Difference between revisions of "User:Tohline/Appendix/CGH/ParallelAperturesConsolidate"
(15 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
=CGH: Consolidate Expressions Regarding Parallel Apertures= | =CGH: Consolidate Expressions Regarding Parallel Apertures= | ||
{{LSU_HBook_header}} | |||
==One-dimensional Apertures== | ==One-dimensional Apertures== | ||
Line 60: | Line 64: | ||
</table> | </table> | ||
Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form, | <span id="FocalPoint">Note that</span> <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form that will be referred to as our, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | |||
<th align="center" colspan="3">Focal-Point Expression</th> | |||
</tr> | |||
<tr> | <tr> | ||
Line 94: | Line 101: | ||
</table> | </table> | ||
===Case 1=== | |||
In a related accompanying derivation titled, [[User:Tohline/Appendix/CGH/ParallelApertures#Analytic_Result|''Analytic Result'']], we made the substitution, | In a related accompanying derivation titled, [[User:Tohline/Appendix/CGH/ParallelApertures#Analytic_Result|''Analytic Result'']], we made the substitution, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 99: | Line 107: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~a_j | <math>~a_j </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 105: | Line 113: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~a_0(Y) dY \, ,</math> | <math>~a_0(Y) dY = a_0(\Theta) \biggl[ \frac{w}{2\beta_1} \biggr] d\Theta \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\beta_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\lambda L}{\pi y_1w} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and changed the summation to an integration, obtaining, | and changed the summation to an integration, obtaining, | ||
Line 121: | Line 145: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ e^{i 2\pi L/\lambda } \int a_0( | <math>~ | ||
\, , | e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta | ||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture — and, hence the integration — extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
e^{i [2\pi L/\lambda + \phi] }\biggl[ \frac{a_0 w}{2\beta_1} \biggr] \int_{\Theta_2}^{\Theta_1} e^{-i \Theta } d\Theta | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
e^{i [2\pi L/\lambda + \phi] } \cdot a_0 w ~\mathrm{sinc}(\beta_1) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
We need to explicitly demonstrate that an evaluation of our [[#FocalPoint|Focal-Point Expression]] with <math>~a_j = 1</math>, gives this last sinc-function expression, to within a multiplicative factor of, something like, <math>~j_\mathrm{max}</math>. | |||
===Case 2=== | |||
In our accompanying discussion of the [[User:Tohline/Appendix/Ramblings/FourierSeries|Fourier Series]], we have shown that a square wave can be constructed from the expression, | |||
<div align="center" id="StandardExpression"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f(x)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{c}{L} + \sum_{n=1}^{\infty} \biggl( \frac{2}{n\pi} \biggr) \sin \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2c}{L}\biggl\{\frac{1}{2} + \sum_{n=1}^{\infty} \mathrm{sinc} \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Can we make this look like our [[#FocalPoint|above, Focal-Point Expression]]? | |||
Let's start by setting | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~Y_j</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
for <math>~0 \le j \le (j_\mathrm{max}-1)</math>, in which case, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Theta_j</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \biggr] | |||
= \frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} \biggr] - \frac{2\pi y_1}{\lambda L} \biggl[ \frac{w}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
j \biggl[ \frac{2\pi y_1 w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi y_1 w }{\lambda L} | |||
= \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
j \cdot \Delta\Theta - \frac{(j_\mathrm{max} -1)}{2} \Delta\Theta | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<div align="center"> | |||
<math>~\Delta\Theta \equiv \frac{\pi y_1}{\mathfrak{L}} \, ,</math> and <math>~\mathfrak{L} \equiv \biggl[ \frac{(j_\mathrm{max}-1) \lambda L}{2w} \biggr] \, .</math> | |||
</div> | |||
This means that <math>~\Theta_{i} = - \Theta_{( j_\mathrm{max} - 1 - i )}</math>. | |||
The key expression under the summation therefore becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~a_j e^{i \phi_j} \cdot e^{-i \Theta_j } </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~~a_j e^{i \phi_j} \cdot \biggl[ \cos \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) - i \sin \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) \biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<div align="center"> | |||
<math>~\Theta_0 \equiv \frac{(j_\mathrm{max} - 1)}{2} \cdot \pi y_1 \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] = \frac{\pi y_1 w}{\lambda L} \, .</math> | |||
</div> | |||
Now, what is the argument of the sinc function? By default, it needs to be something along the lines of, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{j \pi c}{\mathfrak{L}}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Then, as <math>~j</math> varies from <math>~0</math> to <math>~(j_\mathrm{max} - 1)</math>, the argument goes from <math>~0</math> to <math>~[2\pi w c/(\lambda L)]</math>. In an effort to make the function exhibit reflection symmetry as we move from one side of the aperture to the next, let's subtract half of this upper limit; that is, let's modify the argument of the sinc function to read, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{j \pi c}{\mathfrak{L}} - \frac{\pi w c}{\lambda L}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi w c}{\lambda L} | |||
= \biggl[ \frac{2j}{j_\mathrm{max}-1} - 1\biggr]\biggl[ \frac{\pi w c}{\lambda L} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
This means that in our [[#FocalPoint|above, Focal-Point Expression]] we want to set, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~a_j</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
This therefore gives the following, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<th align="center" colspan="3">Focal-Point Expression for a Square Wave</th> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } \sum_{j=0}^{j_\mathrm{max}-1} e^{i \phi_j} \cdot~ | |||
\mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] | |||
\biggl\{ \cos \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] - i \sin \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
This exhibits a very desirable feature: Both the sinc function and the sine function — and, hence, also their product — have reflection symmetry about the summation index, <math>~j = (j_\mathrm{max}-1)/2</math>. As a result, if the overall phase factor, <math>~e^{i \phi_j}</math>, behaves in an appropriately simple way — for example, if it is zero everywhere — then under the summation the sine term will sum to zero and leave only the desired — and ''real'' — product, <math>~\mathrm{sinc} \times \cos</math>. Try this out in Excel to see if it works! | |||
This could use a little more manipulation. Let's define the alternate summation index, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~n</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>\frac{1}{2} \biggl[ j_\mathrm{max}-1 \biggr] \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
in which case we can write, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } \sum_{n~=~-(j_\mathrm{max} - 1)/2}^{+(j_\mathrm{max} - 1)/2} e^{i \phi_j} \cdot~ | |||
\mathrm{sinc} \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi w c}{\lambda L} \biggr] | |||
\biggl\{ \cos \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] - i \sin \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } e^{i \phi_{j=0} } | |||
~+~e^{i 2\pi L/\lambda } \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} 2e^{i \phi_j} \cdot~ | |||
\mathrm{sinc} \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi w c}{\lambda L} \biggr] | |||
~ \cos \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } e^{i \phi_{j=0} } | |||
~+~e^{i 2\pi L/\lambda } \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} 2e^{i \phi_j} \cdot~ | |||
\mathrm{sinc} \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) | |||
~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ e^{i 2\pi L/\lambda } \biggl(\frac{\mathfrak{L}}{c} \biggr) \biggl\{ e^{i \phi_{j=0} } \biggl(\frac{c}{\mathfrak{L}} \biggr) | |||
~+~ \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} e^{i \phi_j} \cdot~ | |||
\biggl(\frac{ 2 }{\pi n } \biggr) \sin \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) | |||
~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) \biggr\} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Finally, recalling that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~L</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \approx Z \biggl[1 + \frac{1}{2}\frac{y_1^2}{Z^2} \biggr] = Z + \frac{y_1^2}{2Z} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
let's set … | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~e^{i\phi_j}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
e^{-i2\pi Z/\lambda} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ e^{i2\pi L/\lambda} \cdot e^{i\phi_j}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
e^{i2\pi (L-Z)/\lambda} \approx e^{i\pi y_1^2/(\lambda Z)} = \cos\biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) + i \sin \biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
As a result, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \biggl[ \cos\biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) + i \sin \biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) \biggr] \biggl(\frac{\mathfrak{L}}{c} \biggr) \biggl\{ \biggl(\frac{c}{\mathfrak{L}} \biggr) | |||
~+~ \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} | |||
\biggl(\frac{ 2 }{\pi n } \biggr) \sin \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) | |||
~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) \biggr\} | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Therefore, a clean square wave will appear only if <math>~[\pi y_1^2/(\lambda Z)] \ll 1</math>. | |||
=See Also= | =See Also= |
Latest revision as of 03:29, 25 March 2020
CGH: Consolidate Expressions Regarding Parallel Apertures
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
One-dimensional Apertures
From our accompanying discussion of the Utility of FFT Techniques, we start with the most general expression for the amplitude at one point on an image screen, namely,
<math>~A(y_1)</math> |
<math>~=</math> |
<math>~\sum_j a_j e^{i(2\pi D_j/\lambda + \phi_j)} \, , </math> |
and, assuming that <math>~|Y_j/L| \ll 1</math> for all <math>~j</math>, deduce that,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~\sum_j a_j e^{i[ 2\pi L/\lambda + \phi_j]}\biggl[ \cos\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) - i \sin\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \biggr] \, , </math> |
where,
<math>~L</math> |
<math>~\equiv</math> |
<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, . </math> |
Note that <math>~L</math> is formally a function of <math>~y_1</math>, but in most of what follows it will be reasonable to assume, <math>~L \approx Z</math>. Notice, as well, that this last approximate expression for the (complex) amplitude at the image screen may be rewritten in the form that will be referred to as our,
Focal-Point Expression | ||
---|---|---|
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda } \sum_j a_j e^{i \phi_j} \cdot e^{-i \Theta_j } \, , </math> |
where,
<math>~\Theta_j</math> |
<math>~\equiv</math> |
<math>~\biggl(\frac{2\pi y_1 Y_j}{\lambda L} \biggr) \, .</math> |
Case 1
In a related accompanying derivation titled, Analytic Result, we made the substitution,
<math>~a_j </math> |
<math>~\rightarrow</math> |
<math>~a_0(Y) dY = a_0(\Theta) \biggl[ \frac{w}{2\beta_1} \biggr] d\Theta \, ,</math> |
where,
<math>~\frac{1}{\beta_1}</math> |
<math>~\equiv</math> |
<math>~\frac{\lambda L}{\pi y_1w} \, ,</math> |
and changed the summation to an integration, obtaining,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta \, . </math> |
If we assume that both <math>~a_0</math> and <math>~\phi</math> are independent of position along the aperture, and that the aperture — and, hence the integration — extends from <math>~Y_2 = -w/2</math> to <math>~Y_1 = +w/2</math>, we have shown that this last expression can be evaluated analytically to give,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i [2\pi L/\lambda + \phi] }\biggl[ \frac{a_0 w}{2\beta_1} \biggr] \int_{\Theta_2}^{\Theta_1} e^{-i \Theta } d\Theta </math> |
|
<math>~=</math> |
<math>~ e^{i [2\pi L/\lambda + \phi] } \cdot a_0 w ~\mathrm{sinc}(\beta_1) \, . </math> |
We need to explicitly demonstrate that an evaluation of our Focal-Point Expression with <math>~a_j = 1</math>, gives this last sinc-function expression, to within a multiplicative factor of, something like, <math>~j_\mathrm{max}</math>.
Case 2
In our accompanying discussion of the Fourier Series, we have shown that a square wave can be constructed from the expression,
<math>~f(x)</math> |
<math>~=</math> |
<math>~ \frac{c}{L} + \sum_{n=1}^{\infty} \biggl( \frac{2}{n\pi} \biggr) \sin \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{2c}{L}\biggl\{\frac{1}{2} + \sum_{n=1}^{\infty} \mathrm{sinc} \biggl( \frac{n\pi c}{L} \biggr) \cos \biggl(\frac{n\pi x}{L}\biggr) \biggr\} \, . </math> |
Can we make this look like our above, Focal-Point Expression?
Let's start by setting
<math>~Y_j</math> |
<math>~=</math> |
<math>~\frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \, ,</math> |
for <math>~0 \le j \le (j_\mathrm{max}-1)</math>, in which case,
<math>~\Theta_j</math> |
<math>~\equiv</math> |
<math>~ \frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} - \frac{w}{2} \biggr] = \frac{2\pi y_1}{\lambda L} \biggl[ \frac{j\cdot w}{(j_\mathrm{max}-1)} \biggr] - \frac{2\pi y_1}{\lambda L} \biggl[ \frac{w}{2} \biggr] </math> |
<math>~=</math> |
<math>~ j \biggl[ \frac{2\pi y_1 w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi y_1 w }{\lambda L} = \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \, ,</math> |
|
<math>~=</math> |
<math>~ j \cdot \Delta\Theta - \frac{(j_\mathrm{max} -1)}{2} \Delta\Theta \, ,</math> |
where,
<math>~\Delta\Theta \equiv \frac{\pi y_1}{\mathfrak{L}} \, ,</math> and <math>~\mathfrak{L} \equiv \biggl[ \frac{(j_\mathrm{max}-1) \lambda L}{2w} \biggr] \, .</math>
This means that <math>~\Theta_{i} = - \Theta_{( j_\mathrm{max} - 1 - i )}</math>.
The key expression under the summation therefore becomes,
<math>~a_j e^{i \phi_j} \cdot e^{-i \Theta_j } </math> |
<math>~=</math> |
<math>~~a_j e^{i \phi_j} \cdot \biggl[ \cos \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) - i \sin \biggl( \frac{j\pi y_1}{\mathfrak{L}}- \Theta_0 \biggr) \biggr] \, ,</math> |
where,
<math>~\Theta_0 \equiv \frac{(j_\mathrm{max} - 1)}{2} \cdot \pi y_1 \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] = \frac{\pi y_1 w}{\lambda L} \, .</math>
Now, what is the argument of the sinc function? By default, it needs to be something along the lines of,
<math>~\frac{j \pi c}{\mathfrak{L}}</math> |
<math>~=</math> |
<math>~j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] \, .</math> |
Then, as <math>~j</math> varies from <math>~0</math> to <math>~(j_\mathrm{max} - 1)</math>, the argument goes from <math>~0</math> to <math>~[2\pi w c/(\lambda L)]</math>. In an effort to make the function exhibit reflection symmetry as we move from one side of the aperture to the next, let's subtract half of this upper limit; that is, let's modify the argument of the sinc function to read,
<math>~\frac{j \pi c}{\mathfrak{L}} - \frac{\pi w c}{\lambda L}</math> |
<math>~=</math> |
<math>~ j \pi c \biggl[ \frac{2w}{(j_\mathrm{max}-1) \lambda L} \biggr] - \frac{\pi w c}{\lambda L} = \biggl[ \frac{2j}{j_\mathrm{max}-1} - 1\biggr]\biggl[ \frac{\pi w c}{\lambda L} \biggr] \, . </math> |
This means that in our above, Focal-Point Expression we want to set,
<math>~a_j</math> |
<math>~=</math> |
<math>~ \mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] \, . </math> |
This therefore gives the following,
Focal-Point Expression for a Square Wave | ||
---|---|---|
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda } \sum_{j=0}^{j_\mathrm{max}-1} e^{i \phi_j} \cdot~ \mathrm{sinc} \biggl[ \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \frac{\pi w c}{\lambda L} \biggr] \biggl\{ \cos \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] - i \sin \biggl[ \biggl( \frac{2j}{j_\mathrm{max} - 1} - 1 \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] \biggr\} \, . </math> |
This exhibits a very desirable feature: Both the sinc function and the sine function — and, hence, also their product — have reflection symmetry about the summation index, <math>~j = (j_\mathrm{max}-1)/2</math>. As a result, if the overall phase factor, <math>~e^{i \phi_j}</math>, behaves in an appropriately simple way — for example, if it is zero everywhere — then under the summation the sine term will sum to zero and leave only the desired — and real — product, <math>~\mathrm{sinc} \times \cos</math>. Try this out in Excel to see if it works!
This could use a little more manipulation. Let's define the alternate summation index,
<math>~n</math> |
<math>~\equiv</math> |
<math>\frac{1}{2} \biggl[ j_\mathrm{max}-1 \biggr] \biggl( \frac{2j}{j_\mathrm{max}-1} - 1 \biggr) \, ,</math> |
in which case we can write,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ e^{i 2\pi L/\lambda } \sum_{n~=~-(j_\mathrm{max} - 1)/2}^{+(j_\mathrm{max} - 1)/2} e^{i \phi_j} \cdot~ \mathrm{sinc} \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi w c}{\lambda L} \biggr] \biggl\{ \cos \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] - i \sin \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ e^{i 2\pi L/\lambda } e^{i \phi_{j=0} } ~+~e^{i 2\pi L/\lambda } \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} 2e^{i \phi_j} \cdot~ \mathrm{sinc} \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi w c}{\lambda L} \biggr] ~ \cos \biggl[ \biggl( \frac{2n}{ j_\mathrm{max}-1} \biggr) \frac{\pi y_1 w }{\lambda L} \biggr] </math> |
|
<math>~=</math> |
<math>~ e^{i 2\pi L/\lambda } e^{i \phi_{j=0} } ~+~e^{i 2\pi L/\lambda } \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} 2e^{i \phi_j} \cdot~ \mathrm{sinc} \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) ~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) </math> |
|
<math>~=</math> |
<math>~ e^{i 2\pi L/\lambda } \biggl(\frac{\mathfrak{L}}{c} \biggr) \biggl\{ e^{i \phi_{j=0} } \biggl(\frac{c}{\mathfrak{L}} \biggr) ~+~ \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} e^{i \phi_j} \cdot~ \biggl(\frac{ 2 }{\pi n } \biggr) \sin \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) ~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) \biggr\} \, . </math> |
Finally, recalling that,
<math>~L</math> |
<math>~\equiv</math> |
<math>~ Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \approx Z \biggl[1 + \frac{1}{2}\frac{y_1^2}{Z^2} \biggr] = Z + \frac{y_1^2}{2Z} \, , </math> |
let's set …
<math>~e^{i\phi_j}</math> |
<math>~=</math> |
<math>~ e^{-i2\pi Z/\lambda} </math> |
<math>~\Rightarrow ~~~ e^{i2\pi L/\lambda} \cdot e^{i\phi_j}</math> |
<math>~=</math> |
<math>~ e^{i2\pi (L-Z)/\lambda} \approx e^{i\pi y_1^2/(\lambda Z)} = \cos\biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) + i \sin \biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) \, . </math> |
As a result, we have,
<math>~A(y_1)</math> |
<math>~\approx</math> |
<math>~ \biggl[ \cos\biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) + i \sin \biggl( \frac{\pi y_1^2}{\lambda Z} \biggr) \biggr] \biggl(\frac{\mathfrak{L}}{c} \biggr) \biggl\{ \biggl(\frac{c}{\mathfrak{L}} \biggr) ~+~ \sum_{n~=~1}^{+(j_\mathrm{max} - 1)/2} \biggl(\frac{ 2 }{\pi n } \biggr) \sin \biggl(\frac{\pi n c}{\mathfrak{L} } \biggr) ~ \cos \biggl( \frac{n \pi y_1 }{\mathfrak{L} } \biggr) \biggr\} \, . </math> |
Therefore, a clean square wave will appear only if <math>~[\pi y_1^2/(\lambda Z)] \ll 1</math>.
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
- Diffraction (Wikipedia)
- Various Google hits:
- Single Slit Diffraction (University of Tennessee, Knoxville)
- Diffraction from a Single Slit; Young's Experiment with Finite Slits (University of New South Wales, Sydney, Australia)
- Single Slit Diffraction Pattern of Light (University of British Columbia, Canada)
- Fraunhofer Single Slit (Georgia State University)
© 2014 - 2021 by Joel E. Tohline |