Difference between revisions of "User:Tohline/Appendix/Ramblings/ForOuShangli"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =For Shangli Ou= {{LSU_HBook_header}} ==Context== <span id="Fig2">&n…')
 
 
(49 intermediate revisions by the same user not shown)
Line 5: Line 5:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Context==
In order to download any one of (a selected subset of) the COLLADA-based model files referenced below, go to [http://phys.lsu.edu/tohline/COLLADA/ http://phys.lsu.edu/tohline/COLLADA/index.html].


<span id="Fig2">&nbsp;</span>
<table border="3" align="center" cellpadding="10"><tr><td align="center" bgcolor="red">
<table border="1" cellpadding="5" width="90%" align="center">
<table border="0" cellpadding="8" align="center">
<tr><td align="center" colspan="1">'''EFE Diagram'''</td>
<tr>
<td align="left" rowspan="2">
  <td align="center">
<font color="red">[http://phys.lsu.edu/tohline/COLLADA/index.html DOWNLOADABLE 3D MODELS]</font>
  </td>
</tr>
</table>
</td></tr></table>
 
==EFE Diagram (Review)==
 
<table border="0" cellpadding="12" align="left"><tr><td align="center">'''Figure 1'''</td></tr><tr><td align="center">[[File:EFEdiagram4.png|left|400px|EFE Diagram identifying example models from Ou (2006)]]</td></tr></table>
In the context of our broad discussion of ellipsoidal figures of equilibrium, the label "EFE Diagram" refers to a two-dimensional parameter space defined by the pair of axis ratios (b/a, c/a), ''usually'' covering the ranges, 0 &le; b/a &le; 1 and 0 &le; c/a &le; 1.  The classic/original version of this diagram appears as Figure 2 on p. 902 of [http://adsabs.harvard.edu/abs/1965ApJ...142..890C S. Chandrasekhar (1965, ApJ, vol. 142, pp. 890-921)]; a somewhat less cluttered version appears on p. 147 of Chandrasekhar's [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>].
In the context of our broad discussion of ellipsoidal figures of equilibrium, the label "EFE Diagram" refers to a two-dimensional parameter space defined by the pair of axis ratios (b/a, c/a), ''usually'' covering the ranges, 0 &le; b/a &le; 1 and 0 &le; c/a &le; 1.  The classic/original version of this diagram appears as Figure 2 on p. 902 of [http://adsabs.harvard.edu/abs/1965ApJ...142..890C S. Chandrasekhar (1965, ApJ, vol. 142, pp. 890-921)]; a somewhat less cluttered version appears on p. 147 of Chandrasekhar's [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>].


Line 22: Line 31:


Riemann S-type ellipsoids all lie between or on the two (self-adjoint) curves marked "X = -1" and "X = +1" in the EFE Diagram.  The yellow circular markers in the diagram shown here, on the left, identify four Riemann S-type ellipsoids that were examined by [https://ui.adsabs.harvard.edu/abs/2006ApJ...639..549O/abstract Ou (2006)] and that we have also chosen to use as examples.
Riemann S-type ellipsoids all lie between or on the two (self-adjoint) curves marked "X = -1" and "X = +1" in the EFE Diagram.  The yellow circular markers in the diagram shown here, on the left, identify four Riemann S-type ellipsoids that were examined by [https://ui.adsabs.harvard.edu/abs/2006ApJ...639..549O/abstract Ou (2006)] and that we have also chosen to use as examples.
</td>
 
==Example 3D Interactive Animations==
 
For each model described below, note that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~f \equiv \frac{\zeta_\mathrm{EFE}}{\Omega_\mathrm{EFE}}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{\lambda_\mathrm{EFE}}{\Omega_\mathrm{EFE}} \biggl[ \frac{1+(b/a)^2}{b/a} \biggr] \, .</math>
  </td>
</tr>
</table>
 
For additional details, see the [[User:Tohline/ThreeDimensionalConfigurations/MeetsCOLLADAandOculusRiftS#The_COLLADA_Code_.26_Initial_3D_Scene|accompanying chapter titled, "Riemann Meets COLLADA &amp; Oculus Rift S"]].
 
===b41c385===
The model that we have chosen to use in our first successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Table2|Table 2 of our accompanying discussion of Riemann S-type ellipsoids]]:
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="center" rowspan="6">
<b>Figure 2a</b><br />&nbsp;<br />
[[File:B41c385EFEdiagram02.png|325px|EFE Parameter Space]]
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" colspan="3">
<math>~\frac{b}{a} = 0.41</math>
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" rowspan="6" bgcolor="lightgrey">
<b>Figure 2b</b><br />
[[File:COLLADA3rdViewpoint.png|300px|EFE Model b41c385]]
  </td>
</tr>
 
<tr>
  <td align="center" colspan="3">
<math>~\frac{c}{a} = 0.385</math>
  </td>
</tr>
 
<tr>
  <td align="center">
''Direct''
  </td>
  <td align="center" width="2%" rowspan="4">
&nbsp;
  </td>
  <td align="center">
''Adjoint''
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\Omega_\mathrm{EFE} =  0.547874</math>
  </td>
  <td align="center">
<math>~\Omega_\mathrm{EFE} = - 0.079886</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = 0.079886</math>
  </td>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = - 0.547874</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~f = - 0.415418</math>
  </td>
  <td align="center">
<math>~f = - 19.53923</math>
  </td>
</tr>
</table>
 
The subscript "EFE" on &Omega; and &lambda; means that the relevant frequency is given in units that have been adopted in [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>], that is, in units of <math>~[\pi G\rho]^{1 / 2}</math>.  In Figure 2a, the yellow circular marker, that has been placed where the pair of purple dashed lines cross, identifies the location of this model in the "c/a versus b/a" ''[[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Fig2|EFE Diagram]]'' that appears as Figure 2 on p. 902 of [http://adsabs.harvard.edu/abs/1965ApJ...142..890C S. Chandrasekhar (1965)]; essentially the same diagram appears in &sect;49 (p. 147) of [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>]. 
 
In a [[User:Tohline/ThreeDimensionalConfigurations/JacobiEllipsoids#Jacobi_Ellipsoids|separate chapter]] we have discussed various properties of uniformly rotating, ''Jacobi'' ellipsoids; they are equilibrium configurations that lie along the sequence that runs from "M<sub>2</sub>" (on the b/a = 1, Maclaurin sequence) to the origin of this diagram.  Our chosen model lies off of &#8212; just above &#8212; the Jacobi-ellipsoid sequence, which means that it is not rotating as a solid body.  Instead, as we focus first on the ''direct'' (as opposed to the ''adjoint'') configuration, we appreciate that while the ellipsoid is spinning prograde (counter-clockwise) with a frequency given by |&Omega;<sub>EFE</sub>|, each Lagrangian fluid element inside as well as on the surface of the ellipsoid is traveling retrograde (clockwise) along an elliptical path with a frequency given by |&lambda;<sub>EFE</sub>|.
 
===b90c333===
 
The model that we have chosen to use in our second successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Table2|Table 2 of our accompanying discussion of Riemann S-type ellipsoids]]:
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="center" rowspan="6">
<b>Figure 3a</b><br />&nbsp;<br />
[[File:B90c333EFEdiagram02.png|325px|EFE Parameter Space]]
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" colspan="3">
<math>~\frac{b}{a} = 0.90</math>
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" rowspan="6" bgcolor="lightgrey">
<b>Figure 3b</b><br />
[[File:COLLADAb90c333NewModel.png|300px|EFE Model b90c333]]
  </td>
</tr>
 
<tr>
  <td align="center" colspan="3">
<math>~\frac{c}{a} = 0.333</math>
  </td>
</tr>
 
<tr>
  <td align="center">
''Direct''
  </td>
  <td align="center" width="2%" rowspan="4">
&nbsp;
  </td>
  <td align="center">
''Adjoint''
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\Omega_\mathrm{EFE} =  0.447158</math>
  </td>
  <td align="center">
<math>~\Omega_\mathrm{EFE} =  0.221411</math>
  </td>
</tr>
 
<tr>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = - 0.221411</math>
  </td>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = - 0.447158 </math>
  </td>
</tr>
</tr>
<tr>
<tr>
<td align="left">
  <td align="center">
[[File:EFEdiagram4.png|left|500px|EFE Diagram identifying example models from Ou (2006)]]
<math>~f = + 0.995805</math>
</td>
  </td>
  <td align="center">
<math>~f = + 4.061607 </math>
  </td>
</tr>
</tr>
</table>
</table>
===b74c692===
The model that we have chosen to use in our third successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Table2|Table 2 of our accompanying discussion of Riemann S-type ellipsoids]]:
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="center" rowspan="6">
<b>Figure 4a</b><br />&nbsp;<br />
[[File:B74c692EFEdiagram02.png|325px|EFE Parameter Space]]
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" colspan="3">
<math>~\frac{b}{a} = 0.74</math>
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" rowspan="6" bgcolor="lightgrey">
<b>Figure 4b</b><br />
[[File:COLLADAb74c692NewModel.png|300px|EFE Model b74c692]]
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
<math>~\frac{c}{a} = 0.692</math>
  </td>
</tr>
<tr>
  <td align="center">
''Direct''
  </td>
  <td align="center" width="2%" rowspan="4">
&nbsp;
  </td>
  <td align="center">
''Adjoint''
  </td>
</tr>
<tr>
  <td align="center">
<math>~\Omega_\mathrm{EFE} =  0.638747</math>
  </td>
  <td align="center">
<math>~\Omega_\mathrm{EFE} = - 0.217773</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = 0.217773</math>
  </td>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = - 0.638747 </math>
  </td>
</tr>
<tr>
  <td align="center">
<math>~f = - 0.713019</math>
  </td>
  <td align="center">
<math>~f = - 6.13413 </math>
  </td>
</tr>
</table>
===b28c256===
The model that we have chosen to use in our second successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Table2|Table 2 of our accompanying discussion of Riemann S-type ellipsoids]]:
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="center" rowspan="6">
<b>Figure 5a</b><br />&nbsp;<br />
[[File:B28c256EFEdiagram02.png|325px|EFE Parameter Space]]
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" colspan="3">
<math>~\frac{b}{a} = 0.28</math>
  </td>
  <td align="center" rowspan="6" width="2%">
&nbsp;
  </td>
  <td align="center" rowspan="6" bgcolor="lightgrey">
<b>Figure 5b</b><br />
[[File:COLLADAb28c256OldModel.png|300px|EFE Model b28c256]]
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
<math>~\frac{c}{a} = 0.256</math>
  </td>
</tr>
<tr>
  <td align="center">
''Direct''
  </td>
  <td align="center" width="2%" rowspan="4">
&nbsp;
  </td>
  <td align="center">
''Adjoint''
  </td>
</tr>
<tr>
  <td align="center">
<math>~\Omega_\mathrm{EFE} =  0.456676</math>
  </td>
  <td align="center">
<math>~\Omega_\mathrm{EFE} = - 0.020692</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = 0.020692</math>
  </td>
  <td align="center">
<math>~\lambda_\mathrm{EFE} = - 0.456676</math>
  </td>
</tr>
<tr>
  <td align="center">
<math>~f = - 0.174510</math>
  </td>
  <td align="center">
<math>~f = - 85.0007</math>
  </td>
</tr>
</table>
=Catalog of Local 3D Model Files <font size="-1">(cannot be downloaded)</font>=
==3Dviewers==
===AutoRiemann===
<ul>
  <li>
Trial.Ou_b28c256<br />
''Generally speaking ...'' Translucent surface; one Lagrangian (red surface arrow) fluid element; no axis arrow; NO WALL LABELs.
  <ul>
    <li>
<font color="maroon">Ou_b28c256.Dir.Inertial.dae</font> (12/01/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">Ou_b28c256.Dir.Rot.dae</font> (12/01/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">Ou_b28c256.Adj.Inertial.dae</font> (12/01/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">Ou_b28c256.Adj.Rot.dae</font> (12/01/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
Cylinder<br />
''Generally speaking ...'' Translucent surface; one Lagrangian (red surface arrow) fluid element; no axis arrow; PROBLEM RESETING CLOCK.
  <ul>
    <li>
<font color="maroon">Dir.Inertial_b28c256.labeled.dae</font> (12/22/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">Dir.Rot_b28c256.labeled.dae</font> (12/22/2019)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
BESTmodels<br />
''Generally speaking ...'' Translucent surface; six Lagrangian (red arrow markers) fluid elements.
  <ul>
    <li>
<font color="maroon">b28c256/b28c256.DI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b28c256/b28c256.DRot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b28c256/b28c256.AI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b28c256/b28c256.ARot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
&nbsp;
<hr>
&nbsp;
    <li>
<font color="maroon">b41c385/b41c385.DI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41~~~~~c/a = 0.385</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b41c385/b41c385.DRot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41 ~~~~~c/a = 0.385</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b41c385/b41c385.AI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41 ~~~~~c/a = 0.385</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon">b41c385/b41c385.ARot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41 ~~~~~c/a = 0.385</math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
&nbsp;
<hr>
&nbsp;
    <li>
<font color="maroon">b74c692/b74c692.DI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74~~~~~c/a = 0.692</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b74c692/b74c692.DRot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74 ~~~~~c/a = 0.692 </math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b74c692/b74c692.AI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74 ~~~~~c/a = 0.692 </math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b74c692/b74c692.ARot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74 ~~~~~c/a = 0.692 </math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
&nbsp;
<hr>
&nbsp;
    <li>
<font color="maroon">b90c333/b90c333.DI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90~~~~~c/a = 0.333</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b90c333/b90c333.DRot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90 ~~~~~c/a = 0.333 </math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b90c333/b90c333.AI.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90 ~~~~~c/a = 0.333 </math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
    <li>
<font color="maroon"> b90c333/b90c333.ARot.dae</font> (01/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90 ~~~~~c/a = 0.333 </math><br />'''<font color="red">ADJOINT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
TypeI<br />
Translucent surface; just '''Type I tilted''' figure motion (no Lagrangian fluid elements).
  <ul>
    <li>
<font color="maroon">TypeIa10.GREAT.dae</font> (01/04/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 1.25~~~~~c/a = 0.470</math><br />'''<font color="red">DIRECT figure</font>''' (only) motion - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
TypeI/Lagrange<br />
Depicts motion of (3) Lagrangian fluid elements across an opaque surface; no figure motion; three separate, tilted fluid orbits are identified by small yellow markers.
  <ul>
    <li>
<font color="maroon">TL15.lagrange.dae</font> (01/26/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 1.25~~~~~c/a = 0.470</math><br />'''<font color="red">LAGRANGIAN element</font>''' (only) motion - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
==Lenovo==
===KhronosGroup's COLLADA_to_gltf/COLLADA2GLTF-v2===
<ul>
  <li>
ModelsB41C385<br />
Fundamentally this model is identical to the one developed earlier (and [[#b41c385|presented above]]) that shows how the ''DIRECT'' flow version of model "b41c385" appears when viewed from either the inertial or rotating reference frame: The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane. 
  <ul>
    <li>
<font color="maroon">MultiFluidElements/MultiLagrange26.dae</font> [translucent purple] (05/28/2020) and <font color="orange">/output/MultiLagrange26.glb</font> (06/04/2020) &#8212; both files also copied (01/31/2021) to LSU physics website with filename &hellip; COLLADA/b41c385DirRotating.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41~~~~~c/a = 0.385</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  <ul>
    <li>
<font color="maroon">InertialFrame/Inertial34.dae</font> [opaque purple] (05/29/2020) and <font color="orange">/output/Inertial34.glb</font> (06/04/2020) &#8212; both files also copied (01/31/2021) to LSU physics website with filename &hellip; COLLADA/b41c385DirInertial.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41~~~~~c/a = 0.385</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
ModelsB90C333<br />
Fundamentally this model is identical to the one developed earlier (and [[#b90c333|presented above]]) that shows how the ''DIRECT'' flow version of model "b90c333" appears when viewed from either the inertial or a rotating reference frame:  The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, prograde) Lagrangian motion of fluid elements that lie in the equatorial plane. 
  <ul>
    <li>
<font color="maroon">FastRot79.dae</font>  [translucent purple] (06/03/2020) and <font color="orange">/output/FastRot79.glb</font> (06/04/2020) &#8212; both files also copied (01/31/2021) to LSU physics website with filename &hellip; COLLADA/b90c333DirRotating.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90~~~~~c/a = 0.333</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  <ul>
    <li>
<font color="maroon">FastInertial80.dae</font> [opaque purple] (06/03/2020) &#8212; Also available is <font color="orange">../output/FastInertial80.glb</font> (06/04/2020)  &#8212; both files also copied (01/31/2021) to LSU physics website with filename &hellip; COLLADA/b90c333DirInertial.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.90~~~~~c/a = 0.333</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
ModelsB74C692<br />
Fundamentally this model is identical to the one developed earlier (and [[#b74c692|presented above]]) that shows how the ''DIRECT'' flow version of model "b74c692" appears when viewed from the rotating reference frame: The ellipsoidal surface is translucent (purple); the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane. 
  <ul>
    <li>
<font color="maroon">TestMulti74.dae</font> (06/03/2020) &#8212; Also available is <font color="orange">../output/TestMulti74.glb</font> (06/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74~~~~~c/a = 0.692</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  <ul>
    <li>
<font color="maroon">InertialB74C692aa.dae</font> [opaque purple] (06/02/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.74~~~~~c/a = 0.692</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
<ul>
  <li>
(no subdirectory)<br />
Fundamentally this model is identical to the one developed earlier (and [[#b28c256|presented above]]) that shows how the ''DIRECT'' flow version of model "b28c256" appears when viewed from the inertial reference frame: The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (very slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane. 
  <ul>
    <li>
<font color="maroon">Pencil94.dae</font> [translucent purple surface] (06/04/2020) and <font color="orange">/output/Pencil94.glb</font> (06/04/2020) &#8212; both files also copied (01/30/2021) to LSU physics website with filename &hellip; COLLADA/b28c256DirRotating.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">ROTATING</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  <ul>
    <li>
<font color="maroon">PencilInertial96.dae</font> [opaque purple surface] (06/04/2020) and <font color="orange">/output/PencilInertial95.glb</font> (06/04/2020) &#8212; both files also copied (01/30/2021) to LSU physics website with filename &hellip; COLLADA/b28c256DirInertial.
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.28~~~~~c/a = 0.256</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
==Workfolder==
===Wiki_edits===
<ul>
  <li>
CoordinateSystems<br />
Fundamentally this model is identical to the one developed earlier (and [[#b41c385|presented above]]) that shows how the ''DIRECT'' flow version of model "b41c385" appears when viewed from the inertial reference frame: The ellipsoidal surface is translucent (purple); the equatorial plane is identified by a series of small yellow markers; and a single, red marker depicts the (slow, retrograde) Lagrangian motion of one fluid element that lies in the equatorial plane. 
But here, in addition across the "northern" hemisphere of the ellipsoid, a sequence of small yellow markers is used to identify the location of one <math>~\lambda_3</math> coordinate curve as defined within our so-called [[User:Tohline/Appendix/Ramblings/ConcentricEllipsodalT8Coordinates#Concentric_Ellipsoidal_.28T8.29_Coordinates|"T8" coordinate system]].
  <ul>
    <li>
<font color="maroon">Lambda3Curve03.dae</font> (12/26/2020)
<table border="1" cellpadding="8" align="center" width="50%"><tr><td align="left">
<div align="center"><math>~b/a = 0.41~~~~~c/a = 0.385</math><br />'''<font color="red">DIRECT</font>''' flow - as viewed from '''<font color="red">INERTIAL</font>''' frame</div>
</td></tr></table>
    </li>
  </ul>
  </li>
</ul>
=See Also=
* Discussion of [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype|Ou's Riemann-Like Ellipsoids]]
* [[User:Tohline/ThreeDimensionalConfigurations/MeetsCOLLADAandOculusRiftS|Riemann Meets COLLADA &amp; Oculus Rift S]]: Example <b>(b/a, c/a) = (0.41, 0.385)</b>
** [[User:Tohline/Appendix/Ramblings/VirtualReality#Virtual_Reality_and_3D_Printing|Virtual Reality and 3D Printing]]
** [[User:Tohline/Appendix/Ramblings/OculusRift_S|Success Importing Animated Scene into Oculus Rift S]]
** [[User:Tohline/Appendix/Ramblings/RiemannMeetsOculus|Carefully (Re)Build Riemann Type S Ellipsoids Inside Oculus Rift Environment]]
** Other Example S-type Riemann Ellipsoids:
*** <b>[[User:Tohline/Appendix/Ramblings/RiemannB90C333|(b/a, c/a) = (0.90, 0.333)]]</b>
*** <b>[[User:Tohline/Appendix/Ramblings/RiemannB74C692|(b/a, c/a) = (0.74, 0.692)]]</b>
*** <b>[[User:Tohline/Appendix/Ramblings/RiemannB28C256|(b/a, c/a) = (0.28, 0.256)]]</b>




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 21:50, 31 January 2021

For Shangli Ou

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

In order to download any one of (a selected subset of) the COLLADA-based model files referenced below, go to http://phys.lsu.edu/tohline/COLLADA/index.html.

DOWNLOADABLE 3D MODELS

EFE Diagram (Review)

Figure 1
EFE Diagram identifying example models from Ou (2006)

In the context of our broad discussion of ellipsoidal figures of equilibrium, the label "EFE Diagram" refers to a two-dimensional parameter space defined by the pair of axis ratios (b/a, c/a), usually covering the ranges, 0 ≤ b/a ≤ 1 and 0 ≤ c/a ≤ 1. The classic/original version of this diagram appears as Figure 2 on p. 902 of S. Chandrasekhar (1965, ApJ, vol. 142, pp. 890-921); a somewhat less cluttered version appears on p. 147 of Chandrasekhar's [EFE].

The version of the EFE Diagram shown here, on the left, highlights four model sequences, all of which also can be found in the original version:

  • Jacobi sequence — the smooth curve that runs through the set of small, dark-blue, diamond-shaped markers; the data identifying the location of these markers have been drawn from §39, Table IV of [EFE]. The small red circular markers lie along this same sequence; their locations are taken from our own determinations, as detailed in Table 2 of our accompanying discussion of Jacobi ellipsoids. All of the models along this sequence have <math>~f \equiv \zeta/\Omega_f = 0</math> and are therefore solid-body rotators, that is, there is no internal motion when the configuration is viewed from a frame that is rotating with frequency, <math>~\Omega_f</math>.
  • Dedekind sequence — a smooth curve that lies precisely on top of the Jacobi sequence. Each configuration along this sequence is adjoint to a model on the Jacobi sequence that shares its (b/a, c/a) axis-ratio pair. All ellipsoidal figures along this sequence have <math>~1/f = \Omega_f/\zeta = 0</math> and are therefore stationary as viewed from the inertial frame; the angular momentum of each configuration is stored in its internal motion (vorticity).
  • The X = -1 self-adjoint sequence — At every point along this sequence, the value of the key frequency ratio, <math>~\zeta/\Omega_f</math>, in the adjoint configuration <math>~(f_+)</math> is identical to the value of the frequency ratio in the direct configuration <math>~(f_-)</math>; specifically, <math>~f_+ = f_- = -(a^2+b^2)/(ab)</math>. The data identifying the location of the small, solid-black markers along this sequence have been drawn from §48, Table VI of [EFE].
  • The X = +1 self-adjoint sequence — At every point along this sequence, the value of the key frequency ratio, <math>~\zeta/\Omega_f</math>, in the adjoint configuration <math>~(f_+)</math> is identical to the value of the frequency ratio in the direct configuration <math>~(f_-)</math>; specifically, <math>~f_+ = f_- = +(a^2+b^2)/(ab)</math>. The data identifying the location of the small, solid-black markers along this sequence have been drawn from §48, Table VI of [EFE].

Riemann S-type ellipsoids all lie between or on the two (self-adjoint) curves marked "X = -1" and "X = +1" in the EFE Diagram. The yellow circular markers in the diagram shown here, on the left, identify four Riemann S-type ellipsoids that were examined by Ou (2006) and that we have also chosen to use as examples.

Example 3D Interactive Animations

For each model described below, note that,

<math>~f \equiv \frac{\zeta_\mathrm{EFE}}{\Omega_\mathrm{EFE}}</math>

<math>~=</math>

<math>~- \frac{\lambda_\mathrm{EFE}}{\Omega_\mathrm{EFE}} \biggl[ \frac{1+(b/a)^2}{b/a} \biggr] \, .</math>

For additional details, see the accompanying chapter titled, "Riemann Meets COLLADA & Oculus Rift S".

b41c385

The model that we have chosen to use in our first successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from Table 2 of our accompanying discussion of Riemann S-type ellipsoids:

Figure 2a
 
EFE Parameter Space

 

<math>~\frac{b}{a} = 0.41</math>

 

Figure 2b
EFE Model b41c385

<math>~\frac{c}{a} = 0.385</math>

Direct

 

Adjoint

<math>~\Omega_\mathrm{EFE} = 0.547874</math>

<math>~\Omega_\mathrm{EFE} = - 0.079886</math>

<math>~\lambda_\mathrm{EFE} = 0.079886</math>

<math>~\lambda_\mathrm{EFE} = - 0.547874</math>

<math>~f = - 0.415418</math>

<math>~f = - 19.53923</math>

The subscript "EFE" on Ω and λ means that the relevant frequency is given in units that have been adopted in [EFE], that is, in units of <math>~[\pi G\rho]^{1 / 2}</math>. In Figure 2a, the yellow circular marker, that has been placed where the pair of purple dashed lines cross, identifies the location of this model in the "c/a versus b/a" EFE Diagram that appears as Figure 2 on p. 902 of S. Chandrasekhar (1965); essentially the same diagram appears in §49 (p. 147) of [EFE].

In a separate chapter we have discussed various properties of uniformly rotating, Jacobi ellipsoids; they are equilibrium configurations that lie along the sequence that runs from "M2" (on the b/a = 1, Maclaurin sequence) to the origin of this diagram. Our chosen model lies off of — just above — the Jacobi-ellipsoid sequence, which means that it is not rotating as a solid body. Instead, as we focus first on the direct (as opposed to the adjoint) configuration, we appreciate that while the ellipsoid is spinning prograde (counter-clockwise) with a frequency given by |ΩEFE|, each Lagrangian fluid element inside as well as on the surface of the ellipsoid is traveling retrograde (clockwise) along an elliptical path with a frequency given by |λEFE|.

b90c333

The model that we have chosen to use in our second successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from Table 2 of our accompanying discussion of Riemann S-type ellipsoids:

Figure 3a
 
EFE Parameter Space

 

<math>~\frac{b}{a} = 0.90</math>

 

Figure 3b
EFE Model b90c333

<math>~\frac{c}{a} = 0.333</math>

Direct

 

Adjoint

<math>~\Omega_\mathrm{EFE} = 0.447158</math>

<math>~\Omega_\mathrm{EFE} = 0.221411</math>

<math>~\lambda_\mathrm{EFE} = - 0.221411</math>

<math>~\lambda_\mathrm{EFE} = - 0.447158 </math>

<math>~f = + 0.995805</math>

<math>~f = + 4.061607 </math>

b74c692

The model that we have chosen to use in our third successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from Table 2 of our accompanying discussion of Riemann S-type ellipsoids:

Figure 4a
 
EFE Parameter Space

 

<math>~\frac{b}{a} = 0.74</math>

 

Figure 4b
EFE Model b74c692

<math>~\frac{c}{a} = 0.692</math>

Direct

 

Adjoint

<math>~\Omega_\mathrm{EFE} = 0.638747</math>

<math>~\Omega_\mathrm{EFE} = - 0.217773</math>

<math>~\lambda_\mathrm{EFE} = 0.217773</math>

<math>~\lambda_\mathrm{EFE} = - 0.638747 </math>

<math>~f = - 0.713019</math>

<math>~f = - 6.13413 </math>

b28c256

The model that we have chosen to use in our second successful construction of a COLLADA-based, 3D and interactive animation has the following properties; this model has been selected from Table 2 of our accompanying discussion of Riemann S-type ellipsoids:

Figure 5a
 
EFE Parameter Space

 

<math>~\frac{b}{a} = 0.28</math>

 

Figure 5b
EFE Model b28c256

<math>~\frac{c}{a} = 0.256</math>

Direct

 

Adjoint

<math>~\Omega_\mathrm{EFE} = 0.456676</math>

<math>~\Omega_\mathrm{EFE} = - 0.020692</math>

<math>~\lambda_\mathrm{EFE} = 0.020692</math>

<math>~\lambda_\mathrm{EFE} = - 0.456676</math>

<math>~f = - 0.174510</math>

<math>~f = - 85.0007</math>

Catalog of Local 3D Model Files (cannot be downloaded)

3Dviewers

AutoRiemann

  • Trial.Ou_b28c256
    Generally speaking ... Translucent surface; one Lagrangian (red surface arrow) fluid element; no axis arrow; NO WALL LABELs.
    • Ou_b28c256.Dir.Inertial.dae (12/01/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from INERTIAL frame
    • Ou_b28c256.Dir.Rot.dae (12/01/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from ROTATING frame
    • Ou_b28c256.Adj.Inertial.dae (12/01/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      ADJOINT flow - as viewed from INERTIAL frame
    • Ou_b28c256.Adj.Rot.dae (12/01/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      ADJOINT flow - as viewed from ROTATING frame
  • Cylinder
    Generally speaking ... Translucent surface; one Lagrangian (red surface arrow) fluid element; no axis arrow; PROBLEM RESETING CLOCK.
    • Dir.Inertial_b28c256.labeled.dae (12/22/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from INERTIAL frame
    • Dir.Rot_b28c256.labeled.dae (12/22/2019)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from ROTATING frame
  • BESTmodels
    Generally speaking ... Translucent surface; six Lagrangian (red arrow markers) fluid elements.
    • b28c256/b28c256.DI.dae (01/02/2020)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from INERTIAL frame
    • b28c256/b28c256.DRot.dae (01/02/2020)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from ROTATING frame
    • b28c256/b28c256.AI.dae (01/02/2020)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      ADJOINT flow - as viewed from INERTIAL frame
    • b28c256/b28c256.ARot.dae (01/02/2020)
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      ADJOINT flow - as viewed from ROTATING frame
    •  

       

    • b41c385/b41c385.DI.dae (01/02/2020)
      <math>~b/a = 0.41~~~~~c/a = 0.385</math>
      DIRECT flow - as viewed from INERTIAL frame
    • b41c385/b41c385.DRot.dae (01/02/2020)
      <math>~b/a = 0.41 ~~~~~c/a = 0.385</math>
      DIRECT flow - as viewed from ROTATING frame
    • b41c385/b41c385.AI.dae (01/02/2020)
      <math>~b/a = 0.41 ~~~~~c/a = 0.385</math>
      ADJOINT flow - as viewed from INERTIAL frame
    • b41c385/b41c385.ARot.dae (01/02/2020)
      <math>~b/a = 0.41 ~~~~~c/a = 0.385</math>
      ADJOINT flow - as viewed from ROTATING frame
    •  

       

    • b74c692/b74c692.DI.dae (01/02/2020)
      <math>~b/a = 0.74~~~~~c/a = 0.692</math>
      DIRECT flow - as viewed from INERTIAL frame
    • b74c692/b74c692.DRot.dae (01/02/2020)
      <math>~b/a = 0.74 ~~~~~c/a = 0.692 </math>
      DIRECT flow - as viewed from ROTATING frame
    • b74c692/b74c692.AI.dae (01/02/2020)
      <math>~b/a = 0.74 ~~~~~c/a = 0.692 </math>
      ADJOINT flow - as viewed from INERTIAL frame
    • b74c692/b74c692.ARot.dae (01/02/2020)
      <math>~b/a = 0.74 ~~~~~c/a = 0.692 </math>
      ADJOINT flow - as viewed from ROTATING frame
    •  

       

    • b90c333/b90c333.DI.dae (01/02/2020)
      <math>~b/a = 0.90~~~~~c/a = 0.333</math>
      DIRECT flow - as viewed from INERTIAL frame
    • b90c333/b90c333.DRot.dae (01/02/2020)
      <math>~b/a = 0.90 ~~~~~c/a = 0.333 </math>
      DIRECT flow - as viewed from ROTATING frame
    • b90c333/b90c333.AI.dae (01/02/2020)
      <math>~b/a = 0.90 ~~~~~c/a = 0.333 </math>
      ADJOINT flow - as viewed from INERTIAL frame
    • b90c333/b90c333.ARot.dae (01/02/2020)
      <math>~b/a = 0.90 ~~~~~c/a = 0.333 </math>
      ADJOINT flow - as viewed from ROTATING frame
  • TypeI
    Translucent surface; just Type I tilted figure motion (no Lagrangian fluid elements).
    • TypeIa10.GREAT.dae (01/04/2020)
      <math>~b/a = 1.25~~~~~c/a = 0.470</math>
      DIRECT figure (only) motion - as viewed from INERTIAL frame
  • TypeI/Lagrange
    Depicts motion of (3) Lagrangian fluid elements across an opaque surface; no figure motion; three separate, tilted fluid orbits are identified by small yellow markers.
    • TL15.lagrange.dae (01/26/2020)
      <math>~b/a = 1.25~~~~~c/a = 0.470</math>
      LAGRANGIAN element (only) motion - as viewed from ROTATING frame

Lenovo

KhronosGroup's COLLADA_to_gltf/COLLADA2GLTF-v2

  • ModelsB41C385
    Fundamentally this model is identical to the one developed earlier (and presented above) that shows how the DIRECT flow version of model "b41c385" appears when viewed from either the inertial or rotating reference frame: The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane.
    • MultiFluidElements/MultiLagrange26.dae [translucent purple] (05/28/2020) and /output/MultiLagrange26.glb (06/04/2020) — both files also copied (01/31/2021) to LSU physics website with filename … COLLADA/b41c385DirRotating.
      <math>~b/a = 0.41~~~~~c/a = 0.385</math>
      DIRECT flow - as viewed from ROTATING frame
    • InertialFrame/Inertial34.dae [opaque purple] (05/29/2020) and /output/Inertial34.glb (06/04/2020) — both files also copied (01/31/2021) to LSU physics website with filename … COLLADA/b41c385DirInertial.
      <math>~b/a = 0.41~~~~~c/a = 0.385</math>
      DIRECT flow - as viewed from INERTIAL frame
  • ModelsB90C333
    Fundamentally this model is identical to the one developed earlier (and presented above) that shows how the DIRECT flow version of model "b90c333" appears when viewed from either the inertial or a rotating reference frame: The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, prograde) Lagrangian motion of fluid elements that lie in the equatorial plane.
    • FastRot79.dae [translucent purple] (06/03/2020) and /output/FastRot79.glb (06/04/2020) — both files also copied (01/31/2021) to LSU physics website with filename … COLLADA/b90c333DirRotating.
      <math>~b/a = 0.90~~~~~c/a = 0.333</math>
      DIRECT flow - as viewed from ROTATING frame
    • FastInertial80.dae [opaque purple] (06/03/2020) — Also available is ../output/FastInertial80.glb (06/04/2020) — both files also copied (01/31/2021) to LSU physics website with filename … COLLADA/b90c333DirInertial.
      <math>~b/a = 0.90~~~~~c/a = 0.333</math>
      DIRECT flow - as viewed from INERTIAL frame
  • ModelsB74C692
    Fundamentally this model is identical to the one developed earlier (and presented above) that shows how the DIRECT flow version of model "b74c692" appears when viewed from the rotating reference frame: The ellipsoidal surface is translucent (purple); the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane.
    • TestMulti74.dae (06/03/2020) — Also available is ../output/TestMulti74.glb (06/02/2020)
      <math>~b/a = 0.74~~~~~c/a = 0.692</math>
      DIRECT flow - as viewed from ROTATING frame
    • InertialB74C692aa.dae [opaque purple] (06/02/2020)
      <math>~b/a = 0.74~~~~~c/a = 0.692</math>
      DIRECT flow - as viewed from INERTIAL frame
  • (no subdirectory)
    Fundamentally this model is identical to the one developed earlier (and presented above) that shows how the DIRECT flow version of model "b28c256" appears when viewed from the inertial reference frame: The ellipsoidal surface is purple [either translucent or opaque, as indicated]; the equatorial plane is identified by a series of small yellow markers; and 9 red markers depict the (very slow, retrograde) Lagrangian motion of fluid elements that lie in the equatorial plane.
    • Pencil94.dae [translucent purple surface] (06/04/2020) and /output/Pencil94.glb (06/04/2020) — both files also copied (01/30/2021) to LSU physics website with filename … COLLADA/b28c256DirRotating.
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from ROTATING frame
    • PencilInertial96.dae [opaque purple surface] (06/04/2020) and /output/PencilInertial95.glb (06/04/2020) — both files also copied (01/30/2021) to LSU physics website with filename … COLLADA/b28c256DirInertial.
      <math>~b/a = 0.28~~~~~c/a = 0.256</math>
      DIRECT flow - as viewed from INERTIAL frame

Workfolder

Wiki_edits

  • CoordinateSystems
    Fundamentally this model is identical to the one developed earlier (and presented above) that shows how the DIRECT flow version of model "b41c385" appears when viewed from the inertial reference frame: The ellipsoidal surface is translucent (purple); the equatorial plane is identified by a series of small yellow markers; and a single, red marker depicts the (slow, retrograde) Lagrangian motion of one fluid element that lies in the equatorial plane. But here, in addition across the "northern" hemisphere of the ellipsoid, a sequence of small yellow markers is used to identify the location of one <math>~\lambda_3</math> coordinate curve as defined within our so-called "T8" coordinate system.
    • Lambda3Curve03.dae (12/26/2020)
      <math>~b/a = 0.41~~~~~c/a = 0.385</math>
      DIRECT flow - as viewed from INERTIAL frame

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation