Difference between revisions of "User:Tohline/SR/PoissonOrigin"

From VistrailsWiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
__FORCETOC__
__FORCETOC__
=Origin of the Poisson Equation=
=Origin of the Poisson Equation=
In deriving the,
<div align="center">
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
{{User:Tohline/Math/EQ_Poisson01}}
</div>
we will follow closely the presentation found in &sect;2.1 of [<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>].
{{LSU_HBook_header}}
{{LSU_HBook_header}}


<font color="#007700">According to Isaac Newton's inverse-square law of gravitation,</font> the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows:
<div align="center">
<table border="0" cellpadding="5" align="center">


[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>, &sect;8, p. 15] <font color="#007700">A standard technique for treating the integro-differential equations of mathematical physics is to take the moments of the equations concerned and consider suitably truncated sets of the resulting equations.  The ''virial method'' &hellip; is essentially the method of the moments applied to the solution of hydrodynamical problems in which the gravitational field of the prevailing distribution of matter is taken into account.  The ''virial equations'' of the various orders are, in fact, no more than the moments of the relevant hydrodynamical equations.</font> In this context, Chandrasekhar's focus is on two of the four [[User:Tohline/PGE#Principal_Governing_Equations|principal governing equations]] that serve as the foundation of our entire H_Book, namely, the
<tr>
  <td align="right">
<math>~\vec{a}(\vec{x})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, ,
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-2)
  </td>
</tr>
</table>
</div>
where, {{ User:Tohline/Math/C_GravitationalConstant }} is the universal gravitational constant.


The
==Step 1==
In the astrophysics literature, it is customary to adopt the following definition of the,
<div align="center" id="GravitationalPotential">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="center" colspan="3">
<font color="#770000">'''Scalar Gravitational Potential'''</font>
  </td>
</tr>
<tr>
  <td align="right">
<math>~ \Phi(\vec{x})</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ -G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-3)<br />
[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>], &sect;10, p. 17, Eq. (11)<br />
[<b>[[User:Tohline/Appendix/References#T78|<font color="red">T78</font>]]</b>], &sect;4.2, p. 77, Eq. (12)
  </td>
</tr>
</table>
</div>
 
(Note: &nbsp; As we have detailed in a [[User:Tohline/VE#Setting_the_Stage|separate discussion]], throughout [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] Chandrasekhar adopts a ''different sign convention'' as well as a different variable name to represent the gravitational potential.)  Recognizing that the gradient of the function, <math>~|\vec{x}^{~'} - \vec{x}|^{-1}</math>, with respect to <math>~\vec{x}</math> is,
<div align="center">
<div align="center">
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-4)
  </td>
</tr>
</table>
</div>
and given that, in the above expression for the gravitational acceleration, the integration is taken over the volume that is identified by the ''primed'' <math>~(\vec{x}~{'})</math>, rather than the unprimed <math>~(\vec{x})</math>, coordinate system, <font color="#007700">we find that we may write</font> the gravitational acceleration as,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\vec{a}(\vec{x})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\int G\rho(\vec{x}^{~'})  \nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x'
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \nabla_x \biggl\{ G \int \biggl[ \frac{\rho(\vec{x}^{~'}) }{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x'\biggr\}</math>
  </td>
</tr>


{{User:Tohline/Math/EQ_Poisson01}}
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-\nabla_x \Phi \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-5)
  </td>
</tr>
</table>
</div>
</div>


==Step 2==
Next, we realize that the divergence of the gravitational acceleration takes the form,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
  <td align="right">
<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\nabla_x \cdot \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x'
</math>
  </td>
</tr>


=Drawn from Other Wiki Pages=
<tr>
It is clear, therefore, that Chandrasekhar uses the variable <math>~\vec{u}</math> instead of <math>~\vec{v}</math> to represent the inertial velocity field. More importantly, he adopts a different variable name ''and a different sign convention'' to represent the gravitational potential, specifically,
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\int G\rho(\vec{x}^{~'}) \biggl\{ \nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] \biggr\} d^3 x' \, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-6)
  </td>
</tr>
</table>
</div>
Examining the expression inside the curly braces, we find that,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ - \Phi = \mathfrak{B} </math>
<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 27: Line 192:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ G \int\limits_V \frac{\rho(\vec{x}^{~'})}{|\vec{x} - \vec{x}^{~'}|} d^3x^' \, .</math>
<math>~
- \frac{3}{|\vec{x}^{~'} - \vec{x}|^3}
+ 3 \biggl[ \frac{ (\vec{x}^{~'} - \vec{x}) \cdot (\vec{x}^{~'} - \vec{x}) }{|\vec{x}^{~'} - \vec{x}|^5}\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
Hence, care must be taken to ensure that the signs on various mathematical terms are internally consistent when mapping derivations and resulting expressions from [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] into this H_Book.
(Note: &nbsp; Ostensibly, this last expression is the same as equation 2-7 of [<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], but apparently there is a typesetting error in the BT87 publication.  As printed, the denominator of the first term on the right-hand side is <math>~|\vec{x}^{~'} - \vec{x}|^1</math>, whereas it should be <math>~|\vec{x}^{~'} - \vec{x}|^3</math> as written here.)  <font color="#007700">When <math>~(\vec{x}^{~'} - \vec{x}) \ne 0</math>, we may cancel the factor <math>~|\vec{x}^{~'} - \vec{x}|^2</math> from top and bottom of the last term in this equation to conclude that</font>,
<div align="center">
<table border="0" cellpadding="5" align="center">


&hellip; which <font color="#007700">expresses simply the conservation of the angular momentum of the system</font>. The symmetric part of the tensor expression gives what is generally referred to as (see [<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>] for details) the,
<tr>
  <td align="right">
<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] = 0</math>
  </td>
  <td align="center">
&nbsp; &nbsp; &nbsp; when, &nbsp; &nbsp; &nbsp;  
  </td>
  <td align="left">
<math>~
(\vec{x}^{~'} \ne \vec{x}) \, .
</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 31, Eq. (2-8)
  </td>
</tr>
</table>
</div>
<font color="#007700">Therefore, any contribution to the integral must come from the point <math>~\vec{x}^{~'} = \vec{x}</math>, and we may restrict the volume of integration to a small sphere &hellip; centered on this point.  Since</font>, for a sufficiently small sphere, <font color="#007700">the density will be almost constant through this volume, we can take <math>~\rho(\vec{x}~{'}) = \rho(\vec{x})</math> out of the integral.</font>  Via the divergence theorem (for details, see appendix 1.B &#8212; specifically, equation 1B-42 &#8212; of [<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>]), the remaining volume integral may be converted into a surface integral over the small volume centered on the point <math>~\vec{x}^{~'} = \vec{x}</math> and, in turn, this surface integral may be written in terms of an integral over the solid angle, <math>~d^2\Omega</math>, to give:
<div align="center">
<div align="center">
<span id="PGE:TVE"><font color="#770000">'''Tensor Virial Equation'''</font></span><br />
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{2} \frac{d^2 I_{ij}}{dt^2}</math>
<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 46: Line 236:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi \, ,</math>
<math>~
-G\rho(\vec{x}) \int d^2\Omega
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-4\pi G\rho(\vec{x}) \, .
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
<tr>
   <td align="center" colspan="3">
   <td align="center" colspan="3">
[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b>], p. 23, Eq. (51)<br />
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 32, Eq. (2-9b)
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 213, Eq. (4-78)
   </td>
   </td>
</tr>
</tr>
Line 58: Line 263:
</div>
</div>


==Step 3==
Finally, combining the results of ''Step 1'' and ''Step 2'' gives the desired,
<div align="center">
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br />


{{User:Tohline/Math/EQ_Poisson01}}
</div>
which serves as one of the [[User:Tohline/PGE#Principal_Governing_Equations|principal governing equations]] in our examination of the '''Structure, Stability, &amp; Dynamics of Self-Gravitating Fluids'''.


=See Also=
=See Also=

Latest revision as of 01:38, 6 July 2017

Origin of the Poisson Equation

In deriving the,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

we will follow closely the presentation found in §2.1 of [BT87].


Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

According to Isaac Newton's inverse-square law of gravitation, the acceleration, <math>~\vec{a}(\vec{x})</math>, felt at any point in space, <math>~\vec{x}</math>, due to the gravitational attraction of a distribution of mass, <math>~\rho(\vec{x})</math>, is obtained by integrating over the accelerations exerted by each small mass element, <math>~\rho(\vec{x}^{~'}) d^3x'</math>, as follows:

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' \, , </math>

[BT87], p. 31, Eq. (2-2)

where, <math>~G</math> is the universal gravitational constant.

Step 1

In the astrophysics literature, it is customary to adopt the following definition of the,

Scalar Gravitational Potential

<math>~ \Phi(\vec{x})</math>

<math>~\equiv</math>

<math>~ -G \int \frac{\rho(\vec{x}^{~'})}{|\vec{x}^{~'} - \vec{x}|} d^3x^' \, .</math>

[BT87], p. 31, Eq. (2-3)
[EFE], §10, p. 17, Eq. (11)
[T78], §4.2, p. 77, Eq. (12)

(Note:   As we have detailed in a separate discussion, throughout [EFE] Chandrasekhar adopts a different sign convention as well as a different variable name to represent the gravitational potential.) Recognizing that the gradient of the function, <math>~|\vec{x}^{~'} - \vec{x}|^{-1}</math>, with respect to <math>~\vec{x}</math> is,

<math>~\nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]</math>

<math>~=</math>

<math>~ \frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3} \, , </math>

[BT87], p. 31, Eq. (2-4)

and given that, in the above expression for the gravitational acceleration, the integration is taken over the volume that is identified by the primed <math>~(\vec{x}~{'})</math>, rather than the unprimed <math>~(\vec{x})</math>, coordinate system, we find that we may write the gravitational acceleration as,

<math>~\vec{a}(\vec{x})</math>

<math>~=</math>

<math>~\int G\rho(\vec{x}^{~'}) \nabla_x \biggl[ \frac{1}{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x' </math>

 

<math>~=</math>

<math>~ \nabla_x \biggl\{ G \int \biggl[ \frac{\rho(\vec{x}^{~'}) }{|\vec{x}^{~'} - \vec{x}|} \biggr]d^3 x'\biggr\}</math>

 

<math>~=</math>

<math>~-\nabla_x \Phi \, .</math>

[BT87], p. 31, Eq. (2-5)

Step 2

Next, we realize that the divergence of the gravitational acceleration takes the form,

<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ \nabla_x \cdot \int \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] G\rho(\vec{x}^{~'}) d^3 x' </math>

 

<math>~=</math>

<math>~ \int G\rho(\vec{x}^{~'}) \biggl\{ \nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] \biggr\} d^3 x' \, . </math>

[BT87], p. 31, Eq. (2-6)

Examining the expression inside the curly braces, we find that,

<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] </math>

<math>~=</math>

<math>~ - \frac{3}{|\vec{x}^{~'} - \vec{x}|^3} + 3 \biggl[ \frac{ (\vec{x}^{~'} - \vec{x}) \cdot (\vec{x}^{~'} - \vec{x}) }{|\vec{x}^{~'} - \vec{x}|^5}\biggr] </math>

(Note:   Ostensibly, this last expression is the same as equation 2-7 of [BT87], but apparently there is a typesetting error in the BT87 publication. As printed, the denominator of the first term on the right-hand side is <math>~|\vec{x}^{~'} - \vec{x}|^1</math>, whereas it should be <math>~|\vec{x}^{~'} - \vec{x}|^3</math> as written here.) When <math>~(\vec{x}^{~'} - \vec{x}) \ne 0</math>, we may cancel the factor <math>~|\vec{x}^{~'} - \vec{x}|^2</math> from top and bottom of the last term in this equation to conclude that,

<math>~\nabla_x \cdot \biggl[\frac{\vec{x}^{~'} - \vec{x}}{|\vec{x}^{~'} - \vec{x}|^3}\biggr] = 0</math>

      when,      

<math>~ (\vec{x}^{~'} \ne \vec{x}) \, . </math>

[BT87], p. 31, Eq. (2-8)

Therefore, any contribution to the integral must come from the point <math>~\vec{x}^{~'} = \vec{x}</math>, and we may restrict the volume of integration to a small sphere … centered on this point. Since, for a sufficiently small sphere, the density will be almost constant through this volume, we can take <math>~\rho(\vec{x}~{'}) = \rho(\vec{x})</math> out of the integral. Via the divergence theorem (for details, see appendix 1.B — specifically, equation 1B-42 — of [BT87]), the remaining volume integral may be converted into a surface integral over the small volume centered on the point <math>~\vec{x}^{~'} = \vec{x}</math> and, in turn, this surface integral may be written in terms of an integral over the solid angle, <math>~d^2\Omega</math>, to give:

<math>~\nabla_x \cdot \vec{a}(\vec{x})</math>

<math>~=</math>

<math>~ -G\rho(\vec{x}) \int d^2\Omega </math>

 

<math>~=</math>

<math>~ -4\pi G\rho(\vec{x}) \, . </math>

[BT87], p. 32, Eq. (2-9b)

Step 3

Finally, combining the results of Step 1 and Step 2 gives the desired,

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

which serves as one of the principal governing equations in our examination of the Structure, Stability, & Dynamics of Self-Gravitating Fluids.

See Also

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation