Difference between revisions of "User:Tohline/SSC/Synopsis StyleSheet"
(27 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
=Spherically Symmetric Configurations Synopsis= | =Spherically Symmetric Configurations Synopsis (Using Style Sheet)= | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Structure== | |||
===Tabular Overview=== | |||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | |||
{| class="wikitable" style="margin: auto; color:black;" border="1" cellpadding="12" | |+ style="height:30px;" | <font size="+1">'''Spherically Symmetric Configurations that undergo Adiabatic Compression/Expansion'''</font> — adiabatic index, <math>~\gamma</math> | ||
|+<font size="+1"> | |||
|- | |- | ||
! colspan="2" | | ! colspan="2" | | ||
Line 50: | Line 51: | ||
|- | |- | ||
! style="background-color:lightgreen;" colspan="2"|<font size="+1" | ! style="background-color:lightgreen;" colspan="2"|<b><font size="+1">Equilibrium Structure</font></b> | ||
|- | |- | ||
! style="text- | ! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">①</font></b> <b>Detailed Force Balance</b> | ||
! style="text-align:center; background-color:lightblue" |<b><font color="maroon" size="+1">③</font></b> <b>Free-Energy Identification of Equilibria</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" |Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of | |||
< | |||
< | |||
Free-Energy | |||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of | |||
<div align="center"> | <div align="center"> | ||
<font color="maroon"><b>Hydrostatic Balance</b></font><br /> | <font color="maroon"><b>Hydrostatic Balance</b></font><br /> | ||
Line 130: | Line 62: | ||
</div> | </div> | ||
for the radial density distribution, <math>~\rho(r)</math>. | for the radial density distribution, <math>~\rho(r)</math>. | ||
! style="vertical-align:top; text-align:left;" rowspan="3"|The Free-Energy is, | |||
The Free-Energy is, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
Line 157: | Line 83: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-a R^{-1} + | <math>~-a \biggl(\frac{R}{R_0}\biggr)^{-1} + b\biggl(\frac{R}{R_0}\biggr)^{3-3\gamma}+ c\biggl(\frac{R}{R_0}\biggr)^3 \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 165: | Line 91: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~R_0 ~\frac{\partial\mathfrak{G}}{\partial R}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 171: | Line 97: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~a\biggl(\frac{R}{R_0}\biggr)^{-2} +(3-3\gamma)b\biggl(\frac{R}{R_0}\biggr)^{2-3\gamma} + 3c\biggl(\frac{R}{R_0}\biggr)^2</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 182: | Line 108: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\frac{R_0}{R}\biggl[ -W_\mathrm{grav} - 3(\gamma-1)U_\mathrm{int} + 3P_eV\biggr]</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 200: | Line 126: | ||
</tr> | </tr> | ||
</table> | </table> | ||
|- | |||
! style="text-align:center; background-color:#ffff99;" |<b><font color="maroon" size="+1">②</font></b> <b>Virial Equilibrium</b> | |||
|- | |||
< | ! style="vertical-align:top; text-align:left;" | | ||
</ | |||
< | |||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume: | Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume: | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 269: | Line 188: | ||
</tr> | </tr> | ||
</table> | </table> | ||
< | |} | ||
< | |||
< | ===Pointers to Relevant Chapters=== | ||
</ | <!-- BACKGROUND MATERIAL --> | ||
<font size="+1" color="maroon"><b>⓪ </b></font> Background Material: | |||
<font size="+1"><b> | {| class="wikitable" style="margin: auto; color:black; width:100%;" border="0" cellpadding="5" | ||
|- | |||
</ | ! width="30px" style="text-align:right; vertical-align:top; "|· | ||
< | |[[User:Tohline/PGE#Principal_Governing_Equations|Principal Governing Equations]] (PGEs) in most general form being considered throughout this H_Book | ||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|PGEs in a form that is relevant to a study of the ''Structure, Stability, & Dynamics'' of [[User:Tohline/SphericallySymmetricConfigurations/PGE|spherically symmetric systems]] | |||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|[[User:Tohline/SR#Supplemental_Relations|Supplemental relations]] — see, especially, [[User:Tohline/SR#Barotropic_Structure|barotropic equations of state]] | |||
</ | |} | ||
< | <!-- DETAILED FORCE BALANCE --> | ||
<font size="+1" color="maroon"><b>① </b></font> Detailed Force Balance: | |||
{| class="wikitable" style="margin: auto; color:black; width:100%;" border="0" cellpadding="5" | |||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|[[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Spherically_Symmetric_Configurations_.28Part_II.29|Derivation of the equation of Hydrostatic Balance]], and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_1|Technique 1]] | |||
|} | |||
<!-- VIRIAL EQUILIBRIUM --> | |||
<font size="+1" color="maroon"><b>② </b></font> Virial Equilibrium: | |||
{| class="wikitable" style="margin: auto; color:black; width:100%;" border="0" cellpadding="5" | |||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|Formal derivation of the multi-dimensional, [[User:Tohline/VE#Second-Order_Tensor_Virial_Equations|2<sup>nd</sup>-order tensor virial equations]] | |||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|[[User:Tohline/VE#Scalar_Virial_Theorem|Scalar Virial Theorem]], as appropriate for spherically symmetric configurations | |||
|- | |||
! width="30px" style="text-align:right; vertical-align:top; "|· | |||
|[[User:Tohline/VE#Generalization|Generalization]] of scalar virial theorem to include the bounding effects of a hot, tenuous external medium | |||
|} | |||
==Stability== | |||
===Isolated & Pressure-Truncated Configurations=== | |||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations</b></font> | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">④</font></b> <b>Perturbation Theory</b> | |||
! style="text-align:center; background-color:lightblue;" |<b><font color="maroon" size="+1">⑦</font></b> <b>Free-Energy Analysis of Stability</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the, | Given the radial profile of the density and pressure in the equilibrium configuration, solve the [[User:Tohline/SSC/VariationalPrinciple#Ledoux_and_Pekeris_.281941.29|eigenvalue problem defined]] by the, | ||
<div align="center"> | <div align="center"> | ||
Line 310: | Line 262: | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr><td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#P00|<font color="red">P00</font>]]</b>], Vol. II, §3.7.1, p. 174, Eq. (3.145) | |||
</td></tr> | |||
</table> | </table> | ||
</div> | </div> | ||
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. | to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. | ||
! style="vertical-align:top; text-align:left;" rowspan="5"| | |||
The second derivative of the free-energy function is, | The second derivative of the free-energy function is, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~R_0^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 328: | Line 280: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | -2a\biggl(\frac{R}{R_0}\biggr)^{-3} + (3-3\gamma)(2-3\gamma)b \biggl(\frac{R}{R_0}\biggr)^{1-3\gamma} + 6c\biggl(\frac{R}{R_0}\biggr) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 340: | Line 292: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\biggl(\frac{R_0}{R} \biggr)^2\biggl[ | ||
2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | 2W_\mathrm{grav} - 3(\gamma-1)(2-3\gamma)U_\mathrm{int} + 6P_e V | ||
\biggr] \, . | \biggr] \, . | ||
Line 364: | Line 316: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{ | <math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 388: | Line 340: | ||
</tr> | </tr> | ||
</table> | </table> | ||
Note the similarity with <b><font color="maroon" size="+1">⑥</font></b>. | |||
---- | |||
Alternatively, recalling that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~3(\gamma - 1)U_\mathrm{int}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2S_\mathrm{therm} \, , | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
the conditions for virial equilibrium and stability, may be written respectively as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
< | <td align="right"> | ||
<math>~3P_e V</math> | |||
</ | </td> | ||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ 2S_\mathrm{therm}+ W_\mathrm{grav} </math> | |||
</td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
< | <td align="right"> | ||
<math>~\Rightarrow~~~ R^2 \biggl[\frac{\partial^2\mathfrak{G}}{\partial R^2}\biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | <td align="left"> | ||
<math>~ | |||
2W_\mathrm{grav} - 2(2-3\gamma)S_\mathrm{therm} + 2 \biggl[ 2S_\mathrm{therm}+ W_\mathrm{grav} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
4W_\mathrm{grav} + 6\gamma S_\mathrm{therm} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑤</font></b> <b>Variational Principle</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, | Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, | ||
<div align="center"> | <div align="center"> | ||
Line 489: | Line 498: | ||
</div> | </div> | ||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑥</font></b> <b>Approximation: Homologous Expansion/Contraction</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\omega^2 \int_0^R r^2 dM_r</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\leq</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(4- 3\gamma) W_\mathrm{grav}+ 3^2 \gamma P_eV \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
|} | |||
===Bipolytropes=== | |||
{| class="wikitable" style="margin: auto; color:black; width:85%;" border="1" cellpadding="12" | |||
|- | |||
! style="background-color:lightgreen;" colspan="2"|<font size="+1"><b>Stability Analysis: Applicable to Bipolytropic Configurations</b></font> | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑧</font></b> <b>Variational Principle</b> | |||
! style="text-align:center; background-color:lightblue;" |<b><font color="maroon" size="+1">⑩</font></b> <b>Free-Energy Analysis of Stability</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
<div align="center"> | |||
<font color="#770000">'''Governing Variational Relation'''</font><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^{R^*} (x r^*)^2 dM_r^* </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\gamma_c (\gamma_c-1) \int_0^{r^*_\mathrm{core}} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | |||
- (3\gamma_c - 4) \int_0^{r^*_\mathrm{core}} x^2 dW^*_\mathrm{grav} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ ~\gamma_e (\gamma_e-1) \int_{r^*_\mathrm{core}}^{R^*} x^2~\biggl( \frac{d\ln x}{d\ln r^*} \biggr)^2 dU^*_\mathrm{int} | |||
- (3\gamma_e - 4) \int_{r^*_\mathrm{core}}^{R^*} x^2 dW^*_\mathrm{grav} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ ~3^2(\gamma_c - \gamma_e) x_i^2 P_i^* V_\mathrm{core}^* \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
! style="vertical-align:top; text-align:left;" rowspan="3"| | |||
As we have detailed in an [[User:Tohline/SSC/BipolytropeGeneralization#Free_Energy_and_Its_Derivatives|accompanying discussion]], the first derivative of the relevant free-energy expression is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~R ~\frac{\partial \mathfrak{G}}{\partial R}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2S_\mathrm{tot} + W_\mathrm{tot} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~S_\mathrm{tot} \equiv S_\mathrm{core} + S_\mathrm{env}</math> | |||
</td> | |||
<td align="center"> | |||
and | |||
</td> | |||
<td align="left"> | |||
<math>~W_\mathrm{tot} \equiv W_\mathrm{core} + W_\mathrm{env} \, ;</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and the second derivative of that free-energy function is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~2\biggl[ | |||
W_\mathrm{tot} + (3\gamma_c - 2) S_\mathrm{core} + (3\gamma_e-2)S_\mathrm{env} | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
---- | |||
This stability criterion may be rewritten as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[ R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2} \biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2[(3\gamma_c -4) S_\mathrm{core} | |||
+ (3\gamma_e -4) S_\mathrm{env} ] \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
< | <td align="right"> | ||
<math>~\frac{S_\mathrm{core}}{S_\mathrm{env}}</math> | |||
</ | </td> | ||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{(3\gamma_e - 4)}{(4 - 3\gamma_c)} \, . | |||
</math> | |||
</td> | |||
</tr> | </tr> | ||
</table> | |||
See the [[User:Tohline/SSC/Stability/BiPolytropes#What_to_Expect_for_Equilibrium_Configurations|accompanying discussion]]. | |||
---- | |||
If — based for example on <b><font color="maroon" size="+1">⑦</font></b> — we make the reasonable assumption that, in equilibrium, the statements, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
< | <td align="right"> | ||
<math>~2S_\mathrm{core} = 3P_i V_\mathrm{core} - W_\mathrm{core}</math> | |||
</td> | |||
<td align="center"> | |||
and | |||
</td> | |||
<td align="left"> | |||
<math>~2S_\mathrm{env} = - 3P_i V_\mathrm{core} - W_\mathrm{env} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
hold separately, then we satisfy the virial equilibrium condition, namely, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | <td align="left"> | ||
<math>~2S_\mathrm{tot} + W_\mathrm{tot} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and the second derivative of the relevant free-energy function can be rewritten as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[ R^2 ~\frac{\partial^2 \mathfrak{G}}{\partial R^2} \biggr]_\mathrm{equil}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2(W_\mathrm{core} + W_\mathrm{env}) | |||
+ (3\gamma_c - 2) (3P_i V_\mathrm{core} - W_\mathrm{core}) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (3\gamma_e-2)(-3P_i V_\mathrm{core} - W_\mathrm{env}) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3^2 P_i V_\mathrm{core}(\gamma_c - \gamma_e) | |||
+ (4-3\gamma_c ) W_\mathrm{core} | |||
+ (4-3\gamma_e)W_\mathrm{env} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Note the similarity with <b><font color="maroon" size="+1">⑨</font></b> — temporarily, see [[User:Tohline/SSC/Stability/BiPolytropes#Revised_Free-Energy_Analysis|this discussion]]. | |||
|- | |||
! style="text-align:center; background-color:#ffff99;" width="50%" |<b><font color="maroon" size="+1">⑨</font></b> <b>Approximation: Homologous Expansion/Contraction</b> | |||
|- | |||
! style="vertical-align:top; text-align:left;" | | |||
If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives, | If we ''guess'' that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives, | ||
Line 508: | Line 765: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\biggl( \frac{2\pi}{3}\biggr)\sigma_c^2 \int_0^R r^2 dM_r</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~\leq</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
(4- 3\ | (4- 3\gamma_c) W_\mathrm{core}+ (4- 3\gamma_e) W_\mathrm{env}+ 3^2 (\gamma_c - \gamma_e) P_i V_\mathrm{core} \, . | ||
</math> | </math> | ||
</td> | </td> | ||
Line 521: | Line 778: | ||
</table> | </table> | ||
</div> | </div> | ||
|} | |||
=See Also= | =See Also= |
Latest revision as of 23:02, 4 February 2019
Spherically Symmetric Configurations Synopsis (Using Style Sheet)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Structure
Tabular Overview
| ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Equilibrium Structure | ||||||||||||||||
① Detailed Force Balance | ③ Free-Energy Identification of Equilibria | |||||||||||||||
Given a barotropic equation of state, <math>~P(\rho)</math>, solve the equation of
for the radial density distribution, <math>~\rho(r)</math>. |
The Free-Energy is,
Therefore, also,
Equilibrium configurations exist at extrema of the free-energy function, that is, they are identified by setting <math>~d\mathfrak{G}/dR = 0</math>. Hence, equilibria are defined by the condition,
| |||||||||||||||
② Virial Equilibrium | ||||||||||||||||
Multiply the hydrostatic-balance equation through by <math>~rdV</math> and integrate over the volume:
|
Pointers to Relevant Chapters
⓪ Background Material:
· | Principal Governing Equations (PGEs) in most general form being considered throughout this H_Book |
---|---|
· | PGEs in a form that is relevant to a study of the Structure, Stability, & Dynamics of spherically symmetric systems |
· | Supplemental relations — see, especially, barotropic equations of state |
① Detailed Force Balance:
· | Derivation of the equation of Hydrostatic Balance, and a description of several standard strategies that are used to determine its solution — see, especially, what we refer to as Technique 1 |
---|
② Virial Equilibrium:
· | Formal derivation of the multi-dimensional, 2nd-order tensor virial equations |
---|---|
· | Scalar Virial Theorem, as appropriate for spherically symmetric configurations |
· | Generalization of scalar virial theorem to include the bounding effects of a hot, tenuous external medium |
Stability
Isolated & Pressure-Truncated Configurations
Stability Analysis: Applicable to Isolated & Pressure-Truncated Configurations | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
④ Perturbation Theory | ⑦ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||
Given the radial profile of the density and pressure in the equilibrium configuration, solve the eigenvalue problem defined by the, LAWE: Linear Adiabatic Wave (or Radial Pulsation) Equation
to find one or more radially dependent, radial-displacement eigenvectors, <math>~x \equiv \delta r/r</math>, along with (the square of) the corresponding oscillation eigenfrequency, <math>~\omega^2</math>. |
The second derivative of the free-energy function is,
Evaluating this second derivative for an equilibrium configuration — that is by calling upon the (virial) equilibrium condition to set the value of the internal energy — we have,
Note the similarity with ⑥.
the conditions for virial equilibrium and stability, may be written respectively as,
| |||||||||||||||||||||||||||||||||
⑤ Variational Principle | ||||||||||||||||||||||||||||||||||
Multiply the LAWE through by <math>~4\pi x dr</math>, and integrate over the volume of the configuration gives the, Governing Variational Relation
Now, by setting <math>~(d\ln x/d\ln r)_{r=R} = -3</math>, we can ensure that the pressure fluctuation is zero and, hence, <math>~P = P_e</math> at the surface, in which case this relation becomes,
| ||||||||||||||||||||||||||||||||||
⑥ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
Bipolytropes
Stability Analysis: Applicable to Bipolytropic Configurations | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
⑧ Variational Principle | ⑩ Free-Energy Analysis of Stability | |||||||||||||||||||||||||||||||||||||||
Governing Variational Relation
|
As we have detailed in an accompanying discussion, the first derivative of the relevant free-energy expression is,
where,
and the second derivative of that free-energy function is,
Hence, in bipolytropes, the marginally unstable equilibrium configuration (second derivative of free-energy set to zero) will be identified by the model that exhibits the ratio,
See the accompanying discussion. If — based for example on ⑦ — we make the reasonable assumption that, in equilibrium, the statements,
hold separately, then we satisfy the virial equilibrium condition, namely,
and the second derivative of the relevant free-energy function can be rewritten as,
Note the similarity with ⑨ — temporarily, see this discussion. | |||||||||||||||||||||||||||||||||||||||
⑨ Approximation: Homologous Expansion/Contraction | ||||||||||||||||||||||||||||||||||||||||
If we guess that radial oscillations about the equilibrium state involve purely homologous expansion/contraction, then the radial-displacement eigenfunction is, <math>~x</math> = constant, and the governing variational relation gives,
|
See Also
© 2014 - 2021 by Joel E. Tohline |