Difference between revisions of "User:Tohline/AxisymmetricConfigurations/Equilibria"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Axisymmetric Configurations (Structure — Part II)= <!-- 74px|left --> {{LSU_HBook_hea…')
 
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->


=Axisymmetric Configurations (Structure &#8212; Part II)=
=Axisymmetric Configurations (Steady-State Structures)=
<!-- [[Image:LSU_Structure_still.gif|74px|left]] -->
Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE#Axisymmetric_Configurations_.28Part_I.29|identified set of simplified governing equations]]
{{LSU_HBook_header}}




Equilibrium, axisymmetric '''structures''' are obtained by searching for time-independent, steady-state solutions to the [[User:Tohline/AxisymmetricConfigurations/PGE#Axisymmetric_Configurations_.28Part_I.29|identified set of simplified governing equations]]. 
{{LSU_HBook_header}}


==Cylindrical Coordinate Base==
==Cylindrical Coordinate Base==
Line 128: Line 127:


==Spherical Coordinate Base==
==Spherical Coordinate Base==
We begin with an [[User:Tohline/AxisymmetricConfigurations/PGE#Governing_Equations_.28SPH..29|Eulerian formulation of the principle governing equations written in spherical coordinates for an axisymmetric configuration]], namely,
<div align="center">
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\frac{\partial \rho}{\partial t} 
+ \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r}
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr)
\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0</math>
  </td>
</tr>
</table>
<span id="PGE:Euler">The Two Relevant Components of the<br />
<font color="#770000">'''Euler Equation'''</font>
</span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right"><math>~{\hat{e}}_r</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
\biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\}
-  r {\dot\theta}^2
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]  + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right"><math>~{\hat{e}}_\theta</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{\theta} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] +  \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta
</math>
  </td>
</tr>
</table>
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br />
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr]  \biggr\}
+ P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr)
+ \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr]
+ \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr]  \biggr\}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0</math>
  </td>
</tr>
</table>
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr)
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G\rho</math>
  </td>
</tr>
</table>
</div>
where the pair of [[User:Tohline/AxisymmetricConfigurations/PGE#RelevantSphericalComponents|"relevant" components of the Euler equation]] have been written in terms of the specific angular momentum,
<div align="center">
<math>~j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi</math>,
</div>
which is a conserved quantity in axisymmetric systems. 
Given that our aim is to construct steady-state configurations, we should set the partial time-derivative of all scalar quantities to zero; in addition, we will assume that both meridional-plane velocity components, <math>\dot{r}</math> and <math>~\dot{\theta}</math>, to zero &#8212; initially as well as for all time.  As a result of these imposed conditions, both the equation of continuity and the first law of thermodynamics are automatically satisfied; the Poisson equation remains unchanged; and the left-hand-sides of the pair of relevant components of the Euler equation go to zero.  The governing relations then take the following, considerably simplified form:
<table align="center" border="1" cellpadding="10">
<tr>
  <th align="center">Spherical Coordinate Base</th>
</tr>
<tr><td align="center">
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr]
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr)
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G\rho</math>
  </td>
</tr>
</table>
<span id="PGE:Euler">The Two Relevant Components of the<br />
<font color="#770000">'''Euler Equation'''</font>
</span><br />
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right"><math>~{\hat{e}}_r</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
~0
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+  \frac{\partial \Phi }{\partial r} \biggr]  + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr]
</math>
  </td>
</tr>
<tr>
  <td align="right"><math>~{\hat{e}}_\theta</math>: &nbsp; &nbsp;</td>
  <td align="right">
<math>
~0
</math>
  </td>
  <td align="center">
=
  </td>
  <td align="left">
<math>
- \biggl[ \frac{1}{\rho r}  \frac{\partial P}{\partial\theta} +  \frac{1}{r} \frac{\partial \Phi}{\partial\theta}  \biggr] +  \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta
</math>
  </td>
</tr>
</table>
</td></tr></table>


=See Also=
=See Also=

Latest revision as of 00:15, 4 August 2019


Axisymmetric Configurations (Steady-State Structures)

Equilibrium, axisymmetric structures are obtained by searching for time-independent, steady-state solutions to the identified set of simplified governing equations.


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Cylindrical Coordinate Base

We begin by writing each governing equation in Eulerian form and setting all partial time-derivatives to zero:

Equation of Continuity

<math>\cancelto{0}{\frac{\partial\rho}{\partial t}} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>


The Two Relevant Components of the
Euler Equation

<math>~ \cancelto{0}{\frac{\partial \dot\varpi}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math>

<math>~=</math>

<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math>

<math>~ \cancelto{0}{\frac{\partial \dot{z}}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math>

<math>~=</math>

<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

Adiabatic Form of the
First Law of Thermodynamics

<math>~ \biggl\{\cancel{\frac{\partial \epsilon}{\partial t}} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + P \biggl\{\cancel{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr)} + \biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 </math>


Poisson Equation

<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . </math>


The steady-state flow field that will be adopted to satisfy both an axisymmetric geometry and the time-independent constraint is, <math>~\vec{v} = \hat{e}_\varphi (\varpi \dot\varphi)</math>. That is, <math>~\dot\varpi = \dot{z} = 0</math> but, in general, <math>~\dot\varphi</math> is not zero and can be an arbitrary function of <math>~\varpi</math> and <math>~z</math>, that is, <math>~\dot\varphi = \dot\varphi(\varpi,z)</math>. We will seek solutions to the above set of coupled equations for various chosen spatial distributions of the angular velocity <math>~\dot\varphi(\varpi,z)</math>, or of the specific angular momentum, <math>~j(\varpi,z) = \varpi^2 \dot\varphi(\varpi,z)</math>.


After setting the radial and vertical velocities to zero, we see that the <math>1^\mathrm{st}</math> (continuity) and <math>4^\mathrm{th}</math> (first law of thermodynamics) equations are trivially satisfied while the <math>2^\mathrm{nd}</math> & <math>3^\mathrm{rd}</math> (Euler) and <math>5^\mathrm{th}</math> (Poisson) give, respectively,

<math>~ \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - \frac{j^2}{\varpi^3} </math>

<math>~=</math>

<math>~0</math>

<math>~ \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math>

<math>~=</math>

<math>~0</math>

<math>~ \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} </math>

<math>~=</math>

<math>~4\pi G \rho \, .</math>

As has been outlined in our discussion of supplemental relations for time-independent problems, in the context of this H_Book we will close this set of equations by specifying a structural, barotropic relationship between <math>~P</math> and <math>~\rho</math>.

Spherical Coordinate Base

We begin with an Eulerian formulation of the principle governing equations written in spherical coordinates for an axisymmetric configuration, namely,

Equation of Continuity

<math>~ \frac{\partial \rho}{\partial t} + \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr)

\biggr]</math>

<math>~=</math>

<math>~0</math>


The Two Relevant Components of the
Euler Equation

<math>~{\hat{e}}_r</math>:    

<math> \biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} - r {\dot\theta}^2 </math>

=

<math> - \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr] </math>

<math>~{\hat{e}}_\theta</math>:    

<math> r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{\theta} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta </math>

=

<math> - \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta </math>

Adiabatic Form of the
First Law of Thermodynamics

<math>~ \biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr] \biggr\} + P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr) + \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr] \biggr\} </math>

<math>~=</math>

<math>~0</math>


Poisson Equation

<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math>

<math>~=</math>

<math>~4\pi G\rho</math>

where the pair of "relevant" components of the Euler equation have been written in terms of the specific angular momentum,

<math>~j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi</math>,

which is a conserved quantity in axisymmetric systems.

Given that our aim is to construct steady-state configurations, we should set the partial time-derivative of all scalar quantities to zero; in addition, we will assume that both meridional-plane velocity components, <math>\dot{r}</math> and <math>~\dot{\theta}</math>, to zero — initially as well as for all time. As a result of these imposed conditions, both the equation of continuity and the first law of thermodynamics are automatically satisfied; the Poisson equation remains unchanged; and the left-hand-sides of the pair of relevant components of the Euler equation go to zero. The governing relations then take the following, considerably simplified form:

Spherical Coordinate Base

Poisson Equation

<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math>

<math>~=</math>

<math>~4\pi G\rho</math>

The Two Relevant Components of the
Euler Equation

<math>~{\hat{e}}_r</math>:    

<math> ~0 </math>

=

<math> - \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr] </math>

<math>~{\hat{e}}_\theta</math>:    

<math> ~0 </math>

=

<math> - \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation