|T3 Coordinates]].  Let's define a set of orthogonal ''T4 Coordinates'' for the special (quadratic) case <math>q^2=2</math> such that,
<table border="0" align="center" cellpadding="5">
<table border="0" align="center" cellpadding="5">
<tr>
<tr>
Line 21: Line 36:
   <td align="left">
   <td align="left">
<math>
<math>
(\lambda_1^2 + \lambda_2^2)^{1/2} ;
(\lambda_1^2 + \lambda_2^2)^{1/2}  
</math>
</math>
   </td>
   </td>
</tr>
  <td align="center">
 
<math>
<tr>
=
   <td align="right">
</math>
  </td>
   <td align="left">
<math>
<math>
\tan\xi_2
\varpi\biggl[1 + \sinh^2\Zeta + (\sinh\Zeta)^{2/(1-q^2)}  \biggr]^{1/2}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\equiv
\xrightarrow{~~(q^2=2)~~}
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\frac{\lambda_2}{\lambda_1} ;
\varpi\biggl[1 + \sinh^2\Zeta + \frac{1}{\sinh^2\Zeta} \biggr]^{1/2} ;
</math>
</math>
   </td>
   </td>
Line 47: Line 64:
   <td align="right">
   <td align="right">
<math>
<math>
\tan\xi_3
\xi_2
</math>
</math>
   </td>
   </td>
Line 57: Line 74:
   <td align="left">
   <td align="left">
<math>
<math>
\frac{y}{x} .
\frac{\lambda_2}{\lambda_1}
</math>
  </td>
</tr>
</table>
 
The coordinate inversion &#8212; from <math>(\xi_1,\xi_2,\xi_3)</math> back to <math>(\lambda_1,\lambda_2,\lambda_3)</math> &#8212; is straightforward.  Specifically,
<table border="0" align="center" cellpadding="5">
<tr>
  <td align="right">
<math>
\lambda_1
</math>
</math>
   </td>
   </td>
Line 78: Line 84:
   <td align="left">
   <td align="left">
<math>
<math>
\xi_1 \cos\xi_2 ;
\biggl[ \frac{(\sinh\Zeta)^{2/(1-q^2)}}{1+\sinh^2\Zeta} \biggr]^{1/2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>
\lambda_2
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\xrightarrow{~~(q^2=2)~~}
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\xi_1 \sin\xi_2 ;
\biggl[ \frac{1}{\sinh^2\Zeta(1+\sinh^2\Zeta)} \biggr]^{1/2} ;
</math>
</math>
   </td>
   </td>
Line 104: Line 102:
   <td align="right">
   <td align="right">
<math>
<math>
\lambda_3
\tan\xi_3
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
=
\equiv
</math>
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>
\xi_3 .
\frac{y}{x} ,
</math>
</math>
   </td>
   </td>
</tr>
</table>
Here are some relevant partial derivatives: 
<table align="center" border="1" cellpadding="5">
<tr>
   <td align="center">
   <td align="center">
&nbsp;
  </td>
  <td align="left">
&nbsp;
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
&nbsp;
\frac{\partial}{\partial x}
</math>
   </td>
   </td>
   <td align="center">
   <td align="left">
<math>
&nbsp;
\frac{\partial}{\partial y}
</math>
   </td>
   </td>
  <td align="center">
</tr>
</table>
 
where,
<div align="center">
<math>
<math>
\frac{\partial}{\partial z}
\sinh^2\Zeta \equiv \biggl(\frac{qz}{\varpi}\biggr)^2 ~~~~\xrightarrow{~~(q^2=2)~~}
~~~~ \frac{2z^2}{\varpi^2} .
</math>
</math>
  </td>
</div>
</tr>


The coordinate inversion &#8212; from <math>(\xi_1,\xi_2,\xi_3)</math> back to <math>(\lambda_1,\lambda_2,\lambda_3)</math> &#8212; is straightforward.  Specifically,
<table border="0" align="center" cellpadding="5">
<tr>
<tr>
   <td align="center">
   <td align="right">
<math>\xi_1</math>
  </td>
  <td align="center">
<math>
<math>
~~
\lambda_1
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
=
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="left">
<math>
<math>
~~
\xi_1 \cos\biggl[ \tan^{-1}\xi_2 \biggr] ;
</math>
</math>
   </td>
   </td>
Line 166: Line 159:


<tr>
<tr>
   <td align="center">
   <td align="right">
<math>\xi_2</math>
  </td>
  <td align="center">
<math>
<math>
~~
\lambda_2
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
=
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="left">
<math>
<math>
~~
\xi_1 \sin\biggl[ \tan^{-1}\xi_2 \biggr] ;
</math>
</math>
   </td>
   </td>
Line 187: Line 177:


<tr>
<tr>
   <td align="center">
   <td align="right">
<math>\xi_3</math>
  </td>
  <td align="center">
<math>
<math>
~~
\lambda_3
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
=
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="left">
<math>
<math>
~~
\xi_3 .
</math>
</math>
   </td>
   </td>
Line 208: Line 195:
</table>
</table>


<!--
Here are some relevant partial derivatives: 
Alternatively, partials can be taken with respect to the cylindrical coordinates, <math>\varpi</math>, <math>z</math> and <math>\phi</math>. (Incidentally, I have reversed the traditional order of the <math>\phi</math> and <math>z</math> coordinates in an attempt to parallelize structure between cylindrical and T3 coordinates since <math>\lambda_3 \equiv \phi</math>.)
<div align="center">
<math>
\frac{\partial\sinh^2\Zeta}{\partial\varpi} = -\frac{4z^2}{\varpi^3} ;
</math><br /><br />
 
<math>
\frac{\partial\sinh^2\Zeta}{\partial z} = + \frac{4z}{\varpi^2} .
</math>
 
</div>
 
Partial derivatives with respect to cylindrical coordinates are,


<table align="center" border="1" cellpadding="5">
<table align="center" border="1" cellpadding="5">
Line 235: Line 233:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>{\lambda_1}</math>
<math>{\xi_1}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\varpi}{\lambda_1}
\frac{\varpi}{\xi_1 z^2}\biggl(\varpi^2 + z^2 \biggr)
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{q^2 z}{\lambda_1}
\frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr)
</math>
</math>
   </td>
   </td>
Line 256: Line 254:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\lambda_2</math>
<math>\xi_2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{q^2}{q^2-1} \left( \frac{\varpi}{qz} \right)^{1/(q^2-1)}
\frac{2\xi_2^3 z^2}{\varpi^5}(\varpi^2 + 4z^2)
</math><br />
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
-\frac{1}{q^2-1} \left( \frac{\varpi^{q^2}}{qz^{q^2}} \right)^{1/(q^2-1)}
- \frac{2\xi_2^3 z}{\varpi^4}(\varpi^2 + 4z^2)
</math><br />
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 277: Line 275:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\lambda_3</math>
<math>\xi_3</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 296: Line 294:
</tr>
</tr>
</table>
</table>
-->


Ghe inverted partials are
Hence, the partials with respect to Cartesian coordinates are,


<table align="center" border="1" cellpadding="5">
<table align="center" border="1" cellpadding="5">
Line 307: Line 304:
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \xi_1}
\frac{\partial}{\partial x}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \xi_2}
\frac{\partial}{\partial y}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
\frac{\partial}{\partial \xi_3}
\frac{\partial}{\partial z}
</math>
</math>
   </td>
   </td>
Line 324: Line 321:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>x</math>
<math>\xi_1</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
\frac{x}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr]
</math>
</math><br/><br/>
<math>\xrightarrow{(q^2=2)}~~~
\frac{x}{\xi_1 z^2} (\varpi^2 + z^2)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
\frac{y}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr]
</math><br/><br/>
<math>\xrightarrow{(q^2=2)}~~~
\frac{y}{\xi_1 z^2} (\varpi^2 + z^2)
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
- \frac{\varpi^2}{(1-q^2)\xi_1 z} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{\xi_1^2}{\varpi^2} \biggr]
</math><br/><br/>
<math>\xrightarrow{(q^2=2)}~~~
+ \frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr)
</math>
</math>
   </td>
   </td>
</tr>
</tr>
Line 345: Line 351:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>
<math>\xi_2</math>
y
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 368: Line 372:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>
<math>\xi_3</math>
z
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
-\frac{y}{\varpi^2}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
+\frac{x}{\varpi^2}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>
~~
0
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


The scale factors are,
The scale factors are,
Line 410: Line 413:
   <td align="left">
   <td align="left">
<math>
<math>
~~
\biggl[ \biggl( \frac{\partial\xi_1}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
&nbsp;
<math>
\biggl[ \frac{4\xi_1^2 z^6 }{(\varpi^2 + 4z^2)(\varpi^6 + 4z^6)} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 438: Line 445:
   <td align="left">
   <td align="left">
<math>
<math>
~~
\biggl[ \biggl( \frac{\partial\xi_2}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial z} \biggr)^2 \biggr]^{-1}
</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>
=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
&nbsp;
<math>
\frac{\varpi^{10}}{4\xi_2^6 z^2} \biggl[ \frac{1}{(\varpi^2 + 4z^2)^2(\varpi^2 + z^2)} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 466: Line 477:
   <td align="left">
   <td align="left">
<math>
<math>
~~
\varpi^2
</math>
</math>
   </td>
   </td>
Line 484: Line 495:
</table>
</table>


<!--
For the record, the inverted partials are
<table align="center" border="1" cellpadding="5">
<tr>
  <td align="center">
&nbsp;
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \xi_1}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \xi_2}
</math>
  </td>
  <td align="center">
<math>
\frac{\partial}{\partial \xi_3}
</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>x</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>
y
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
</tr>


<tr>
  <td align="center">
<math>
z
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
  <td align="center">
<math>
~~
</math>
  </td>
</tr>
</table>
-->
The position vector is,
The position vector is,


Line 510: Line 613:
</tr>
</tr>
</table>
</table>


=See Also=
=See Also=

Latest revision as of 16:12, 6 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Integrals of Motion in T4 Coordinates

In an accompanying Wiki document, we have derived the properties of an orthogonal, axisymmetric, T3 coordinate system in which the first coordinate, <math>\lambda_1</math>, defines a family of concentric oblate-spheroidal surfaces whose (uniform) flattening is defined by a parameter <math>q \equiv R_\mathrm{eq}/Z_\mathrm{pole}</math>. In a separate, but related, Wiki document, we attempt to derive the <math>3^\mathrm{rd}</math> isolating integral of motion for massless particles that move inside a flattened, axisymmetric potential whose equipotential surfaces align with <math>\lambda_1 = \mathrm{constant}</math> surfaces in the special (quadratic) case when <math>q^2 = 2</math>. While examining this special case, we noticed that, in T3 Coordinates, the <math>h_1</math> and <math>h_2</math> scale factors are only a function of the coordinate ratio <math>\lambda_1/\lambda_2</math>. This has led us to wonder whether it might be more fruitful to search for the <math>3^\mathrm{rd}</math> isolating integral using a coordinate system in which one of the coordinates is defined by this T3-coordinate ratio.

It is with this in mind that we explore the development of a new T4 coordinate system. From the very beginning we will restrict the T4-coordinate definition to the special case of <math>q^2 = 2</math> because, at present, we think that the coordinate T3-coordinate ratio <math>\lambda_1/\lambda_2</math> is only interesting in the quadratic case. (See, for example, the polynomial root derived to complete the T1-coordinate inversion for the cubic case <math>q^2=3</math>; it is another combination of the T3 coordinates that appears to be relevant in the cubic case.)

STOP!

(7/06/2010)

As defined, below, this is not an orthogonal coordinate system.

Definition

In what follows, the coordinates <math>(\lambda_1,\lambda_2,\lambda_3)</math> refer to T3 Coordinates. Let's define a set of orthogonal T4 Coordinates for the special (quadratic) case <math>q^2=2</math> such that,

<math> \xi_1 </math>

<math> \equiv </math>

<math> (\lambda_1^2 + \lambda_2^2)^{1/2} </math>

<math> = </math>

<math> \varpi\biggl[1 + \sinh^2\Zeta + (\sinh\Zeta)^{2/(1-q^2)} \biggr]^{1/2} </math>

<math> \xrightarrow{~~(q^2=2)~~} </math>

<math> \varpi\biggl[1 + \sinh^2\Zeta + \frac{1}{\sinh^2\Zeta} \biggr]^{1/2} ; </math>

<math> \xi_2 </math>

<math> \equiv </math>

<math> \frac{\lambda_2}{\lambda_1} </math>

<math> = </math>

<math> \biggl[ \frac{(\sinh\Zeta)^{2/(1-q^2)}}{1+\sinh^2\Zeta} \biggr]^{1/2} </math>

<math> \xrightarrow{~~(q^2=2)~~} </math>

<math> \biggl[ \frac{1}{\sinh^2\Zeta(1+\sinh^2\Zeta)} \biggr]^{1/2} ; </math>

<math> \tan\xi_3 </math>

<math> \equiv </math>

<math> \frac{y}{x} , </math>

 

 

 

 

where,

<math> \sinh^2\Zeta \equiv \biggl(\frac{qz}{\varpi}\biggr)^2 ~~~~\xrightarrow{~~(q^2=2)~~} ~~~~ \frac{2z^2}{\varpi^2} . </math>

The coordinate inversion — from <math>(\xi_1,\xi_2,\xi_3)</math> back to <math>(\lambda_1,\lambda_2,\lambda_3)</math> — is straightforward. Specifically,

<math> \lambda_1 </math>

<math> = </math>

<math> \xi_1 \cos\biggl[ \tan^{-1}\xi_2 \biggr] ; </math>

<math> \lambda_2 </math>

<math> = </math>

<math> \xi_1 \sin\biggl[ \tan^{-1}\xi_2 \biggr] ; </math>

<math> \lambda_3 </math>

<math> = </math>

<math> \xi_3 . </math>

Here are some relevant partial derivatives:

<math> \frac{\partial\sinh^2\Zeta}{\partial\varpi} = -\frac{4z^2}{\varpi^3} ; </math>

<math> \frac{\partial\sinh^2\Zeta}{\partial z} = + \frac{4z}{\varpi^2} . </math>

Partial derivatives with respect to cylindrical coordinates are,

 

<math> \frac{\partial}{\partial \varpi} </math>

<math> \frac{\partial}{\partial z} </math>

<math> \frac{\partial}{\partial \phi} </math>

<math>{\xi_1}</math>

<math> \frac{\varpi}{\xi_1 z^2}\biggl(\varpi^2 + z^2 \biggr) </math>

<math> \frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr) </math>

<math> 0 </math>

<math>\xi_2</math>

<math> \frac{2\xi_2^3 z^2}{\varpi^5}(\varpi^2 + 4z^2) </math>

<math> - \frac{2\xi_2^3 z}{\varpi^4}(\varpi^2 + 4z^2) </math>

<math> 0 </math>

<math>\xi_3</math>

<math> 0 </math>

<math> 0 </math>

<math> 1 </math>

Hence, the partials with respect to Cartesian coordinates are,

 

<math> \frac{\partial}{\partial x} </math>

<math> \frac{\partial}{\partial y} </math>

<math> \frac{\partial}{\partial z} </math>

<math>\xi_1</math>

<math> \frac{x}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ \frac{x}{\xi_1 z^2} (\varpi^2 + z^2)</math>

<math> \frac{y}{(1-q^2)\xi_1} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{q^2 \xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ \frac{y}{\xi_1 z^2} (\varpi^2 + z^2) </math>

<math> - \frac{\varpi^2}{(1-q^2)\xi_1 z} \biggl[ 1 + \frac{q^4 z^2}{\varpi^2} - \frac{\xi_1^2}{\varpi^2} \biggr] </math>

<math>\xrightarrow{(q^2=2)}~~~ + \frac{1}{2\xi_1 z^3}\biggl(4z^4 - \varpi^4 \biggr) </math>

<math>\xi_2</math>

<math> ~~ </math>

<math> ~~ </math>

<math> ~~ </math>

<math>\xi_3</math>

<math> -\frac{y}{\varpi^2} </math>

<math> +\frac{x}{\varpi^2} </math>

<math> 0 </math>


The scale factors are,

<math>h_1^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_1}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math> = </math>

<math> \biggl[ \frac{4\xi_1^2 z^6 }{(\varpi^2 + 4z^2)(\varpi^6 + 4z^6)} \biggr] </math>

<math>h_2^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_2}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_2}{\partial \varpi} \biggr)^2 + \biggl( \frac{\partial\xi_2}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math> = </math>

<math> \frac{\varpi^{10}}{4\xi_2^6 z^2} \biggl[ \frac{1}{(\varpi^2 + 4z^2)^2(\varpi^2 + z^2)} \biggr] </math>

<math>h_3^2</math>

<math>=</math>

<math> \biggl[ \biggl( \frac{\partial\xi_3}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_3}{\partial y} \biggr)^2 + \biggl( \frac{\partial\xi_3}{\partial z} \biggr)^2 \biggr]^{-1} </math>

<math>=</math>

<math> \varpi^2 </math>

 

 

where,        <math>~~</math>.

The position vector is,

<math>\vec{x}</math>

<math>=</math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

<math>=</math>

<math> ~~ </math>

See Also

 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation