Difference between revisions of "User:Tohline/Math/EQ Toroidal04"
Jump to navigation
Jump to search
(Created page with '<table border="0" cellpadding="5" align="center"> <tr> <td align="right"> [[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templat…') |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates# | [[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Relationships_Between_Various_Associated_Legendre_Functions]] | ||
</td> | </td> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(\nu - \mu + 1)P^\mu_{\nu + 1} (z)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 13: | Line 13: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
(2\nu + 1)z P_\nu^\mu(z) - (\nu + \mu)P^\mu_{\nu-1}(z) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="center" colspan=4> | <td align="center" colspan="4"> | ||
[https:// | [https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz & Stegun (1995)], p. 334, eq. (8.5.3) | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 30: | Line 27: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
NOTE: | NOTE: <math>~Q_\nu^\mu</math>, as well as <math>~P_\nu^\mu</math>, satisfies this same recurrence relation. | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> |
Latest revision as of 21:39, 1 July 2018
<math>~(\nu - \mu + 1)P^\mu_{\nu + 1} (z)</math> |
<math>~=</math> |
<math>~ (2\nu + 1)z P_\nu^\mu(z) - (\nu + \mu)P^\mu_{\nu-1}(z) </math> |
|
Abramowitz & Stegun (1995), p. 334, eq. (8.5.3) |
NOTE: <math>~Q_\nu^\mu</math>, as well as <math>~P_\nu^\mu</math>, satisfies this same recurrence relation. |