Difference between revisions of "User:Tohline/SR/Ptot QuarticSolution"
(→Quartic Equation Solution: insert more specific link address to Ferrari's method) |
(→Determining Temperature from Density and Pressure: Clean up presentation) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
=Determining Temperature from Density and Pressure= | |||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
As has been [[User:Tohline/SR/PressureCombinations#Derivation|derived elsewhere]], the normalized total pressure can be written as, | |||
As has been [ | |||
<div align="center"> | <div align="center"> | ||
{{User:Tohline/Math/EQ_PressureTotal01}} | {{User:Tohline/Math/EQ_PressureTotal01}} | ||
</div> | </div> | ||
To solve this algebraic equation for the normalized temperature <math>T/T_e</math>, given values of the normalized total pressure <math>p_\mathrm{total}</math> and the normalized density <math>\chi</math>, we first realize that the equation can be written in the form, | To solve this algebraic equation for the normalized temperature <math>~T/T_e</math>, given values of the normalized total pressure <math>~p_\mathrm{total}</math> and the normalized density <math>~\chi</math>, we first realize that the equation can be written in the form, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
a_4z^4 + a_1 z - a_0 = 0 , | a_4z^4 + a_1 z - a_0 = 0 \, , | ||
</math> | </math> | ||
</div> | </div> | ||
Line 16: | Line 15: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
z \equiv \frac{T}{T_e} , | ~z \equiv \frac{T}{T_e} \, , | ||
</math> | </math> | ||
</div> | </div> | ||
and the coefficients, | and the coefficients, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
a_4 \equiv \frac{8\pi^4}{15} , | a_4 \equiv \frac{8\pi^4}{15} \, , | ||
</math><br/> | </math><br/> | ||
<math> | <math>~ | ||
a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 , | a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 \, , | ||
</math><br/> | </math><br/> | ||
<math> | <math>~ | ||
a_0 \equiv \biggl[p_\mathrm{total} - F(\chi) \biggr] . | a_0 \equiv \biggl[p_\mathrm{total} - F(\chi) \biggr] \, . | ||
</math> | </math> | ||
</div> | </div> | ||
Line 36: | Line 35: | ||
===Quartic Equation Solution=== | ===Quartic Equation Solution=== | ||
Following the [http://en.wikipedia.org/wiki/ | Following the [http://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method Summary of Ferrari's method] that is presented in Wikipedia's discussion of the Quartic Function to identify the roots of an arbitrary quartic equation, we can set the coefficients of the cubic and quadratic terms both to zero and deduce that the only root that will give physically relevant temperatures — for example, real and non-negative — is, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
Line 84: | Line 83: | ||
From the above solution, there appear to be two key dimensionless parameters that can be formed from a strategic combination of the coefficients of the original quartic equation. They are, | From the above solution, there appear to be two key dimensionless parameters that can be formed from a strategic combination of the coefficients of the original quartic equation. They are, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} , ~~~~~\mathrm{and}~~~~~ | \lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} , ~~~~~\mathrm{and}~~~~~ | ||
\theta^3 \equiv \frac{a_1}{2^2 a_4} . | \theta^3 \equiv \frac{a_1}{2^2 a_4} . | ||
</math> | </math> | ||
</div> | </div> | ||
[Note, as well, that the product <math>\lambda\theta = (4a_0)/(3a_1)</math>.] | [Note, as well, that the product <math>~\lambda\theta = (4a_0)/(3a_1)</math>.] | ||
The desired solution of our quartic equation is a product of <math>\theta</math> and an expression that is only a function of <math>\lambda</math>. Specifically, we can write, | The desired solution of our quartic equation is a product of <math>~\theta</math> and an expression that is only a function of <math>~\lambda</math>. Specifically, we can write, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\frac{z}{\theta} = \mathcal{K}(\lambda) , | \frac{z}{\theta} = \mathcal{K}(\lambda) , | ||
</math> | </math> | ||
</div> | </div> | ||
where, in terms of the above-defined function <math>\phi(\lambda)</math>, | where, in terms of the above-defined function <math>~\phi(\lambda)</math>, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\mathcal{K}(\phi(\lambda)) \equiv \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] . | \mathcal{K}(\phi(\lambda)) \equiv \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] . | ||
</math> | </math> | ||
Line 105: | Line 104: | ||
===Limiting Regimes=== | ===Limiting Regimes=== | ||
We can immediately see that this solution makes sense in the present context. In order for the temperature — that is, <math>z</math> — to be real and nonnegative, the function <math>\phi(\lambda)</math> must be greater than or equal to 2. This limiting value occurs when the dimensionless parameter, <math>\lambda = 0</math>. The constraint <math>\lambda \ge 0</math> is satisfied as long as the three coefficients of the quartic equation are real and nonnegative, which is certainly true for our specific problem. | We can immediately see that this solution makes sense in the present context. In order for the temperature — that is, <math>~z</math> — to be real and nonnegative, the function <math>~\phi(\lambda)</math> must be greater than or equal to <math>~2</math>. This limiting value occurs when the dimensionless parameter, <math>~\lambda = 0</math>. The constraint <math>~\lambda \ge 0</math> is satisfied as long as the three coefficients of the quartic equation are real and nonnegative, which is certainly true for our specific problem. | ||
Looking at the limiting functional behavior of our solution, we see that when <math>0 \le \lambda \ll 1</math>, | Looking at the limiting functional behavior of our solution, we see that when <math>~0 \le \lambda \ll 1</math>, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\phi \approx 2 + \frac{3}{2^{2/3}}\lambda | \phi \approx 2 + \frac{3}{2^{2/3}}\lambda | ||
</math><br /> | </math><br /> | ||
<math> | <math>~ | ||
\Rightarrow ~~~~~ z \approx \frac{3\lambda}{2^2} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \frac{a_0}{a_1} . | \Rightarrow ~~~~~ z \approx \frac{3\lambda}{2^2} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \frac{a_0}{a_1} . | ||
</math> | </math> | ||
Line 119: | Line 118: | ||
We see, as well, that when <math>\lambda \gg 1</math>, | We see, as well, that when <math>~\lambda \gg 1</math>, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\phi \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{3/2} | \phi \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{3/2} | ||
</math><br /> | </math><br /> | ||
<math> | <math>~ | ||
\Rightarrow ~~~~~ z \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{1/4} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \biggl( \frac{a_0}{a_4} \biggr)^{1/4} . | \Rightarrow ~~~~~ z \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{1/4} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \biggl( \frac{a_0}{a_4} \biggr)^{1/4} . | ||
</math> | </math> | ||
Line 133: | Line 132: | ||
Clearly, a key dimensionless physical parameter for this problem is, | Clearly, a key dimensionless physical parameter for this problem is, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math>~ | ||
\mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 = | \mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 = | ||
\biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2 | \biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2 | ||
Line 139: | Line 138: | ||
</math> | </math> | ||
</div> | </div> | ||
And, | And, because <math>~z_3 \propto T</math> and <math>~a_1 \propto \rho</math>, the above solution tells us that the product <math>~T \rho^{-1/3}</math> can be expressed as a function of this single parameter, <math>~\mathcal{K}</math>. | ||
=Related Wikepedia Links= | =Related Wikepedia Links= |
Latest revision as of 03:00, 13 July 2015
Determining Temperature from Density and Pressure
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
As has been derived elsewhere, the normalized total pressure can be written as,
<math>~p_\mathrm{total} = \biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) 8 \chi^3 \frac{T}{T_e} + F(\chi) + \frac{8\pi^4}{15} \biggl( \frac{T}{T_e} \biggr)^4</math> |
To solve this algebraic equation for the normalized temperature <math>~T/T_e</math>, given values of the normalized total pressure <math>~p_\mathrm{total}</math> and the normalized density <math>~\chi</math>, we first realize that the equation can be written in the form,
<math>~ a_4z^4 + a_1 z - a_0 = 0 \, , </math>
where,
<math> ~z \equiv \frac{T}{T_e} \, , </math>
and the coefficients,
<math>~
a_4 \equiv \frac{8\pi^4}{15} \, ,
</math>
<math>~
a_1 \equiv 8\biggl(\frac{\mu_e m_p}{\bar{\mu} m_u} \biggr) \chi^3 \, ,
</math>
<math>~
a_0 \equiv \biggl[p_\mathrm{total} - F(\chi) \biggr] \, .
</math>
Mathematical Manipulation
Quartic Equation Solution
Following the Summary of Ferrari's method that is presented in Wikipedia's discussion of the Quartic Function to identify the roots of an arbitrary quartic equation, we can set the coefficients of the cubic and quadratic terms both to zero and deduce that the only root that will give physically relevant temperatures — for example, real and non-negative — is,
<math> 2z = \biggl[\frac{2a_1}{a_4 W}-W^2\biggr]^{1/2} - W , </math>
where,
<math>
\frac{1}{2}W^2 \equiv R^{-1/3}\biggl[R^{2/3} - \frac{a_0}{3a_4} \biggr] ,
</math>
<math>
R \equiv \biggl( \frac{a_1}{4a_4} \biggr)^2 \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr] ,
</math>
<math>
\lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} .
</math>
Defining,
<math> \phi \equiv \frac{2a_1}{a_4 W^3} ~~~~~\Rightarrow ~~~~~ W = 2\biggl(\frac{a_1}{4a_4 \phi} \biggr)^{1/3} , </math>
and realizing that, from one of the above expressions,
<math>
\frac{1}{2}W^2 = \biggl[ \frac{a_1^4}{2^8 a_4^4 R}\biggr]^{1/3}\biggl[\biggl( \frac{2^4 a_4^2 R}{a_1^2}\biggr)^{2/3} - \biggl( \frac{2^8 a_0^3 a_4}{3^3 a_1^4} \biggr)^{1/3} \biggr]
= \biggl[ \frac{a_1}{2^2 a_4}\biggr]^{2/3} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{-1/3}\biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\} ,
</math>
we can rewrite the desired root of our quartic equation in the form,
<math> z = \biggl(\frac{a_1}{4a_4}\biggr)^{1/3} \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] , </math>
with,
<math> \phi = 2^{3/2} \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{1/2} \biggl\{ \biggl[ 1 + (1 + \lambda^3)^{1/2} \biggr]^{2/3} - \lambda \biggr\}^{-3/2} . </math>
Key Dimensionless Parameters
From the above solution, there appear to be two key dimensionless parameters that can be formed from a strategic combination of the coefficients of the original quartic equation. They are,
<math>~ \lambda^3 \equiv \frac{2^8 a_0^3 a_4}{3^3 a_1^4} , ~~~~~\mathrm{and}~~~~~ \theta^3 \equiv \frac{a_1}{2^2 a_4} . </math>
[Note, as well, that the product <math>~\lambda\theta = (4a_0)/(3a_1)</math>.] The desired solution of our quartic equation is a product of <math>~\theta</math> and an expression that is only a function of <math>~\lambda</math>. Specifically, we can write,
<math>~ \frac{z}{\theta} = \mathcal{K}(\lambda) , </math>
where, in terms of the above-defined function <math>~\phi(\lambda)</math>,
<math>~ \mathcal{K}(\phi(\lambda)) \equiv \phi^{-1/3}\biggl[ (\phi - 1)^{1/2} - 1 \biggr] . </math>
Limiting Regimes
We can immediately see that this solution makes sense in the present context. In order for the temperature — that is, <math>~z</math> — to be real and nonnegative, the function <math>~\phi(\lambda)</math> must be greater than or equal to <math>~2</math>. This limiting value occurs when the dimensionless parameter, <math>~\lambda = 0</math>. The constraint <math>~\lambda \ge 0</math> is satisfied as long as the three coefficients of the quartic equation are real and nonnegative, which is certainly true for our specific problem.
Looking at the limiting functional behavior of our solution, we see that when <math>~0 \le \lambda \ll 1</math>,
<math>~
\phi \approx 2 + \frac{3}{2^{2/3}}\lambda
</math>
<math>~ \Rightarrow ~~~~~ z \approx \frac{3\lambda}{2^2} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \frac{a_0}{a_1} . </math>
We see, as well, that when <math>~\lambda \gg 1</math>,
<math>~
\phi \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{3/2}
</math>
<math>~ \Rightarrow ~~~~~ z \approx \biggl(\frac{3\lambda}{2^2} \biggr)^{1/4} \biggl( \frac{a_1}{2^2a_4} \biggr)^{1/3} = \biggl( \frac{a_0}{a_4} \biggr)^{1/4} . </math>
Physical Implications
Clearly, a key dimensionless physical parameter for this problem is,
<math>~ \mathcal{K} \equiv \biggl( \frac{8a_0}{3a_1^2} \biggr)^2 = \biggl\{ \frac{1}{5} \biggl[ \frac{\pi^2}{3} \biggl(\frac{\bar{\mu} m_u}{\mu_e m_p} \biggr) \biggr]^2 \biggl[ \frac{p_\mathrm{total} - F(\chi)}{\chi^6} \biggr] \biggr\}^2 . </math>
And, because <math>~z_3 \propto T</math> and <math>~a_1 \propto \rho</math>, the above solution tells us that the product <math>~T \rho^{-1/3}</math> can be expressed as a function of this single parameter, <math>~\mathcal{K}</math>.
Related Wikepedia Links
© 2014 - 2021 by Joel E. Tohline |