Difference between revisions of "User:Tohline/SSC/Stability/n1PolytropeLAWE"
(63 intermediate revisions by the same user not shown) | |||
Line 3,181: | Line 3,181: | ||
</table> | </table> | ||
</div> | </div> | ||
< | |||
<table border="1" cellpadding="8" align="center" width="85%"><tr><td align="left"> | |||
What if, instead, we try the more generalized form, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~x</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,193: | Line 3,195: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~A + \frac{B}{(\lambda \xi)^2} \biggl[ 1-\frac{\lambda \xi \cos(\lambda \xi)}{\sin(\lambda \xi)} \biggr] \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Then we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{1}{\lambda B} \cdot \frac{dx}{d\xi}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,209: | Line 3,212: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | - \frac{1}{ (\lambda \xi)^3} \biggl\{ | ||
2 - (\lambda \xi)^2 - \frac{\lambda \xi\cos(\lambda \xi)}{\sin(\lambda \xi)} | |||
- \frac{(\lambda \xi)^2 \cos^2(\lambda\xi)}{\sin^2(\lambda\xi)} | |||
\biggr\} | |||
\, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Probably this also means, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{1}{\lambda^2 B} \cdot \frac{dx}{d\xi}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,224: | Line 3,234: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | \frac{1}{(\lambda\xi)^4} \biggl\{ 6 - 2 (\lambda \xi)^2 | ||
- \frac{2 \lambda \xi\cos(\lambda\xi)}{\sin(\lambda\xi)} | |||
- \frac{2(\lambda\xi)^2 \cos^2(\lambda\xi)}{\sin^2(\lambda\xi)} | |||
- \frac{2(\lambda\xi)^3 \cos(\lambda\xi)}{\sin(\lambda\xi)} | |||
- \frac{2(\lambda\xi)^3 \cos^3(\lambda\xi)}{\sin^3(\lambda\xi)} \biggr\} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</td></tr></table> | |||
<tr> | |||
<td align="right"> | Let's check against the [[User:Tohline/SSC/Stability/Isothermal#Derivation_of_Polytropic_Displacement_Function|more general derivation]], which gives after recognizing that, <math>~B \leftrightarrow (3-n)/(n-1)</math>, | ||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx}{d\xi}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,239: | Line 3,261: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | \biggl(\frac{3-n}{n-1}\biggr) \biggl\{ \frac{1}{\xi} | ||
+ \frac{n(\theta^')^2 }{\xi \theta^{n+1}} + \frac{3\theta^' }{\xi^2 \theta^{n}} \biggr\} | |||
+ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,256: | Line 3,277: | ||
<math>~ | <math>~ | ||
\frac{B}{\xi^3} \biggl\{ \xi^2 | \frac{B}{\xi^3} \biggl\{ \xi^2 | ||
+ \biggl | + \xi^2 \biggl( \frac{\xi}{\sin\xi}\biggr)^2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr]^2 + \frac{3\xi^2}{\sin\xi} \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \biggr\} | ||
+ \biggl | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,279: | Line 3,290: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
\biggl | \frac{B}{\xi^3} \biggl\{ \xi^2 | ||
+\biggl[ | + 3\biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] + \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr]^2 \biggr\} | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,292: | Line 3,302: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ | \frac{B}{\xi^3} \biggl\{ \xi^2 | ||
+ 3\biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] | |||
+ \biggl[ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 - 2\biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr) + 1 \biggr] \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,307: | Line 3,318: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{B}{\xi^3} \biggl\{ \xi^2 | |||
\biggr\} | + \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 2 \biggr] | ||
+ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
This matches the preceding, direct derivation. | |||
Also, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d^2x}{d\xi^2}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,325: | Line 3,346: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\frac{3B}{\xi^4} \biggl\{ | ||
\biggl( \frac{ | \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] | ||
+\biggl[ | +\biggl[ 2 -\xi^2 - \frac{2\xi\cos\xi}{\sin\xi} \biggr] | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,341: | Line 3,362: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~- \frac{B}{\xi^3} \biggl\{ | ||
\biggl[- \frac{1}{\sin\xi} - \frac{2\cos^2\xi}{\sin^3\xi} \biggr] \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] | |||
+\biggl | + \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ - 2\xi \cos\xi + \sin\xi + \xi^2 \sin\xi + \xi \cos\xi \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,354: | Line 3,374: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+\biggl[ -2\xi - \frac{2\cos\xi}{\sin\xi} + \frac{2\xi\sin\xi}{\sin\xi} + \frac{2\xi\cos^2\xi}{\sin^2\xi}\biggr] | |||
+\biggl[ | \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,371: | Line 3,389: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{B}{\xi^4} \biggl\{ | ||
\biggl( \frac{3\cos\xi}{\sin^2\xi}\biggr) \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] | |||
+\biggl[ | +\biggl[ 6 - 3\xi^2 - \frac{6\xi\cos\xi}{\sin\xi} \biggr] | ||
+ \biggl[\frac{1}{\sin\xi} + \frac{2\cos^2\xi}{\sin^3\xi} \biggr] \biggl[ - \xi^3 \cos\xi + \xi^2 \sin\xi \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,387: | Line 3,405: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | + \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ 2\xi^2 \cos\xi - \xi \sin\xi - \xi^3 \sin\xi - \xi^2 \cos\xi \biggr] | ||
- \ | +\biggl[ 2\xi^2 + \frac{2\xi \cos\xi}{\sin\xi} - \frac{2\xi^2\sin\xi}{\sin\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi}\biggr] | ||
\biggr\} | |||
- \frac{2\xi^ | |||
- \frac{2\xi^ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,414: | Line 3,424: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{B}{\xi^4} \biggl\{ | ||
\biggl[ - \frac{3\xi^2 \cos^2\xi}{\sin^2\xi} + \frac{3\xi \cos\xi}{\sin\xi} \biggr] | |||
+ \frac{ | +\biggl[ 6 - 3\xi^2 - \frac{6\xi\cos\xi}{\sin\xi} \biggr] | ||
+ | + \biggl[ - \frac{\xi^3 \cos\xi}{\sin\xi} + \xi^2 \biggr] | ||
+ \biggl[ - \frac{2\xi^3 \cos^3\xi}{\sin^3\xi} + \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,427: | Line 3,438: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl | + \biggl[ \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} - \frac{\xi \cos\xi}{\sin\xi} - \frac{\xi^3 \cos\xi}{\sin\xi} - \frac{\xi^2 \cos^2\xi}{\sin^2\xi} \biggr] | ||
+\biggl[ 2\xi^2 + \frac{2\xi \cos\xi}{\sin\xi} - \frac{2\xi^2\sin\xi}{\sin\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi}\biggr] | |||
+ | \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,447: | Line 3,457: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ | \frac{B}{\xi^4} \biggl\{ 6 - 2\xi^2 | ||
- \frac{2\xi\cos\xi}{\sin\xi} | |||
- \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} | |||
- \frac{2\xi^3 \cos\xi}{\sin\xi} | |||
- \frac{2\xi^3 \cos^3\xi}{\sin^3\xi} \biggr\} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Let's also check this against the [[User:Tohline/SSC/Stability/Isothermal#Derivation_of_Polytropic_Displacement_Function|more general derivation]], which gives after again recognizing that, <math>~B \leftrightarrow (3-n)/(n-1)</math>, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>\frac{d^2 x}{d\xi^2}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,464: | Line 3,481: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ | \biggl(\frac{n-3}{n-1}\biggr) \biggl\{ \frac{4}{\xi^2} + \frac{2n(\theta^')}{\xi \theta} | ||
+ \frac{ | + \frac{12\theta^' }{\xi^3 \theta^{n}}+ \frac{8n(\theta^')^2}{\xi^2 \theta^{n+1}} | ||
+ | + (n+1) \frac{n(\theta^')^3 }{\xi \theta^{n+2}} \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,480: | Line 3,497: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-\frac{ | <math>~-B | ||
\biggl\{ | \biggl\{ \frac{4}{\xi^2} + \frac{2}{\xi \theta} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr] | ||
+ \frac{12}{\xi^3 \theta}\biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr] | |||
- \ | + \frac{8 }{\xi^2 \theta^{2}} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr]^2 | ||
+ \frac{\xi^3\ | + \frac{2 }{\xi \theta^{3}} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr]^3\biggr\} | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,498: | Line 3,514: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-\frac{ | <math>~-\frac{B}{\xi^4} | ||
\biggl\{ | \biggl\{ 4\xi^2 + 2\xi^2 \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr) | ||
+ \frac{\xi | + 12\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr) | ||
+ \frac{\xi | + 8 \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)^2 | ||
\biggr\} | + 2\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)^3\biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,515: | Line 3,531: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-\frac{2B}{\xi^4} | ||
\frac{ | \biggl\{ 2\xi^2 + \frac{\xi^3\cos\xi}{\sin\xi} - \xi^2+ \frac{6\xi\cos\xi}{\sin\xi} - 6 | ||
\biggl\{ | + \frac{4\xi^2\cos^2\xi}{\sin^2\xi} - \frac{8\xi\cos\xi}{\sin\xi} + 4 | ||
+ \biggl(\frac{\xi^2\cos^2\xi}{\sin^2\xi} - \frac{2\xi\cos\xi}{\sin\xi} + 1\biggr) \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr\} | |||
- \frac{ | |||
\biggr\} | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,543: | Line 3,547: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-\frac{2B}{\xi^4} | ||
- \frac{\xi^2}{\sin\xi} \ | \biggl\{-2 + \xi^2 - \frac{2\xi\cos\xi}{\sin\xi} + \frac{\xi^3\cos\xi}{\sin\xi} | ||
+ \frac{4\xi^2\cos^2\xi}{\sin^2\xi} | |||
- \biggl(\frac{\xi^2\cos^2\xi}{\sin^2\xi} - \frac{2\xi\cos\xi}{\sin\xi} + 1\biggr) | |||
+ \frac{\xi^3\cos^3\xi}{\sin^3\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi} + \frac{\xi\cos\xi}{\sin\xi} | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,564: | Line 3,565: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-\frac{2B}{\xi^4} | ||
\biggl\{-3 + \xi^2 + \frac{\xi\cos\xi}{\sin\xi} + \frac{\xi^3\cos\xi}{\sin\xi} | |||
+ \frac{\xi^2\cos^2\xi}{\sin^2\xi} | |||
+ \frac{\xi^3\cos^3\xi}{\sin^3\xi} | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1)Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + | <math>~ | ||
(n+1)\biggl[ \biggl(\frac{\sigma_c^2}{6\gamma_g } \biggr) \frac{\xi^2}{\theta} | \frac{B}{\xi^4} | ||
-\alpha Q\biggr] \frac{ x}{\xi^2} </math> | \biggl\{6 -2 \xi^2 - \frac{2\xi\cos\xi}{\sin\xi} | ||
- \frac{2\xi^2\cos^2\xi}{\sin^2\xi} | |||
- \frac{2\xi^3\cos\xi}{\sin\xi} | |||
- \frac{2\xi^3\cos^3\xi}{\sin^3\xi} | |||
\biggr\} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
A cross-check with the first attempt to derive this second derivative expression initially unveiled a couple of coefficient errors. These have now been corrected and both expressions agree. | |||
===Succinct Demonstration=== | |||
Given that, for <math>~n=1</math>, we should set <math>~\gamma_\mathrm{g} = (n+1)/n = 2 \Rightarrow \alpha = (3-4/\gamma_\mathrm{g}) = +1</math>, and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~Q \equiv - \frac{d\ln\theta}{d\ln\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{\xi^2}{\sin\xi} \cdot \frac{d}{d\xi}\biggl[ \frac{\sin\xi}{\xi}\biggr] | |||
= | |||
1 - \xi \cot\xi \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
If we then employ the displacement function, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~A + \frac{B}{\xi^2} \biggl[ 1 - \xi \cot\xi \biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
the LAWE becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1)Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + | |||
(n+1)\biggl[ \biggl(\frac{\sigma_c^2}{6\gamma_g } \biggr) \frac{\xi^2}{\theta} | |||
-\alpha Q\biggr] \frac{ x}{\xi^2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - 2Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + | |||
\biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi^3}{\sin\xi} | |||
- 2Q\biggr] \frac{ x}{\xi^2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\xi^2} | |||
+ \biggl[2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} | |||
+ \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{ x}{\xi^2} | |||
+ \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2B}{\xi^4} | |||
\biggl\{3 - \xi^2 - \frac{\xi\cos\xi}{\sin\xi} | |||
- \biggl(\frac{\xi\cos\xi}{\sin\xi} \biggr)^2 | |||
- \frac{\xi^3\cos\xi}{\sin\xi} | |||
- \biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr)^3 | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{2B}{\xi^4}\biggl[1 + \frac{\xi\cos\xi}{\sin\xi} \biggr] \biggl\{ \xi^2 | |||
- 2 + \frac{\xi \cos\xi}{\sin\xi} | |||
+ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \biggl[ \frac{A}{\xi^2} + \frac{B}{\xi^4} \biggl( 1-\frac{\xi \cos\xi}{\sin\xi} \biggr)\biggr] | |||
+ \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2B}{\xi^4} | |||
\biggl\{3 - \xi^2 - \frac{\xi\cos\xi}{\sin\xi} | |||
- \biggl(\frac{\xi\cos\xi}{\sin\xi} \biggr)^2 | |||
- \frac{\xi^3\cos\xi}{\sin\xi} | |||
- \biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr)^3 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \xi^2\biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr) - 2\biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr) + \biggl(\frac{\xi \cos\xi}{\sin\xi} \biggr)^2 | |||
+ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^3 | |||
+ \xi^2 - 2 + \frac{\xi \cos\xi}{\sin\xi} | |||
+ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{2B}{\xi^4} \biggl[ 1 - \frac{2\xi\cos\xi}{\sin\xi} + \biggl(\frac{\xi \cos\xi}{\sin\xi} \biggr)^2 \biggr] | |||
+ \frac{2A}{\xi^2}\biggl[\frac{\xi\cos\xi}{\sin\xi} -1\biggr] | |||
+ \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2A}{\xi^2}\biggl[\frac{\xi\cos\xi}{\sin\xi} -1\biggr] | |||
+ \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Pretty amazing degree of cancelation! So the above-hypothesized displacement function ''does'' satisfy the <math>~n=1</math>, polytropic LAWE — for any value of the coefficient, <math>~B</math> — if we set <math>~A = 0</math> and <math>~\sigma_c^2=0</math>. If we set <math>~B = 3</math>, the function will be normalized such that it goes to unity at the center. In summary, then, we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P\biggr|_{n=1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{3}{\xi^2} \biggl[ 1 - \xi \cot\xi \biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<!-- | |||
Let's play with this a bit more to see if we can uncover a displacement function that works for nonzero values of <math>~\omega_c^2</math>. Leaving both <math>~A</math> and <math>~B</math> unspecified for the time being, we have, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2A}{\xi^2}\biggl[\frac{\xi\cos\xi}{\sin\xi} -1\biggr] | |||
+ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggl[ A + \frac{B}{\xi^2} \biggl( 1-\frac{\xi \cos\xi}{\sin\xi} \biggr) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl(\frac{A\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} | |||
+ \biggl[ \biggl(\frac{B\sigma_c^2}{6 } \biggr) \frac{1}{\xi\sin\xi} | |||
- \frac{2A}{\xi^2} \biggr] \biggl( 1 - \frac{\xi\cos\xi}{\sin\xi} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
--> | |||
==What About Bipolytropes?== | |||
Here we will try to find an analytic expression for the radial displacement function, <math>~x</math>, for a bipolytropic ''envelope'' whose polytropic index is, <math>~n_e = 1</math>. As in the above ''succinct'' derivation, the relevant LAWE is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1)Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + | |||
(n+1)\biggl[ \biggl(\frac{\sigma_c^2}{6\gamma_g } \biggr) \frac{\xi^2}{\theta} | |||
-\alpha Q\biggr] \frac{ x}{\xi^2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - 2Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + | |||
\biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi^3}{\sin\xi} | |||
- 2Q\biggr] \frac{ x}{\xi^2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\xi^2} | |||
+ \biggl[2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} | |||
+ \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{ x}{\xi^2} | |||
+ \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
===First Attempt=== | |||
Let's try, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
A + \frac{B}{(\xi - F)^2} \biggl[1 - (\xi-D) \cot(\xi-C) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
First, note that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d}{d\xi}\biggl[\cot(\xi - C) \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d}{d\xi}\biggl[ \frac{ \cos(\xi - C) }{ \sin(\xi - C)}\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ 1 + \cot^2(\xi - C)\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{2B}{(\xi-F)^3} \biggl[1 - (\xi-D) \cot(\xi-C) \biggr] | |||
- \frac{B}{(\xi-F)^2} \biggl\{ | |||
\cot(\xi-C) - (\xi-D) [1 + \cot^2(\xi-C) ] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{(\xi-F)^3} \biggl\{\biggl[2 - 2(\xi-D) \cot(\xi-C) \biggr] | |||
- (\xi-F) \biggl[ | |||
\cot(\xi-C) - (\xi-D) [1 + \cot^2(\xi-C) ]\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{(\xi-F)^3} \biggl\{ 2 | |||
- \cot(\xi-C)\biggl[ 2(\xi-D) + (\xi-F) \biggr] | |||
+ (\xi-F) (\xi-D) [1 + \cot^2(\xi-C) ] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{(\xi-F)^3} \biggl\{ 2 | |||
- \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) | |||
+ [ \xi^2 - (D+F)\xi + FD] | |||
+ [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{(\xi-F)^3} \biggl\{ | |||
[ \xi^2 - (D+F)\xi + FD+2] | |||
- \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) | |||
+ [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
And, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2x}{d\xi^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{3B}{(\xi-F)^4} \biggl\{ | |||
[ \xi^2 - (D+F)\xi + FD+2] | |||
- \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) | |||
+ [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{(\xi-F)^3} \biggl\{ | |||
[ 2\xi - (D+F)] | |||
- 3 \cot(\xi-C) | |||
- \biggl[3\xi - (2D +F) \biggr] \frac{d \cot(\xi-C)}{d\xi} | |||
+ [ 2\xi - (D+F)]\cot^2(\xi-C) | |||
+ \biggl[ \xi^2 - (D+F)\xi + FD \biggr] \frac{d \cot^2(\xi-C) }{d\xi} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~\biggl[ \frac{(\xi-F)^4}{B} \biggr] \frac{d^2x}{d\xi^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3[ \xi^2 - (D+F)\xi + FD+2] | |||
- 3\biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) | |||
+ 3[ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- (\xi-F)[ 2\xi - (D+F)] | |||
+ 3 (\xi-F) \cot(\xi-C) | |||
- (\xi-F)[ 2\xi - (D+F)]\cot^2(\xi-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\xi-F)\biggl[3\xi - (2D +F) \biggr] \frac{d \cot(\xi-C)}{d\xi} | |||
- (\xi-F)\biggl[ \xi^2 - (D+F)\xi + FD \biggr] \frac{d \cot^2(\xi-C) }{d\xi} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3[ \xi^2 - (D+F)\xi + FD+2] | |||
- (\xi-F)[ 2\xi - (D+F)] | |||
+ \biggl\{3 (\xi-F) | |||
- 3\biggl[3\xi - (2D +F) \biggr] \biggr\} \cot(\xi-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ 3[ \xi^2 - (D+F)\xi + FD] | |||
- (\xi-F)[ 2\xi - (D+F)] \biggr\}\cot^2(\xi-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- (\xi-F)\biggl[3\xi - (2D +F) \biggr] \biggl[ 1 + \cot^2(\xi - C)\biggr] | |||
+ (\xi-F)\biggl[ \xi^2 - (D+F)\xi + FD \biggr] 2\cot(\xi-C)\biggl[ 1 + \cot^2(\xi - C)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3[ \xi^2 - (D+F)\xi + FD+2] | |||
- (\xi-F)[ 2\xi - (D+F)] | |||
- (\xi-F) [3\xi - (2D +F) ] | |||
+ \biggl\{3 (\xi-F) | |||
- 3 [3\xi - (2D +F) ] | |||
+ 2 (\xi-F) [ \xi^2 - (D+F)\xi + FD ] | |||
\biggr\} \cot(\xi-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ 3[ \xi^2 - (D+F)\xi + FD] | |||
- (\xi-F)[ 2\xi - (D+F)] | |||
- (\xi-F) [3\xi - (2D +F) ] | |||
\biggr\}\cot^2(\xi-C) | |||
+ 2 (\xi-F) [ \xi^2 - (D+F)\xi + FD ] \cot^3(\xi - C) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Let's set <math>~C = D = F</math> and see if these expressions match the ones above. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx}{d\xi} \biggr|_{C=D=F}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{B}{\xi^3} \biggl\{ | |||
2 + \xi^2 | |||
- 3\xi \cot\xi | |||
+ \xi^2 \cot^2\xi | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\xi^4}{B} \cdot \frac{d^2x}{d\xi^2} \biggr|_{C=D=F}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3[ \xi^2 +2] | |||
- (\xi)[ 2\xi ] | |||
- \xi [3\xi ] | |||
+ \biggl\{3 (\xi) | |||
- 3 [3\xi ] | |||
+ 2 \xi [ \xi^2 ] | |||
\biggr\} \cot(\xi) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ 3[ \xi^2 ] | |||
- \xi[ 2\xi ] | |||
- \xi [3\xi ] | |||
\biggr\}\cot^2\xi | |||
+ 2 \xi [ \xi^2 ] \cot^3\xi | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
3 \xi^2 +6- 2\xi^2 - 3\xi^2 | |||
+ \biggl[ 3 \xi - 9\xi + 2 \xi^3 \biggr] \cot(\xi) | |||
+ \biggl[ 3\xi^2 - 2\xi^2 - 3\xi^2 \biggr] \cot^2\xi + 2 \xi^3 \cot^3\xi | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
6- 2\xi^2 | |||
+ [ - 6\xi + 2 \xi^3 ] \cot(\xi) | |||
- 2\xi^2 \cot^2\xi + 2 \xi^3 \cot^3\xi | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
===Second Attempt=== | |||
Up to this point we have been rather cavalier about the use of <math>~\xi</math> (and <math>~\xi_i</math>) to represent the envelope's dimensionless radius (and interface location). Let's switch to <math>~\eta</math>, | |||
<table border="0" align="center" cellpadding="8"> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^*</math> | |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
+ \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, throughout the envelope we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\rho^*}{P^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} | |||
\, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{M_r^*}{r^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \theta^{-1}_i \biggl( \frac{2}{\pi} \biggr)^{1/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr) | |||
\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggr]^{-1} | |||
= | |||
2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, the LAWE relevant to the envelope is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl[ \frac{\rho^*}{P^*}\biggr] \biggl[ \frac{ M_r^*}{(r^*)} \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
+ \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl[ \frac{\rho^*}{ P^* } \biggr] \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_e }{(r^*)^2} \biggl[ \frac{M_r^*}{r^*} \biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
+ \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \biggr] \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} | |||
~-~\alpha_e \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggr]^{-2} \biggl[2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \frac{2 \eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
+ \frac{1}{2\pi \theta_i^5 \phi} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} | |||
~-~\alpha_e \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{5}_i (4\pi) \eta^{-1} \biggr] \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \frac{2 \eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
+ \frac{1}{2\pi \theta_i^5 \phi} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} \biggr\} x | |||
~-~ \alpha_e \biggl[ \frac{2\eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \frac{x}{\eta^2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
If we assume that, <math>~\alpha_e = (3 - 4/2) = 1</math> and <math>~\sigma_c^2 = 0</math>, then the relevant envelope LAWE is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[ 2 Q \biggr] \frac{x}{\eta^2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<div align="center"> | |||
<math>~ | |||
Q \equiv - \frac{d \ln \phi}{ d\ln \eta} \, . | |||
</math> | |||
</div> | |||
Now consider the, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center" colspan="3"><font color="maroon"><b>Precise Solution to the Polytropic LAWE</b></font></td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b(n-1)}{2n}\biggl[1 + \biggl(\frac{n-3}{n-1}\biggr) \biggl( \frac{1}{\eta \phi^{n}}\biggr) \frac{d\phi}{d\eta}\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-b\biggl[ \biggl( \frac{1}{\eta \phi}\biggr) \frac{d\phi}{d\eta}\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b}{\eta^2}\biggl[ -\frac{d\ln \phi}{d\ln \eta}\biggr] </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{bQ}{\eta^2} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
From our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Step_6:__Envelope_Solution|accompanying discussion]], we recall that the most general solution to the <math>n=1</math> Lane-Emden equation can be written in the form, | |||
<div align="center"> | |||
<math> | |||
\phi = A \biggl[ \frac{\sin(\eta - B)}{\eta} \biggr] \, , | |||
</math> | |||
</div> | |||
where <math>A</math> and <math>B</math> are constants whose values can be obtained from our [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Parameter_Values|accompanying parameter table]]. The first derivative of this function is, | |||
<div align="center"> | |||
<math> | |||
\frac{d\phi}{d\eta} = \frac{A}{\eta^2} \biggl[ \eta\cos(\eta-B) - \sin(\eta-B) \biggr] \, . | |||
</math> | |||
</div> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~Q = -\frac{d\ln\phi}{d\ln\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{\eta}{\phi} \cdot \frac{A}{\eta^2} \biggl[ \eta\cos(\eta-B) - \sin(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[1- \eta\cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
What is this in terms of the dimensionless radius, <math>~r^*/R^*</math>? Well, | |||
<table border="0" align="center" cellpadding="8"> | |||
<tr> | |||
<td align="right"> | |||
<math>\frac{~r^*}{R^*}</math> | |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggl[\frac{\sqrt{2\pi}~\theta_i^2}{\eta_s} \biggl(\frac{\mu_e}{\mu_c}\biggr)\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\frac{\eta}{\eta_s} = \frac{\eta}{(\pi + B)} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \eta</math> | |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\frac{~r^*}{R^*}\biggl(\pi + B \biggr) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Also, | |||
<table border="0" align="center" cellpadding="8"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\eta-B</math> | |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\frac{~r^*}{R^*}\biggl(\pi + B \biggr) -B = \pi \biggl( \frac{r^*}{R^*}\biggr) - B\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\pi + \pi \biggl[ \biggl( \frac{r^*}{R^*}\biggr)-1\biggr] - B\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\pi - (\pi + B)\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<font color="red">'''[12 January 2019]:'''</font> Here's what appears to work pretty well, empirically: | |||
<table border="1" width="60%" align="center" cellpadding="8"><tr><td align="left"> | |||
<table border="0" align="center" cellpadding="8"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\eta^2} \biggl\{1- \eta\cot[\eta-(\pi - 0.8)] \biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\eta</math> | |||
</td> | |||
<td align="center"><math>~=</math></td> | |||
<td align="left"> | |||
<math>\frac{~r^*}{R^*}\biggl(\pi - 0.6\pi \biggr) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
<span id="tagJanuary2019"> | |||
Let's work through the analytic derivatives again. Keeping in mind that,</span> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - B) \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ 1 + \cot^2(\eta - B)\biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and starting with the ''guess'', | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B) \biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \frac{dx_P}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\frac{2b}{\eta^3} \biggl[1- \eta\cot(\eta-B) \biggr] | |||
- \frac{b}{\eta^2} \biggl\{ | |||
\cot(\eta-B) - \eta \biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \Rightarrow ~~~ \biggl( \frac{\eta^3}{b} \biggr) \frac{dx_P}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[2- 2\eta\cot(\eta-B) \biggr] | |||
- \biggl\{ | |||
\eta \cot(\eta-B) - \eta^2 \biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
The second derivative then gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \frac{d^2x_P}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\eta}\biggl\{ | |||
\frac{b}{\eta^3} \biggl[ | |||
\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) | |||
\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{3b}{\eta^4} \biggl[ | |||
\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\frac{b}{\eta^3} \biggl\{ | |||
2\eta + \cot(\eta-B) + 2\eta \cot^2(\eta - B) | |||
+ \eta\frac{d}{d\eta}\biggl[\cot(\eta-B)\biggr] + 2\eta^2\cot(\eta-B) \frac{d}{d\eta} \biggl[ \cot(\eta - B) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ \frac{d^2x_P}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b}{\eta^4} \biggl[ | |||
6 - 3\eta^2 - 3\eta\cot(\eta-B) - 3\eta^2\cot^2(\eta - B) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\frac{b}{\eta^4} \biggl\{ | |||
2\eta^2 + \eta \cot(\eta-B) + 2\eta^2 \cot^2(\eta - B) | |||
- \eta^2\biggl[ 1 + \cot^2(\eta - B)\biggr] - 2\eta^3\cot(\eta-B) \biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{\eta^4}{b}\cdot \frac{d^2x_P}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
6 - 3\eta^2 - 3\eta\cot(\eta-B) - 3\eta^2\cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~+~ 2\eta^2 + \eta \cot(\eta-B) + 2\eta^2 \cot^2(\eta - B) | |||
-\eta^2 - \eta^2 \cot^2(\eta - B) | |||
- 2\eta^3\cot(\eta-B) | |||
- 2\eta^3\cot^3(\eta-B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2\biggl[ 3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-B) | |||
- \eta^2\cot^2(\eta - B) | |||
- \eta^3\cot^3(\eta-B) | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Recalling that, | |||
<div align="center"> | |||
<math>~Q = \biggl[1- \eta\cot(\eta-B) \biggr] \, ,</math> | |||
</div> | |||
plugging these expressions into the relevant envelope LAWE gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ 2 Q \cdot \frac{x}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b}{\eta^4} \biggl\{ | |||
\frac{\eta^4}{b} \cdot \frac{d^2x}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x}{b} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-B) | |||
- \eta^2\cot^2(\eta - B) | |||
- \eta^3\cot^3(\eta-B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ 1 + \eta\cot(\eta-B) \biggr] \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[1- \eta\cot(\eta-B) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-B) | |||
- \eta^2\cot^2(\eta - B) | |||
- \eta^3\cot^3(\eta-B) | |||
+ \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \eta\cot(\eta-B) \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] | |||
~+~\eta\cot(\eta-B) \biggl[1- \eta\cot(\eta-B) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
- (\eta + \eta^3)\cot(\eta-B) | |||
- \eta^3\cot^3(\eta-B) | |||
~+~2\eta\cot(\eta-B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \eta^3\cot(\eta-B) | |||
-2 \eta\cot(\eta-B) | |||
+ \eta^2\cot^2(\eta-B) | |||
+ \eta^3\cot^3(\eta - B) | |||
~+~\eta\cot(\eta-B) | |||
~-~\eta^2\cot^2(\eta-B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
[- \eta \cot(\eta-B) | |||
- \eta\cot(\eta-B) | |||
~+~2\eta\cot(\eta-B) ] | |||
+ [\eta^3\cot(\eta-B) | |||
- \eta^3 \cot(\eta-B) ] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ [\eta^2\cot^2(\eta-B) | |||
~-~\eta^2\cot^2(\eta-B) ] | |||
+ [\eta^3\cot^3(\eta - B) | |||
- \eta^3\cot^3(\eta-B) ] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0 \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Okay. Now let's determine at what value of <math>~\eta</math> the logarithmic derivative of <math>~x_P</math> goes to negative one. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\ln x_P}{d\ln \eta} = \frac{\eta}{x_P} \cdot \frac{dx_P}{d\eta} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\eta^3}{b }\biggl[1- \eta\cot(\eta-B) \biggr]^{-1} | |||
\cdot \frac{dx_P}{d\eta} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[1- \eta\cot(\eta-B) \biggr]^{-1} | |||
\biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Setting this to negative one, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
-\biggl[1- \eta\cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\Rightarrow~~~1 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta^2\biggl[ 1 + \cot^2(\eta - B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta^2\biggl[ \frac{1}{\sin^2(\eta - B)} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\Rightarrow~~~1 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\eta^2}{\sin^2(\eta - B)} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
And this occurs when, | |||
<div align="center"> | |||
<math>~\biggl(\frac{A}{\phi } \biggr)^2 = 1 \, .</math> | |||
</div> | |||
===Third Attempt=== | |||
====Prior to the Brute-Force Trial Fit==== | |||
Let's work through the analytic derivatives again. Keeping in mind that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - C) \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ 1 + \cot^2(\eta - C)\biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and starting with the ''guess'', | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-C) \biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \biggl( \frac{\eta^3}{b} \biggr) \frac{dx_P}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\eta^4}{b}\cdot \frac{d^2x_P}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2\biggl[ 3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-C) | |||
- \eta^2\cot^2(\eta - C) | |||
- \eta^3\cot^3(\eta-C) | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="1" width="80%" align="center" cellpadding="10"><tr><td align="left"> | |||
Note that the relevant logarithmic derivative is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \frac{d\ln x_P}{d\ln\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{b}{\eta^2} \biggr)\biggl[ \eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C) \biggr]x_P^{-1} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C) \biggr]\biggl[1- \eta\cot(\eta-C) \biggr]^{-1} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
If we know the logarithmic slope and the value of <math>~\eta</math> at the interface, then we can solve for | |||
<div align="center"> | |||
<math>~y_i \equiv \eta_i \cot(\eta_i-C) \, ,</math> | |||
</div> | |||
via the quadratic relation, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~(1- y_i ) \biggl[\frac{d\ln x_P}{d\ln\eta}\biggr]_i</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta_i^2 -2 + y_i + y_i^2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta_i^2 -2 + y_i + y_i^2 | |||
- (1- y_i ) \biggl[\frac{d\ln x_P}{d\ln\eta}\biggr]_i | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
y_i^2 | |||
+ y_i \biggl\{1 + \biggl[\frac{d\ln x_P}{d\ln\eta}\biggr]_i\biggr\} | |||
+\biggl\{ \eta_i^2 -2 - \biggl[\frac{d\ln x_P}{d\ln\eta}\biggr]_i \biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
(In practice it appears as though the "plus" solution to this quadratic equation is desired if the quantity inside the last set of curly braces is positive; and the "minus" solution is desired if this quantity is negative.) Once the value of <math>~y_i</math> is known, we can solve for the key coefficient, <math>~C</math>, via the relation, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\tan(\eta_i - C)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \frac{\eta_i}{y_i}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~C</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\eta_i - \tan^{-1}\biggl(\frac{\eta_i}{y_i}\biggr)\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
Recalling that, | |||
<div align="center"> | |||
<math>~Q = \biggl[1- \eta\cot(\eta-B) \biggr] \, ,</math> | |||
</div> | |||
plugging these expressions into the relevant envelope LAWE gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ 2 Q \cdot \frac{x}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b}{\eta^4} \biggl\{ | |||
\frac{\eta^4}{b} \cdot \frac{d^2x}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x}{b} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-C) | |||
- \eta^2\cot^2(\eta - C) | |||
- \eta^3\cot^3(\eta-C) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ 1 + \eta\cot(\eta-B) \biggr] \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[1- \eta\cot(\eta-C) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
3 - \eta^2 | |||
- (\eta + \eta^3)\cot(\eta-C) | |||
- \eta^2\cot^2(\eta - C) | |||
- \eta^3\cot^3(\eta-C) | |||
+ \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] | |||
~-~ \biggl[1- \eta\cot(\eta-C) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \eta\cot(\eta-B) \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] | |||
~+~\eta\cot(\eta-B) \biggl[1- \eta\cot(\eta-C) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
(\eta - \eta^3)\cot(\eta-C) | |||
- \eta^3\cot^3(\eta-C) | |||
+ \eta\cot(\eta-B) \biggl[\eta^2 -1 + \eta^2\cot^2(\eta - C) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl\{ | |||
(\eta - \eta^3) [ \cot(\eta-C) - \cot(\eta-B) ] | |||
+ \eta^3 \cot^2(\eta - C) [\cot(\eta-B)- \cot(\eta-C)] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^4} \biggl[ \cot(\eta-C) - \cot(\eta-B) \biggr] | |||
\biggl[ \eta - \eta^3 - \eta^3 \cot^2(\eta - C) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b}{\eta^3} \biggl[ \cot(\eta-C) - \cot(\eta-B) \biggr] | |||
\biggl\{ 1 - \eta^2\biggl[1 + \cot^2(\eta - C)\biggr] \biggr\}\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
This will go to zero if <math>~C = (B-2m\pi), </math> where <math>~m</math> is a positive integer. When <math>~m =1</math>, for example, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\cot(\eta-C)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\cot[\eta - (B-2\pi)] = \cot(\eta -B) \, . </math> | |||
</td> | |||
</tr> | |||
</table> | |||
Okay. Now let's determine at what value of <math>~\eta</math> the logarithmic derivative of <math>~x_P</math> goes to negative one. | |||
====Brute-Force Trial Fit==== | |||
<table align="left" width="100%" cellpadding="0"><tr><td align="left"> | |||
<table border="0" align="right"><tr><td align="center"> | |||
[[File:BruteForceWhiteBoardsmall.png|500px|Photo of white board with steps showing development of trial eigenfunction. This should be paired with an Excel spreadsheet.]] | |||
</td></tr></table> | |||
Using a couple of separate Excel spreadsheets — FaulknerBipolytrope2.xlsx/mu100Mode0 and AnalyticTrialBipolytropeA.xlsx/Sheet2, both stored in a DropBox account under the folder Wiki_edits/Bipolytrope/LinearPerturbation — we used an inelegant and inefficient trial & error technique in search of an eigenfunction that had the same analytic ''form'' as the one represented above for <math>~x_P</math>, but that, when plotted, appeared to qualitatively match the numerically determined envelope eigenfunction. Then, on a whiteboard — see the photo, here on the right — we formulated a concise expression for a trial function that seemed to work pretty well. Our primary finding was that <math>~\alpha</math>, appearing as the argument to the <math>~\tan\alpha</math> function, needed to be shifted by something like <math>~-3\pi/4</math>. | |||
<div align="center"> | |||
<font size="+3"> | |||
<p> </p><p>THIS SPACE</p><p> INTENTIONALLY</p><p> LEFT BLANK</p> | |||
</font> | |||
</div> | |||
</td></tr></table> | |||
====Following Up on the Brute-Force Trial Fit==== | |||
In an [[User:Tohline/SSC/Stability/BiPolytropes#Is_There_an_Analytic_Expression_for_the_Eigenfunction.3F|accompanying discussion]] — see especially [[User:Tohline/SSC/Stability/BiPolytropes#Attempt_2|Attempt #2]] — we have determined by visual inspection that a decent fit to the envelope's eigenfunction is given by the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_\mathrm{trial}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \biggl[ \frac{\tan(\eta_i - \Lambda - 3\pi/4) + f_\alpha}{1 - f_\alpha \cdot \tan(\eta_i - \Lambda - 3\pi/4)} \biggr] \biggr\} - a_0 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \cot(\Lambda - E)\biggr\} - a_0 \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="1" cellpadding="5" align="right"> | |||
<tr> | |||
<th align="center" colspan="4">Limiting Parameter Values</th> | |||
</tr> | |||
<tr> | |||
<td align="center"> </td> | |||
<td align="center">min</td> | |||
<td align="center">max</td> | |||
<td align="center"><math>~\alpha = \alpha_s</math> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~\eta_\mathrm{F}</math></td> | |||
<td align="center"><math>~\eta_i</math></td> | |||
<td align="center"><math>~\eta_s</math></td> | |||
<td align="center"><math>~\frac{8}{\pi} ( \eta_s - \eta_i )^2 + 2\eta_s - \eta_i</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~\alpha</math></td> | |||
<td align="center"><math>~-\frac{\pi}{2}</math></td> | |||
<td align="center"><math>~-\frac{5\pi}{8}</math></td> | |||
<td align="center"><math>~\eta_i - \eta_s - \frac{3\pi}{4}</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~\Lambda</math></td> | |||
<td align="center"><math>~\eta_i - \frac{\pi}{4}</math></td> | |||
<td align="center"><math>~\eta_i - \frac{\pi}{8}</math></td> | |||
<td align="center"><math>~\eta_s</math></td> | |||
</tr> | |||
</table> | |||
where, over the range, <math>~\eta_i \le \eta \le \eta_s \, ,</math> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~E</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\eta_i - \frac{5\pi}{4} + \tan^{-1} f_\alpha \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Lambda(\eta)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\eta_i + g_\mathrm{F} \biggl[ \eta_i - 2\eta_s + \eta \biggr] = \Lambda_0 + g_\mathrm{F}\eta | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{f_\alpha} = \tan(\alpha_s)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\tan[ - (\eta_s - \eta_i + \tfrac{3\pi}{4}) ] | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~g_\mathrm{F}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\pi}{8(\eta_s - \eta_i)} | |||
\, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
---- | |||
Here, we reference a [[User:Tohline/SSC/Stability/BiPolytropes#Attempt_1|separate discussion of the bipolytrope's underlying equilibrium structure]] | |||
<table border="1" align="center" cellpadding="8"> | |||
<tr> | |||
<td align="center" width="50%"><math>~B = \eta_i - \frac{\pi}{2} + \tan^{-1}f</math></td> | |||
<td align="center"><math>~E = \eta_i - \frac{5\pi}{4} + \tan^{-1}f_\alpha</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\cot(\eta_i - B)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\eta_i - B)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\tfrac{\pi}{2} - \tan^{-1}f)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~f</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~f</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan(B + \tfrac{\pi}{2} - \eta_i )</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\cot(\eta_i - E)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\eta_i - E)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\tfrac{5\pi}{4} - \tan^{-1}f_\alpha)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan( \tan^{-1}f_\alpha - \tfrac{3\pi}{4} )</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\tan( \tfrac{3\pi}{4} - \tan^{-1}f_\alpha )</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\cot( \tan^{-1}f_\alpha )</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-\frac{1}{f_\alpha}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
Hence … <math>~\cot(\eta - B)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\eta - B)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - \eta + \eta_i - \tfrac{\pi}{2} + \tan^{-1}f]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\eta_i - \eta + \tan^{-1}f]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{ \tan(\eta_i-\eta) + f }{ 1 - f \cdot \tan(\eta_i - \eta)}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
Hence … <math>~\cot(\Lambda - E)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\tfrac{\pi}{2} - (\Lambda - E)]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan[\eta_i - \Lambda - \tfrac{3\pi}{4} + \tan^{-1}f_\alpha]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\tan(\eta_i - \Lambda - \tfrac{3\pi}{4}) + f_\alpha }{1 - f_\alpha \cdot \tan(\eta_i - \Lambda - \tfrac{3\pi}{4}) }</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center">Also … <math>~B = \eta_s - \pi</math></td> | |||
<td align="center"><math>~</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ f = \cot(\eta_i - B)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\cot(\eta_i - \eta_s + \pi)</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{1}{f}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\tan(\eta_i - \eta_s + \pi)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
<td align="center"><math>~</math></td> | |||
</tr> | |||
</table> | |||
---- | |||
Let's examine the first and second derivatives of this trial eigenfunction, recognizing that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx_\mathrm{trial}}{d\eta} = \frac{d\Lambda}{d\eta} \cdot \frac{dx_\mathrm{trial}}{d\Lambda}= g_\mathrm{F} \cdot \frac{dx_\mathrm{trial}}{d\Lambda}</math> | |||
</td> | |||
<td align="center"> | |||
and | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x_\mathrm{trial}}{d\eta^2} | |||
= \frac{d\Lambda}{d\eta} \cdot \frac{d}{d\Lambda} \biggl[ g_\mathrm{F}\cdot \frac{dx_\mathrm{trial}}{d\Lambda} \biggr] | |||
= g_\mathrm{F}^2 \cdot \frac{d^2x_\mathrm{trial}}{d\Lambda^2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and drawing from the [[#Prior_to_the_Brute-Force_Trial_Fit|derivative expressions already derived, above]]. For the first derivative, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx_\mathrm{trial}}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
g_\mathrm{F} \biggl( \frac{b_0}{\Lambda^3} \biggr) | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
And the second derivative gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2x_\mathrm{trial}}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
g_\mathrm{F}^2 \biggl(\frac{2b_0}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 | |||
- (\Lambda + \Lambda^3)\cot(\Lambda-E) | |||
- \Lambda^2\cot^2(\Lambda - E) | |||
- \Lambda^3\cot^3(\Lambda-E) | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx_\mathrm{trial}}{d\eta} | |||
~-~ 2 Q \cdot \frac{x_\mathrm{trial}}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx_\mathrm{trial}}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x_\mathrm{trial}}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b_0}{\eta^4} \biggl\{ | |||
\frac{\eta^4}{b_0} \cdot \frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b_0} \cdot \frac{dx_\mathrm{trial}}{d\eta} | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x_\mathrm{trial}}{b_0} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b_0}{\eta^4} \biggl\{ | |||
\frac{\eta^4}{b_0} \cdot g_\mathrm{F}^2 \biggl(\frac{2b_0}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 | |||
- (\Lambda + \Lambda^3)\cot(\Lambda-E) | |||
- \Lambda^2\cot^2(\Lambda - E) | |||
- \Lambda^3\cot^3(\Lambda-E) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b_0} \cdot | |||
g_\mathrm{F} \biggl( \frac{b_0}{\Lambda^3} \biggr) | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 }{b_0} \cdot | |||
\biggl[\frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \cot(\Lambda - E)\biggr\} - a_0\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b_0}{\eta^4} \biggl\{ | |||
g_\mathrm{F}^2 \biggl(\frac{2\eta^4}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 | |||
- (\Lambda + \Lambda^3)\cot(\Lambda-E) | |||
- \Lambda^2\cot^2(\Lambda - E) | |||
- \Lambda^3\cot^3(\Lambda-E) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ 1 + \eta\cot(\eta-B) \biggr] \cdot | |||
g_\mathrm{F} \biggl( \frac{2\eta^3}{\Lambda^3} \biggr) | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] | |||
\biggl[\frac{2\eta^2}{\Lambda^2} [ 1 - \Lambda \cot(\Lambda - E) ] - \frac{2\eta^2 a_0}{b_0} \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{2b_0}{\Lambda^4\eta^2} \biggl\{ | |||
g_\mathrm{F}^2 \eta^2 \biggl[ 3 - \Lambda^2 | |||
- (\Lambda + \Lambda^3)\cot(\Lambda-E) | |||
- \Lambda^2\cot^2(\Lambda - E) | |||
- \Lambda^3\cot^3(\Lambda-E) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ 1 + \eta\cot(\eta-B) \biggr] \cdot | |||
g_\mathrm{F} \Lambda \eta | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~-~ \biggl[1- \eta\cot(\eta-B) \biggr] | |||
\biggl[\Lambda^2 [ 1 - \Lambda \cot(\Lambda - E) ] - \frac{a_0\Lambda^4}{b_0} \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\biggl(\frac{\Lambda^4}{2b_0}\biggr) \cdot</math> LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
g_\mathrm{F}^2 \biggl[ 3 - \Lambda^2 | |||
- (\Lambda + \Lambda^3)\cot(\Lambda-E) | |||
- \Lambda^2\cot^2(\Lambda - E) | |||
- \Lambda^3\cot^3(\Lambda-E) | |||
\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
\frac{g_\mathrm{F} \Lambda}{ \eta } | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] | |||
~-~ \biggl(\frac{\Lambda}{\eta}\biggr)^2\biggl[ 1 - \Lambda \cot(\Lambda - E) - \frac{a_0\Lambda^2}{b_0} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \eta\cot(\eta-B) \biggr] \biggl\{ | |||
\frac{g_\mathrm{F} \Lambda }{\eta } | |||
\biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] | |||
~+~ \biggl( \frac{\Lambda}{\eta}\biggr)^2 \biggl[ 1 - \Lambda \cot(\Lambda - E) - \frac{a_0\Lambda^2}{b_0 }\biggr] \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
===Fourth Attempt=== | |||
====XXXX==== | |||
If we assume that, <math>~\alpha_e = (3 - 4/2) = 1</math> and <math>~\sigma_c^2 = 0</math>, then the relevant envelope LAWE is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} | |||
~-~ \biggl[ 2 Q \biggr] \frac{x}{\eta^2} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~Q \equiv - \frac{d \ln \phi}{ d\ln \eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[1- \eta\cot(\eta-B_0) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Let's work through the analytic derivatives again. Keeping in mind that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - B) \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ 1 + \cot^2(\eta - B)\biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and that the, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center" colspan="3"><font color="maroon"><b>Precise Solution to the Polytropic LAWE</b></font></td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b(n-1)}{2n}\biggl[1 + \biggl(\frac{n-3}{n-1}\biggr) \biggl( \frac{1}{\eta \phi^{n}}\biggr) \frac{d\phi}{d\eta}\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-b\biggl[ \biggl( \frac{1}{\eta \phi}\biggr) \frac{d\phi}{d\eta}\biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{b}{\eta^2}\biggl[ -\frac{d\ln \phi}{d\ln \eta}\biggr] </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{bQ}{\eta^2} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ x_P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B_0) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
As we have [[#First_Attempt|already tried once, above]], let's try a more general form of this expression, namely, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_Q</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
A + \frac{C}{(\eta - F)^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dx_Q}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[1 - (\eta-D) \cot(\eta-B) \biggr] \frac{d}{d\eta}\biggl[ \frac{C}{(\eta - F)^2} \biggr] | |||
- \frac{C}{(\eta - F)^2} \frac{d}{d\eta} \biggl[ (\eta-D) \cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[1 - (\eta-D) \cot(\eta-B) \biggr]\biggl[ \frac{-2C}{(\eta - F)^3} \biggr] | |||
- \frac{C}{(\eta - F)^2} \biggl[ \cot(\eta-B) \biggr] | |||
+ \frac{C(\eta - D)}{(\eta - F)^2}\biggl[1 + \cot^2(\eta - B)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^3} \biggl\{ | |||
- 2 + 2(\eta-D) \cot(\eta-B) | |||
- (\eta - F) \biggl[ \cot(\eta-B) \biggr] | |||
+ (\eta - D)(\eta - F) \biggl[1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^3} \biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
And, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2x_Q}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} \frac{d}{d\eta}\biggl[\frac{C}{(\eta-F)^3} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~+\frac{C}{(\eta-F)^3} \cdot \frac{d}{d\eta} \biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} \biggl[\frac{-3C}{(\eta-F)^4} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~+\frac{C}{(\eta-F)^3} \biggl\{ | |||
[2\eta - (D+F) ] + \cot(\eta-B) | |||
- (\eta - 2D + F) \biggl[1 + \cot^2(\eta-B) \biggr] | |||
+ [2\eta -(D+F) ] \cot^2(\eta - B) | |||
- 2[\eta^2 -\eta(D+F) + DF]\cot(\eta - B)\biggl[1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^4} \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
- 3(\eta - 2D + F) \cot(\eta-B) | |||
- 3 (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~+\frac{C}{(\eta-F)^3} \biggl\{ | |||
[2\eta - (D+F) ] | |||
- (\eta - 2D + F) | |||
+ \cot(\eta-B) | |||
- (\eta - 2D + F) \cot^2(\eta-B) | |||
+ [2\eta -(D+F) ] \cot^2(\eta - B) | |||
- 2[\eta^2 -\eta(D+F) + DF]\cot(\eta - B) | |||
- 2[\eta^2 -\eta(D+F) + DF]\cot^3(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
====YYYY==== | |||
And, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2 x_Q}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} \frac{d}{d\eta}\biggl[\frac{C}{(\eta-F)^3} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\frac{C}{(\eta-F)^3} \cdot \frac{d}{d\eta}\biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\}\biggl[\frac{-3C}{(\eta-F)^4} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\frac{C}{(\eta-F)^3} \cdot \biggl\{ | |||
\frac{d}{d\eta}\biggl[ (\eta - 2D + F) \cot(\eta-B) \biggr] | |||
+\frac{d}{d\eta}\biggl[ (\eta - D)(\eta - F) \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^4} \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
-3(\eta - 2D + F) \cot(\eta-B) | |||
-3(\eta - D)(\eta - F) \cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ | |||
(\eta-F)\frac{d}{d\eta}\biggl[ (\eta - 2D + F) \cot(\eta-B) \biggr] | |||
+(\eta-F)\frac{d}{d\eta}\biggl[ (\eta - D)(\eta - F) \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^4} \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
-3(\eta - 2D + F) \cot(\eta-B) | |||
-3(\eta - D)(\eta - F) \cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta-F) \cot(\eta-B) \frac{d}{d\eta}\biggl[ (\eta - 2D + F) \biggr] | |||
+ (\eta-F) (\eta - 2D + F) \frac{d}{d\eta}\biggl[ \cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+(\eta-F) \cot^2(\eta - B) \frac{d}{d\eta}\biggl[ \eta^2 -\eta(D+F) + DF \biggr] | |||
+(\eta-F) (\eta - D)(\eta - F) \frac{d}{d\eta}\biggl[ \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^4} \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
-3(\eta - 2D + F) \cot(\eta-B) | |||
-3(\eta - D)(\eta - F) \cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta-F) \cot(\eta-B) | |||
- (\eta-F) (\eta - 2D + F) \biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+(\eta-F) \cot^2(\eta - B) \biggl[ 2\eta - (D+F) \biggr] | |||
-2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B)\biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{C}{(\eta-F)^4} \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
- (\eta-F) (\eta - 2D + F) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ (\eta-F) | |||
-3(\eta - 2D + F) | |||
-2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\biggl[ (\eta-F) [ 2\eta - (D+F) ] | |||
-3(\eta - D)(\eta - F) | |||
-2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) | |||
- (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
So the envelope LAWE becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{(\eta-F)^4}{C} \cdot \mathrm{LAWE}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{(\eta-F)^4}{C} \cdot \frac{d^2x_Q}{d\eta^2} + \frac{(\eta-F)^4}{C} \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \cdot \frac{dx_Q}{d\eta} | |||
~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2x_Q}{\eta^2} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \biggl\{ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
- (\eta-F) (\eta - 2D + F) | |||
+ \biggl[ (\eta-F) | |||
-3(\eta - 2D + F) | |||
-2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\biggl[ (\eta-F) [ 2\eta - (D+F) ] | |||
-3(\eta - D)(\eta - F) | |||
-2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) | |||
- (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
+ (\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl\{ | |||
A + \frac{C}{(\eta - F)^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-3[(\eta - D)(\eta - F) - 2] | |||
- (\eta-F) (\eta - 2D + F) | |||
+ \biggl[ (\eta-F) | |||
-3(\eta - 2D + F) | |||
-2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ | |||
[(\eta - D)(\eta - F) - 2] | |||
+ (\eta - 2D + F) \cot(\eta-B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\biggl[ (\eta-F) [ 2\eta - (D+F) ] | |||
-3(\eta - D)(\eta - F) | |||
-2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) | |||
- (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl[ | |||
(\eta - D)(\eta - F) \cot^2(\eta - B) | |||
\biggr] | |||
~-~ (\eta-F)^2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2A}{\eta^2} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
What does this reduce to if <math>~A = D = F = 0</math>. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\eta^4}{C} \cdot \mathrm{LAWE}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-3[(\eta )(\eta ) - 2] | |||
- (\eta) (\eta ) | |||
+ \biggl[ (\eta) | |||
-3(\eta ) | |||
-2 (\eta) (\eta )(\eta )\biggr] \cot(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ | |||
[(\eta )(\eta ) - 2] | |||
+ (\eta ) \cot(\eta-B) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\biggl[ (\eta) [ 2\eta ] | |||
-3(\eta )(\eta ) | |||
-2 (\eta) (\eta )(\eta) \cot(\eta - B) | |||
- (\eta-) (\eta )\biggr] \cot^2(\eta - B) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ (\eta) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl[ | |||
(\eta )(\eta ) \cot^2(\eta - B) | |||
\biggr] | |||
~-~ (\eta)^2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl[1 - (\eta) \cot(\eta-B) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 3,593: | Line 7,178: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | ~-~ \frac{(\eta)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2A}{\eta^2} \, . | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,627: | Line 7,195: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
6 - 4\eta^2 | |||
-2 (\eta + \eta^3 ) \cot(\eta - B) | |||
- | + 2 \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \biggl[ | ||
\eta^2 - 2 + \eta \cot(\eta-B) | |||
- | \biggr] | ||
- 2\biggl[ \eta^2 + \eta^3 \cot(\eta - B) \biggr] \cot^2(\eta - B) | |||
+ | |||
- 2 | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,663: | Line 7,215: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ \biggl[ | + 2 \biggl[ 1 + \eta\cot(\eta-B_0) \biggr]\biggl[ | ||
\eta^2 \cot^2(\eta - B) | |||
\biggr] | |||
~-~2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \biggl[1 - \eta \cot(\eta-B) \biggr] | |||
~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,677: | Line 7,232: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | 6 - 4\eta^2 | ||
\ | -2 (\eta + \eta^3 ) \cot(\eta - B) | ||
- | + 2\eta^2 - 4 + 2\eta \cot(\eta-B) | ||
+ 2 \eta^3 \cot(\eta-B_0) | |||
- \ | ~-~4 \eta\cot(\eta-B_0) | ||
+ 2 \eta^2\cot(\eta-B_0) \cot(\eta-B) | |||
- 2\eta^2 \cot^2(\eta - B) | |||
- 2 \eta^3 \cot^3(\eta - B) | |||
+ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,713: | Line 7,254: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ 2 \eta^2 \cot^2(\eta - B) | |||
+ 2 \eta^3 \cot(\eta-B_0) \cot^2(\eta - B) | |||
-2 + 4 \eta\cot(\eta-B_0) - 2\eta^2\cot^2(\eta-B_0) | |||
~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,729: | Line 7,271: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | - 2\eta^2 | ||
+ \biggl[ \ | -2 \eta^3 \biggl[ \cot(\eta - B) + \cot^3(\eta - B) \biggr] | ||
+ \cot(\eta-B_0) \biggl[ 2 \eta^3 | |||
+ 2 \eta^2 \cot(\eta-B) | |||
+ 2 \eta^3 \cot^2(\eta - B) | |||
\biggr] - 2\eta^2\cot^2(\eta-B_0) | |||
~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] | |||
\frac{2A | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,784: | Line 7,291: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl(\ | - 2\eta^2 | ||
+ 2 \eta^3\biggl[ \cot(\eta-B_0) - \cot(\eta-B)\biggr] \biggl[ 1 + \cot^2(\eta - B)\biggr] | |||
- \frac{2A | + 2 \eta^2 \cot(\eta-B_0)\biggl[ \cot(\eta-B) - \cot(\eta-B_0) \biggr] | ||
~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
=Related Discussions= | =Related Discussions= |
Latest revision as of 19:31, 16 April 2019
Radial Oscillations of n = 1 Polytropic Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Groundwork
In an accompanying discussion, we derived the so-called,
Adiabatic Wave (or Radial Pulsation) Equation
<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math> |
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. Because this widely used form of the radial pulsation equation is not dimensionless but, rather, has units of inverse length-squared, we have found it useful to also recast it in the following dimensionless form:
<math>
\frac{d^2x}{d\chi_0^2} + \biggl[\frac{4}{\chi_0} - \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \biggr] \frac{dx}{d\chi_0} + \biggl(\frac{\rho_0}{\rho_c}\biggr) \biggl(\frac{P_0}{P_c}\biggr)^{-1} \biggl(\frac{1}{\gamma_\mathrm{g}} \biggr)\biggl[\tau_\mathrm{SSC}^2 \omega^2 + (4 - 3\gamma_\mathrm{g})\biggl(\frac{g_0}{g_\mathrm{SSC}}\biggr) \frac{1}{\chi_0} \biggr] x = 0 ,
</math>
where,
<math>~g_\mathrm{SSC} \equiv \frac{P_c}{R\rho_c} \, ,</math> and <math>~\tau_\mathrm{SSC} \equiv \biggl[\frac{R^2 \rho_c}{P_c}\biggr]^{1/2} \, .</math>
In a separate discussion, we showed that specifically for isolated, polytropic configurations, this linear adiabatic wave equation (LAWE) can be rewritten as,
<math>~0 </math> |
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[\frac{4 - (n+1)V(\xi)}{\xi} \biggr] \frac{dx}{d\xi} + \biggl[\frac{\omega^2}{\gamma_g \theta} \biggl(\frac{n+1 }{4\pi G \rho_c} \biggr) - \biggl(3-\frac{4}{\gamma_g}\biggr) \cdot \frac{(n+1)V(x)}{\xi^2} \biggr] x </math> |
|
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \frac{(n+1)}{\theta} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] \frac{dx}{d\xi} + \frac{(n+1)}{\theta}\biggl[\frac{\sigma_c^2}{6\gamma_g } - \frac{\alpha}{\xi} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] x \, ,</math> |
where we have adopted the dimensionless frequency notation,
<math>~\sigma_c^2</math> |
<math>~\equiv</math> |
<math>~\frac{3\omega^2}{2\pi G \rho_c} \, .</math> |
Here we focus on an analysis of the specific case of isolated, <math>~n=1</math> polytropic configurations, whose unperturbed equilibrium structure can be prescribed in terms of analytic functions. Our hope — as yet unfulfilled — is that we can discover an analytically prescribed eigenvector solution to the governing LAWE.
Search for Analytic Solutions to the LAWE
Setup
From our derived structure of an n = 1 polytrope, in terms of the configuration's radius <math>R</math> and mass <math>M</math>, the central pressure and density are, respectively,
<math>P_c = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) </math> ,
and
<math>\rho_c = \frac{\pi M}{4 R^3} </math> .
Hence the characteristic time and acceleration are, respectively,
<math>
\tau_\mathrm{SSC} = \biggl[ \frac{R^2 \rho_c}{P_c} \biggr]^{1/2} =
\biggl[ \frac{2R^3 }{GM} \biggr]^{1/2} =
\biggl[ \frac{\pi}{2 G\rho_c} \biggr]^{1/2},
</math>
and,
<math>
g_\mathrm{SSC} = \frac{P_c}{R \rho_c} = \biggl( \frac{GM}{2R^2} \biggr) .
</math>
The required functions are,
- Density:
<math>\frac{\rho_0(\chi_0)}{\rho_c} = \frac{\sin(\pi\chi_0)}{\pi\chi_0} </math> ;
- Pressure:
<math>\frac{P_0(\chi_0)}{P_c} = \biggl[ \frac{\sin(\pi\chi_0)}{\pi\chi_0} \biggr]^2 </math> ;
- Gravitational acceleration:
<math>
\frac{g_0(r_0)}{g_\mathrm{SSC}} = \frac{2}{\chi_0^2} \biggl[ \frac{M_r(\chi_0)}{M}\biggr] =
\frac{2}{\pi \chi_0^2} \biggl[ \sin (\pi\chi_0 ) - \pi\chi_0 \cos (\pi\chi_0 ) \biggr].
</math>
So our desired Eigenvalues and Eigenvectors will be solutions to the following ODE:
<math>
\frac{d^2x}{d\chi_0^2} + \frac{2}{\chi_0} \biggl[ 1 + \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \frac{dx}{d\chi_0} + \frac{1}{\gamma_\mathrm{g}} \biggl\{ \frac{\pi \chi_0}{\sin(\pi\chi_0)} \biggl[ \frac{\pi \omega^2}{2G\rho_c} \biggr] + \frac{2}{\chi_0^2 } (4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \pi\chi_0 \cot (\pi\chi_0 ) \biggr] \biggr\} x = 0 ,
</math>
or, replacing <math>\chi_0</math> with <math>\xi \equiv \pi\chi_0</math> and dividing the entire expression by <math>\pi^2</math>, we have,
<math>
\frac{d^2x}{d\xi^2} + \frac{2}{\xi} \biggl[ 1 + \xi \cot \xi \biggr] \frac{dx}{d\xi} + \frac{1}{\gamma_\mathrm{g}} \biggl\{ \frac{\xi}{\sin \xi} \biggl[ \frac{\omega^2}{2\pi G\rho_c} \biggr] + \frac{2}{\xi^2 } (4 - 3\gamma_\mathrm{g}) \biggl[ 1 - \xi \cot \xi \biggr] \biggr\} x = 0 .
</math>
This is identical to the formulation of the wave equation that is relevant to the (n = 1) core of the composite polytrope studied by J. O. Murphy & R. Fiedler (1985b); for comparison, their expression is displayed, here, in the following boxed-in image.
n = 1 Polytropic Formulation of Wave Equation as Presented by Murphy & Fiedler (1985b) |
---|
Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
| Go Home |
Attempt at Deriving an Analytic Eigenvector Solution
Multiplying the last expression through by <math>~\xi^2\sin\xi</math> gives,
<math>
(\xi^2\sin\xi ) \frac{d^2x}{d\xi^2} + 2 \biggl[ \xi \sin\xi + \xi^2 \cos \xi \biggr] \frac{dx}{d\xi} +
\biggl[ \sigma^2 \xi^3 - 2\alpha ( \sin\xi - \xi \cos \xi ) \biggr] x = 0 \, ,
</math>
where,
<math>~\sigma^2</math> |
<math>~\equiv</math> |
<math> ~\frac{\omega^2}{2\pi G\rho_c \gamma_g} \, , </math> |
<math>~\alpha</math> |
<math>~\equiv</math> |
<math> ~3-\frac{4}{\gamma_g} \, . </math> |
The first two terms can be folded together to give,
<math>~ \frac{1}{\xi^2 \sin^2\xi} \cdot \frac{d}{d\xi}\biggl[ \xi^2 \sin^2\xi \frac{dx}{d\xi} \biggr] </math> |
<math>~=</math> |
<math> ~\frac{1}{\xi^2 \sin\xi} \biggl[ 2\alpha ( \sin\xi - \xi \cos \xi ) - \sigma^2 \xi^3 \biggr] x </math> |
|
<math>~=</math> |
<math> ~- \biggl[ \frac{2\alpha}{\xi^2} \biggl( \frac{\xi \cos \xi}{\sin\xi} -1\biggr) + \sigma^2 \biggl( \frac{\xi}{\sin\xi}\biggr) \biggr] x </math> |
|
<math>~=</math> |
<math> ~- \biggl[ \frac{2\alpha}{\xi^2} \frac{\xi^2}{\sin\xi} \cdot \frac{d}{d\xi} \biggl( \frac{\sin\xi}{\xi} \biggr) + \sigma^2 \biggl( \frac{\xi}{\sin\xi}\biggr) \biggr] x </math> |
|
<math>~=</math> |
<math> ~- \biggl[ \frac{2\alpha}{\xi} \frac{d}{d\xi}\biggl( \frac{\sin\xi}{\xi} \biggr) + \sigma^2 \biggr] \biggl( \frac{\xi}{\sin\xi}\biggr) x \, , </math> |
where, in order to make this next-to-last step, we have recognized that,
<math>~ \frac{d}{d\xi} \biggl( \frac{\sin\xi}{\xi} \biggr) </math> |
<math>~=</math> |
<math> ~\frac{\sin\xi}{\xi^2} \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] \, . </math> |
It would seem that the eigenfunction, <math>~x(\xi)</math>, should be expressible in terms of trigonometric functions and powers of <math>~\xi</math>; indeed, it appears as though the expression governing this eigenfunction would simplify considerably if <math>~x \propto \sin\xi/\xi</math>. With this in mind, we have made some attempts to guess the exact form of the eigenfunction. Here is one such attempt.
First Guess (n1)
Let's try,
<math>~x = \frac{\sin\xi}{\xi} \, ,</math>
which means,
<math>~x^' \equiv \frac{dx}{d\xi}</math> |
<math>~=</math> |
<math> ~\frac{\sin\xi}{\xi^2} \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] \, . </math> |
Does this satisfy the governing expression? Let's see. The right-and-side (RHS) gives:
RHS |
<math>~=</math> |
<math> ~- \biggl[ \frac{2\alpha}{\xi} \frac{d}{d\xi}\biggl( \frac{\sin\xi}{\xi} \biggr) + \sigma^2 \biggr] \biggl( \frac{\xi}{\sin\xi}\biggr) x = - \biggl[ \frac{2\alpha x^'}{\xi} + \sigma^2 \biggr] \, . </math> |
At the same time, the left-hand-side (LHS) may, quite generically, be written as:
LHS |
<math>~=</math> |
<math>~ \frac{x^'}{\xi} \biggl\{ \frac{\xi}{(\xi^2 \sin^2\xi)x^'} \cdot \frac{d[ (\xi^2 \sin^2\xi)x^']}{d\xi} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{x^'}{\xi} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} \biggr] \, . </math> |
Putting the two sides together therefore gives,
<math>~ \frac{x^'}{\xi} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} +2\alpha \biggr] </math> |
<math>~=</math> |
<math> ~-\sigma^2 </math> |
<math>~ \Rightarrow ~~~~~ \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']^{1/(2\alpha)}}{d\ln\xi} +1 \biggr] </math> |
<math>~=</math> |
<math> ~- \frac{\sigma^2}{2\alpha } \biggl( \frac{\xi}{x^'} \biggr) </math> |
<math>~ \Rightarrow ~~~~~ \frac{d\ln[ (\xi^2 \sin^2\xi)x^']^{-1/(2\alpha)}}{d\ln\xi} </math> |
<math>~=</math> |
<math> ~1 + \frac{\sigma^2}{2\alpha } \biggl( \frac{\xi}{x^'} \biggr) \, . </math> |
[Comment from J. E. Tohline on 6 April 2015: I'm not sure what else to make of this.]
Second Guess (n1)
Adopting the generic rewriting of the LHS, and leaving the RHS fully generic as well, we have,
<math>~ \frac{x^'}{\xi} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} \biggr] </math> |
<math>~=</math> |
<math> ~- \biggl[ \frac{2\alpha}{\xi} \frac{d}{d\xi}\biggl( \frac{\sin\xi}{\xi} \biggr) + \sigma^2 \biggr] \biggl( \frac{\xi}{\sin\xi}\biggr) x </math> |
<math>~\Rightarrow ~~~~~ \frac{x^'}{x} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} \biggr] </math> |
<math>~=</math> |
<math> ~- 2\alpha\biggl( \frac{\xi}{\sin\xi}\biggr) \frac{d}{d\xi}\biggl( \frac{\sin\xi}{\xi} \biggr) ~- \sigma^2\biggl( \frac{\xi^2}{\sin\xi}\biggr) </math> |
<math>~\Rightarrow ~~~~~ \frac{d\ln(x)}{d\ln \xi} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} \biggr] </math> |
<math>~=</math> |
<math> ~- 2\alpha\biggl[ \frac{d\ln(\sin\xi/\xi)}{d\ln \xi} \biggr] ~- \sigma^2\biggl( \frac{\xi^3}{\sin\xi}\biggr) \, . </math> |
<math> ~\Rightarrow ~~~~ - \sigma^2 </math> |
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi^3}\biggr) \biggl\{\frac{d\ln(x)}{d\ln \xi} \biggl[\frac{d\ln[ (\xi^2 \sin^2\xi)x^']}{d\ln\xi} \biggr] + 2\alpha\biggl[ \frac{d\ln(\sin\xi/\xi)}{d\ln \xi} \biggr] \biggr\} \, . </math> |
[Comment from J. E. Tohline on 6 April 2015: I'm not sure what else to make of this.]
Third Guess (n1)
Let's rewrite the polytropic (n = 1) wave equation as follows:
<math> ~\sin\xi \biggl[ \xi^2 x^{} + 2\xi x^' - 2\alpha x \biggr] + \cos\xi \biggl[ 2\xi^2 x^' + 2\alpha \xi x \biggr] +\sigma^2 \xi^3 x = 0 \, . </math>
It is difficult to determine what term in the adiabatic wave equation will cancel the term involving <math>~\sigma^2</math> because its leading coefficient is <math>~\xi^3</math> and no other term contains a power of <math>~\xi</math> that is higher than two. After thinking through various trial eigenvector expressions, <math>~x(\xi)</math>, I have determined that a function of the following form has a chance of working because the second derivative of the function generates a leading factor of <math>~\xi^3</math> while the function itself does not introduce any additional factors of <math>~\xi</math> into the term that contains <math>~\sigma^2</math>:
<math>~x</math> |
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] [ A\sin\xi + B\cos\xi] </math> |
<math>~\Rightarrow ~~~ x^'</math> |
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] \cdot \frac{d[ A\sin\xi + B\cos\xi]}{d\xi} </math> |
|
|
<math> ~+ \frac{d[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})]}{d\xi} \cdot [ A\sin\xi + B\cos\xi] </math> |
|
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] \cdot \frac{d[ A\sin\xi + B\cos\xi]}{d\xi} </math> |
|
|
<math> ~+ [ A\sin\xi + B\cos\xi] \biggl\{5a \xi^{3/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) + b\biggl[ \frac{5}{2} \xi^{3/2}\cos^2(\xi^{5/2}) - \frac{5}{2} \xi^{3/2}\sin^2(\xi^{5/2}) \biggr] - 5c \xi^{3/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) \biggr\} </math> |
|
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] \cdot \frac{d[ A\sin\xi + B\cos\xi]}{d\xi} </math> |
|
|
<math> ~+ [ A\sin\xi + B\cos\xi] \biggl\{5(a-c) \xi^{3/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) + \frac{5b}{2} \xi^{3/2}\biggl[ 1 - 2\sin^2(\xi^{5/2}) \biggr] \biggr\} </math> |
<math>~\Rightarrow ~~~ x^{}</math> |
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] \cdot \frac{d^2[ A\sin\xi + B\cos\xi]}{d^2\xi} </math> |
|
|
<math>~+ \biggl\{5(a-c) \xi^{3/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) + \frac{5b}{2} \xi^{3/2}\biggl[ 1 - 2\sin^2(\xi^{5/2}) \biggr] \biggr\} \cdot \frac{d[ A\sin\xi + B\cos\xi]}{d\xi} </math> |
|
|
<math> ~+ [ A\sin\xi + B\cos\xi] \biggl\{ \frac{15}{2}(a-c) \xi^{1/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) +\frac{25}{2}(a-c) \xi^{3} \cos^2(\xi^{5/2}) - \frac{25}{2}(a-c) \xi^{3} \sin^2(\xi^{5/2}) </math> |
|
|
<math> + \frac{15b}{4} \xi^{1/2}\biggl[ 1 - 2\sin^2(\xi^{5/2}) \biggr] - 25b \xi^{3}\sin(\xi^{5/2}) \cos(\xi^{5/2}) \biggr\} </math> |
|
<math>~=</math> |
<math> ~[a\sin^2(\xi^{5/2}) + b\sin(\xi^{5/2})\cos(\xi^{5/2}) + c\cos^2(\xi^{5/2})] \cdot \frac{d^2[ A\sin\xi + B\cos\xi]}{d^2\xi} </math> |
|
|
<math>~+ \biggl\{5(a-c) \xi^{3/2} \sin(\xi^{5/2}) \cos(\xi^{5/2}) + \frac{5b}{2} \xi^{3/2}\biggl[ 1 - 2\sin^2(\xi^{5/2}) \biggr] \biggr\} \cdot \frac{d[ A\sin\xi + B\cos\xi]}{d\xi} </math> |
|
|
<math> ~+ [ A\sin\xi + B\cos\xi] \biggl\{ \frac{15}{4}\xi^{1/2} \biggl[ 2(a-c) \sin(\xi^{5/2}) \cos(\xi^{5/2}) + b\biggl( 1 - 2\sin^2(\xi^{5/2}) \biggr) \biggr] </math> |
|
|
<math>~+ \frac{25}{2} \xi^3 \biggl[ - 2b \sin(\xi^{5/2}) \cos(\xi^{5/2}) +(a-c) \biggl( 1- 2\sin^2(\xi^{5/2}) \biggr) \biggr] \biggr\} </math> |
[Comment from J. E. Tohline on 9 April 2015: I'm not sure what else to make of this.]
[Additional comment from J. E. Tohline on 15 April 2015: It is perhaps worth mentioning that there is a similarity between the argument of the trigonometric function being used in this "third guess" and the Lane-Emden function derived by Srivastava for <math>~n=5</math> polytropes; and also a similarity between Srivastava's function and the functional form of the LHS that we constructed, above, in connection with our "second guess."]
Fourth Guess (n1)
Again, working with the polytropic (n = 1) wave equation written in the following form,
<math> ~\sin\xi \biggl[ \xi^2 x^{} + 2\xi x^' - 2\alpha x \biggr] + \cos\xi \biggl[ 2\xi^2 x^' + 2\alpha \xi x \biggr] +\sigma^2 \xi^3 x = 0 \, . </math>
Now, let's try:
<math>~x = a_0 + b_1 \xi \sin\xi + c_2 \xi^2 \cos\xi \, ,</math>
which means,
<math>~x^' </math> |
<math>~=</math> |
<math> ~b_1 \sin\xi + b_1 \xi \cos\xi + 2c_2 \xi \cos\xi - c_2\xi^2 \sin\xi </math> |
|
<math>~=</math> |
<math> ~(b_1 - c_2\xi^2 ) \sin\xi + (b_1 + 2c_2)\xi \cos\xi \, , </math> |
<math>~x^{} </math> |
<math>~=</math> |
<math> ~(- 2c_2\xi ) \sin\xi + (b_1 - c_2\xi^2 ) \cos\xi + (b_1 + 2c_2 )\cos\xi - (b_1 + 2c_2 )\xi \sin\xi </math> |
|
<math>~=</math> |
<math> ~-(2c_2+b_1 + 2c_2 ) \xi \sin\xi + (2b_1 + 2c_2 - c_2\xi^2 ) \cos\xi \, . </math> |
The LHS of the wave equation then becomes,
LHS |
<math>~=</math> |
<math> ~\sin\xi \biggl\{ \xi^2 \biggl[ -(2c_2+b_1 + 2c_2 ) \xi \sin\xi + (2b_1 + 2c_2 - c_2\xi^2 ) \cos\xi \biggr] + 2\xi \biggl[ (b_1 - c_2\xi^2 ) \sin\xi + (b_1 + 2c_2)\xi \cos\xi \biggr] - 2\alpha \biggl[ a_0 + (b_1 \xi) \sin\xi + (c_2 \xi^2) \cos\xi \biggr] \biggr\} </math> |
|
|
<math> + \cos\xi \biggl\{ 2\xi^2 \biggl[ (b_1 - c_2\xi^2 ) \sin\xi + (b_1 + 2c_2)\xi \cos\xi \biggr] + 2\alpha \xi \biggl[ a_0 + (b_1 \xi) \sin\xi + (c_2 \xi^2) \cos\xi \biggr] \biggr\} +\sigma^2 \xi^3 \biggl[ a_0 + b_1 \xi \sin\xi + c_2 \xi^2 \cos\xi \biggr] </math> |
|
<math>~=</math> |
<math> ~\sin\xi \biggl\{ \biggl[ -(2c_2+b_1 + 2c_2 ) \xi^3 \sin\xi + (2b_1 + 2c_2 - c_2\xi^2 ) \xi^2\cos\xi \biggr] + \biggl[ 2(b_1 - c_2\xi^2 )\xi \sin\xi + 2(b_1 + 2c_2)\xi^2 \cos\xi \biggr] - 2\alpha \biggl[ a_0 + (b_1 \xi) \sin\xi + (c_2 \xi^2) \cos\xi \biggr] \biggr\} </math> |
|
|
<math> + \cos\xi \biggl\{ \biggl[ 2(b_1 - c_2\xi^2 )\xi^2 \sin\xi + 2(b_1 + 2c_2)\xi^3 \cos\xi \biggr] + \biggl[ 2a_0\alpha \xi + 2b_1\alpha \xi^2 \sin\xi + 2c_2 \alpha \xi^3 \cos\xi \biggr] \biggr\} +\sigma^2 \biggl[ a_0\xi^3 + b_1 \xi^4 \sin\xi + c_2 \xi^5 \cos\xi \biggr] </math> |
|
<math>~=</math> |
<math> ~\sin\xi \biggl\{- 2\alpha a_0 + \biggl[ -(2c_2+b_1 + 2c_2 ) \xi^3 + 2(b_1 - c_2\xi^2 )\xi - 2\alpha (b_1 \xi) \biggr]\sin\xi + \biggl[ (2b_1 + 2c_2 - c_2\xi^2 ) \xi^2 + 2(b_1 + 2c_2)\xi^2 - 2\alpha (c_2 \xi^2) \biggr] \cos\xi \biggr\} </math> |
|
|
<math> + \cos\xi \biggl\{ + 2a_0\alpha \xi + \biggl[ 2(b_1 - c_2\xi^2 )\xi^2 + 2b_1\alpha \xi^2 \biggr] \sin\xi + \biggl[ 2(b_1 + 2c_2)\xi^3 + 2c_2 \alpha \xi^3\biggr] \cos\xi \biggr\} +\sigma^2 \biggl[ a_0\xi^3 + b_1 \xi^4 \sin\xi + c_2 \xi^5 \cos\xi \biggr] </math> |
|
<math>~=</math> |
<math> ~\sigma^2 a_0 \xi^3 + \biggl[ -(2c_2+b_1 + 2c_2 ) \xi^3 + 2(b_1 - c_2\xi^2 )\xi - 2\alpha (b_1 \xi) \biggr]\sin^2\xi + \biggl[ 2(b_1 + 2c_2)\xi^3 + 2c_2 \alpha \xi^3\biggr] \biggl(1-\sin^2\xi \biggr) </math> |
|
|
<math> + \biggl[ (2b_1 + 2c_2 - c_2\xi^2 ) \xi^2 + 2(b_1 + 2c_2)\xi^2 - 2\alpha (c_2 \xi^2) \biggr] \sin\xi \cos\xi + \biggl[ 2(b_1 - c_2\xi^2 )\xi^2 + 2b_1\alpha \xi^2 \biggr] \sin\xi \cos\xi </math> |
|
|
<math> +\sigma^2 \biggl[ b_1 \xi^4 \sin\xi + c_2 \xi^5 \cos\xi \biggr] + 2a_0\alpha \xi\cos\xi - 2\alpha a_0 \sin\xi </math> |
|
<math>~=</math> |
<math> ~\biggl[ \sigma^2 a_0 + 2(b_1 + 2c_2) + 2c_2 \alpha \biggr]\xi^3 + \biggl\{+ 2(b_1 )\xi - 2\alpha (b_1 \xi) +[-2c_2 - 2(b_1 + 2c_2) - 2c_2 \alpha -(2c_2+b_1 + 2c_2 )] \xi^3 \biggr\} \sin^2\xi </math> |
|
|
<math> + \biggl\{ [ (2b_1 + 2c_2 ) + 2(b_1 + 2c_2) - 2\alpha (c_2 ) + 2(b_1 ) + 2b_1\alpha ] \xi^2 -3c_2\xi^4 \biggr\} \sin\xi \cos\xi </math> |
|
|
<math>~+ \sin\xi \biggl[\sigma^2b_1 \xi^4 - 2\alpha a_0 \biggr] + \xi \cos\xi \biggl[\sigma^2 c_2 \xi^4 + 2a_0\alpha \biggr] </math> |
|
<math>~=</math> |
<math> ~[ \sigma^2 a_0 + 2(b_1 + 2c_2) + 2c_2 \alpha ]\xi^3 + \biggl\{2 b_1(1-\alpha) - [2c_2(5+\alpha) + 3b_1] \xi^2 \biggr\} \xi \sin^2\xi </math> |
|
|
<math> + \biggl\{ 2(3-\alpha)( b_1+c_2 ) -3c_2\xi^2 \biggr\} \xi^2 \sin\xi \cos\xi +\sin\xi \biggl[\sigma^2b_1 \xi^4 - 2\alpha a_0 \biggr] + \xi \cos\xi \biggl[\sigma^2 c_2 \xi^4 + 2a_0\alpha \biggr] \, . </math> |
Fifth Guess (n1)
Along a similar line of reasoning, let's try a function of the form,
<math>~x</math> |
<math>~=</math> |
<math> ~x_s \sin\xi + x_c \cos\xi + x_1 \sin^2\xi + x_2 \cos^2\xi + x_3 \sin\xi \cos\xi\, , </math> |
where <math>~x_s, x_c, x_1, x_2,</math> and <math>~x_3</math> are five separate, as yet, unspecified (polynomial?) functions of <math>~\xi</math>. This also means that,
<math>~x^'</math> |
<math>~=</math> |
<math> ~(x_s^' - x_c)\sin\xi + (x_c^' + x_s)\cos\xi + (x_1^' - x_3)\sin^2\xi + (x_2^' + x_3)\cos^2\xi + (x_3^' + 2x_1 -2x_2)\sin\xi \cos\xi \, ; </math> |
and,
<math>~x^{}</math> |
<math>~=</math> |
<math> ~(x_s^{} - 2x_c^{'} - x_s)\sin\xi + (x_c^{} + 2x_s^' -x_c)\cos\xi + (x_1^{} -2x_3^' -2x_1 + 2x_2)\sin^2\xi + (x_2^{} + 2x_3^'+ 2x_1 - 2x_2)\cos^2\xi + (x_3^{} + 4x_1^' -4x_2^' - 4x_3)\sin\xi \cos\xi \, . </math> |
Hence the LHS of the polytropic (n = 1) wave equation becomes,
LHS |
<math>~=</math> |
<math> ~~\sin\xi \biggl\{ \xi^2 \biggl[~(x_s^{} - 2x_c^{'} - x_s)\sin\xi + (x_c^{} + 2x_s^' -x_c)\cos\xi + (x_1^{} -2x_3^' -2x_1 + 2x_2)\sin^2\xi + (x_2^{} + 2x_3^'+ 2x_1 - 2x_2)\cos^2\xi + (x_3^{} + 4x_1^' -4x_2^' - 4x_3)\sin\xi \cos\xi \biggr] </math> |
|
|
<math> + 2\xi \biggl[~(x_s^' - x_c)\sin\xi + (x_c^' + x_s)\cos\xi + (x_1^' - x_3)\sin^2\xi + (x_2^' + x_3)\cos^2\xi + (x_3^' + 2x_1 -2x_2)\sin\xi \cos\xi \biggr] </math> |
|
|
<math> - 2\alpha \biggl[ x_s \sin\xi + x_c \cos\xi + x_1 \sin^2\xi + x_2 \cos^2\xi + x_3 \sin\xi \cos\xi\biggr] \biggr\} </math> |
|
|
<math> + \cos\xi \biggl\{ 2\xi^2 \biggl[~(x_s^' - x_c)\sin\xi + (x_c^' + x_s)\cos\xi + (x_1^' - x_3)\sin^2\xi + (x_2^' + x_3)\cos^2\xi + (x_3^' + 2x_1 -2x_2)\sin\xi \cos\xi \biggr] </math> |
|
|
<math> + 2\alpha \xi \biggl[ x_s \sin\xi + x_c \cos\xi + x_1 \sin^2\xi + x_2 \cos^2\xi + x_3 \sin\xi \cos\xi\biggr] \biggr\} </math> |
|
|
<math> +\sigma^2 \xi^3 \biggl\{ x_s \sin\xi + x_c \cos\xi + x_1 \sin^2\xi + x_2 \cos^2\xi + x_3 \sin\xi \cos\xi \biggr\} </math> |
|
<math>~=</math> |
<math> ~\biggl[(x_s^{} - 2x_c^{'} - x_s)\xi^2 + 2\xi (x_s^' - x_c) -2\alpha x_s + \sigma^2 \xi^3 x_1 \biggr]\sin^2\xi + \biggl[(x_c^{} + 2x_s^' -x_c)\xi^2 + 2\xi (x_c^' + x_s) - 2\alpha x_c + 2\xi^2 (x_s^' - x_c) + 2\alpha \xi x_s + \sigma^2 \xi^3 x_3 \biggr] \sin\xi \cos\xi </math> |
|
|
<math> +\biggl[ (x_1^{} -2x_3^' -2x_1 + 2x_2)\xi^2 + 2\xi (x_1^' - x_3) - 2\alpha x_1 \biggr] \sin^3\xi + \biggl[(x_2^{} + 2x_3^'+ 2x_1 - 2x_2)\xi^2 + 2\xi (x_2^' + x_3) - 2\alpha x_2 + 2\xi^2 (x_3^' + 2x_1 -2x_2)+ 2\alpha \xi x_3 \biggr]\sin\xi \cos^2\xi </math> |
|
|
<math> + \biggl[(x_3^{} + 4x_1^' -4x_2^' - 4x_3)\xi^2 + 2\xi (x_3^' + 2x_1 -2x_2) - 2\alpha x_3 + 2\xi^2 (x_1^' - x_3) + 2\alpha \xi x_1 \biggr] \sin^2\xi \cos\xi </math> |
|
|
<math> + \biggl[2\xi^2 (x_c^' + x_s ) + 2\alpha \xi x_c + \sigma^2 \xi^3 x_2 \biggr]\cos^2\xi + \biggl[2\xi^2 (x_2^' + x_3)+ 2\alpha \xi x_2 \biggr]\cos^3\xi + \sigma^2 \xi^3 x_s \sin\xi + \sigma^2 \xi^3 x_c \cos\xi </math> |
|
<math>~=</math> |
<math> ~\biggl[(x_s^{} - 2x_c^{'} - x_s)\xi^2 + 2\xi (x_s^' - x_c) -2\alpha x_s + \sigma^2 \xi^3 x_1 \biggr]\sin^2\xi + \biggl[(x_c^{} + 2x_s^' -x_c)\xi^2 + 2\xi (x_c^' + x_s) - 2\alpha x_c + 2\xi^2 (x_s^' - x_c) + 2\alpha \xi x_s + \sigma^2 \xi^3 x_3 \biggr] \sin\xi \cos\xi </math> |
|
|
<math> +\biggl[ (x_1^{} -2x_3^' -2x_1 + 2x_2)\xi^2 + 2\xi (x_1^' - x_3) - 2\alpha x_1 + \sigma^2 \xi^3 x_s \biggr] \sin\xi </math> |
|
|
<math> + \biggl[(x_2^{} + 2x_3^'+ 2x_1 - 2x_2)\xi^2 + 2\xi (x_2^' + x_3) - 2\alpha x_2 + 2\xi^2 (x_3^' + 2x_1 -2x_2)+ 2\alpha \xi x_3 - (x_1^{} -2x_3^' -2x_1 + 2x_2)\xi^2 - 2\xi (x_1^' - x_3) + 2\alpha x_1 \biggr]\sin\xi \cos^2\xi </math> |
|
|
<math> + \biggl[(x_3^{} + 4x_1^' -4x_2^' - 4x_3)\xi^2 + 2\xi (x_3^' + 2x_1 -2x_2) - 2\alpha x_3 + 2\xi^2 (x_1^' - x_3) + 2\alpha \xi x_1 -2\xi^2 (x_2^' + x_3) - 2\alpha \xi x_2 \biggr] \sin^2\xi \cos\xi </math> |
|
|
<math> + \biggl[2\xi^2 (x_c^' + x_s ) + 2\alpha \xi x_c + \sigma^2 \xi^3 x_2 \biggr]\cos^2\xi + \biggl[2\xi^2 (x_2^' + x_3)+ 2\alpha \xi x_2 + \sigma^2 \xi^3 x_c \biggr]\cos\xi </math> |
So, the five chosen (polynomial?) functions of <math>~\xi</math> must simultabeously satisfy the following, seven 2nd-order ODEs:
<math>~\sin\xi </math> |
: |
<math>~(x_1^{} -2x_3^' -2x_1 + 2x_2)\xi^2 + 2\xi (x_1^' - x_3) - 2\alpha x_1 + \sigma^2 \xi^3 x_s =0</math> |
<math>~\sin^2 \xi</math> |
: |
<math>~(x_s^{} - 2x_c^{'} - x_s)\xi^2 + 2\xi (x_s^' - x_c) -2\alpha x_s + \sigma^2 \xi^3 x_1 =0</math> |
<math>~\sin^2\xi \cos\xi</math> |
: |
<math>~(x_3^{} + 4x_1^' -4x_2^' - 4x_3)\xi^2 + 2\xi (x_3^' + 2x_1 -2x_2) - 2\alpha x_3 + 2\xi^2 (x_1^' - x_3) + 2\alpha \xi x_1 -2\xi^2 (x_2^' + x_3) - 2\alpha \xi x_2 =0</math> |
<math>~\sin\xi \cos\xi</math> |
: |
<math>~(x_c^{} + 2x_s^' -x_c)\xi^2 + 2\xi (x_c^' + x_s) - 2\alpha x_c + 2\xi^2 (x_s^' - x_c) + 2\alpha \xi x_s + \sigma^2 \xi^3 x_3 =0</math> |
<math>~\sin\xi \cos^2\xi</math> |
: |
<math>~(x_2^{} + 2x_3^'+ 2x_1 - 2x_2)\xi^2 + 2\xi (x_2^' + x_3) - 2\alpha x_2 + 2\xi^2 (x_3^' + 2x_1 -2x_2)+ 2\alpha \xi x_3 - (x_1^{} -2x_3^' -2x_1 + 2x_2)\xi^2 - 2\xi (x_1^' - x_3) + 2\alpha x_1 =0</math> |
<math>~\cos^2\xi</math> |
: |
<math>~2\xi^2 (x_c^' + x_s ) + 2\alpha \xi x_c + \sigma^2 \xi^3 x_2 =0</math> |
<math>~\cos\xi</math> |
: |
<math>~2\xi^2 (x_2^' + x_3)+ 2\alpha \xi x_2 + \sigma^2 \xi^3 x_c =0</math> |
Example 1
Let's work on the coefficient of the <math>~\cos\xi</math> term:
<math>~x_c</math> |
<math>~=</math> |
<math>~\xi^\beta (A_c)</math> |
<math>~x_2</math> |
<math>~=</math> |
<math>~\xi^\beta (C_2 \xi^2)</math> |
<math>~x_3</math> |
<math>~=</math> |
<math>~\xi^\beta (B_3 \xi)</math> |
<math>~\Rightarrow~</math> Coefficient of "<math>~\cos\xi</math>" term |
<math>~=</math> |
<math>~\xi^\beta [2\xi^2 (2C_2\xi + (B_3 \xi))+ 2\alpha \xi (C_2 \xi^2) + \sigma^2 \xi^3 (A_c)]</math> |
|
<math>~=</math> |
<math>~\xi^{\beta+3} [2(2C_2 + B_3 )+ 2\alpha C_2 + \sigma^2 (A_c)]</math> |
<math>~\Rightarrow ~~~~ \sigma^2</math> |
<math>~=</math> |
<math>~- \frac{2}{A_c} \biggl[B_3 + (2+\alpha) C_2 \biggr]</math> |
Sixth Guess (n1)
Rationale
From our review of the properties of <math>~n=1</math> polytropic spheres, we know that the equilibrium density distribution is given by the sinc function, namely,
<math>~\frac{\rho}{\rho_c}</math> |
<math>~=</math> |
<math>~\frac{\sin\xi}{\xi} \, ,</math> |
where,
<math>~\xi \equiv \pi \biggl(\frac{r_0}{R_0} \biggr) \, .</math>
The total mass is,
<math>~M_\mathrm{tot} = \frac{4}{\pi} \cdot \rho_c R_0^3 \, ,</math>
and the fractional mass enclosed within a given radius, <math>~r</math>, is,
<math>~\frac{M_r(\xi)}{M_\mathrm{tot}}</math> |
<math>~=</math> |
<math>~\frac{1}{\pi} [\sin\xi - \xi \cos\xi] \, .</math> |
Let's guess that, during the fundamental mode of radial oscillation, the sinc-function profile is preserved as the system's total radius varies. In particular, we will assume that the system's time-varying radius is,
<math>R = R_0 \biggl( 1 + \frac{\delta R}{R_0} \biggr) = R_0 ( 1 + \epsilon_R) \, ,</math>
and seek to determine how the displacement vector, <math>~\epsilon \equiv \delta r/r_0</math>, varies with <math>~r_0</math> in order to preserve the overall sinc-function profile. As is usual, we will only examine small perturbations away from equilibrium, that is, we will assume that everywhere throughout the configuration, <math>~|\epsilon| \ll 1 </math>.
Let's begin by defining a new dimensionless coordinate,
<math>~\eta \equiv \pi \biggl(\frac{r}{R} \biggr) = \pi \biggl[\frac{r_0(1+\epsilon)}{R_0(1+\epsilon_R)} \biggr] \approx \xi (1 + \epsilon) \, ,</math>
and recognize that, in the new perturbed state, the fractional mass enclosed within a given radius, <math>~r</math>, is,
<math>~\frac{M_r(\eta)}{M_\mathrm{tot}}</math> |
<math>~=</math> |
<math>~\frac{1}{\pi} [\sin\eta - \eta \cos\eta] \, .</math> |
In order to associate each mass shell in the perturbed configuration with its corresponding mass shell in the unperturbed, equilibrium state, we need to set the two <math>~M_r</math> functions equal to one another, that is, demand that,
<math>~\sin\xi - \xi \cos\xi</math> |
<math>~=</math> |
<math>~\sin\eta - \eta \cos\eta</math> |
|
<math>~\approx</math> |
<math>~\sin[\xi(1+\epsilon)] - \xi(1+\epsilon) \cos[\xi(1+\epsilon)]</math> |
|
<math>~=</math> |
<math>~\biggl[ \sin\xi \cos(\xi\epsilon) + \cos\xi \sin (\xi\epsilon) \biggr] - \xi(1+\epsilon) \biggl[ \cos\xi \cos(\xi\epsilon) - \sin\xi \sin (\xi\epsilon) \biggr]</math> |
|
<math>~\approx</math> |
<math>~\sin\xi \biggl[1 - \frac{1}{2}(\xi\epsilon)^2 \biggr] + (\xi\epsilon)\cos\xi - \xi(1+\epsilon) \cos\xi \biggl[1 - \frac{1}{2}(\xi\epsilon)^2 \biggr] + \xi^2 \epsilon(1+\epsilon) \sin\xi </math> |
|
<math>~\approx</math> |
<math> ~\sin\xi -\xi\cos\xi - \frac{1}{2}(\xi\epsilon)^2 \sin\xi + (\xi\epsilon)\cos\xi - (\xi \epsilon) \cos\xi + \frac{1}{2} \xi^3 \epsilon^2\cos\xi + \xi^2 \epsilon \sin\xi + (\xi \epsilon)^2\sin\xi </math> |
<math>~\Rightarrow~~~~- \xi^2 \epsilon \sin\xi </math> |
<math>~\approx</math> |
<math>~ \frac{(\xi \epsilon)^2}{2} \biggl[\xi \cos\xi+ \sin\xi \biggr] </math> |
<math>~\Rightarrow~~~~\frac{1}{\epsilon}</math> |
<math>~\approx</math> |
<math>~- \frac{1}{2} \biggl[\xi \cdot \frac{\cos\xi}{\sin\xi} + 1 \biggr] </math> |
<math>~\Rightarrow~~~~\epsilon</math> |
<math>~\approx</math> |
<math>~- 2\biggl[1 + \xi \cdot \frac{\cos\xi}{\sin\xi} \biggr]^{-1} = - 2\sin\xi \biggl[\sin\xi + \xi \cos\xi \biggr]^{-1} \, . </math> |
Resulting Polytropic Wave Equation
So, let's try,
<math>~x</math> |
<math>~=</math> |
<math>~ 2\sin\xi \biggl[\sin\xi + \xi \cos\xi \biggr]^{-1} </math> |
|
<math>~=</math> |
<math>~ \biggl[\sin\xi + \xi \cos\xi \biggr]^{-3} 2\sin\xi \biggl[\sin^2\xi + 2\xi \sin\xi \cos\xi + \xi^2 \cos^2\xi \biggr] \, , </math> |
in which case,
<math>~x^'</math> |
<math>~=</math> |
<math>~ 2\cos\xi \biggl[\sin\xi + \xi \cos\xi \biggr]^{-1} -2\sin\xi \biggl[\sin\xi + \xi \cos\xi \biggr]^{-2}\biggl[2\cos\xi - \xi \sin\xi \biggr] </math> |
|
<math>~=</math> |
<math>~\biggl[\sin\xi + \xi \cos\xi \biggr]^{-2}\biggl\{ 2\cos\xi \biggl[\sin\xi + \xi \cos\xi \biggr] -2\sin\xi \biggl[2\cos\xi - \xi \sin\xi \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\biggl[\sin\xi + \xi \cos\xi \biggr]^{-2}\biggl[ 2\cos\xi \sin\xi + 2\xi \cos^2\xi -4\sin\xi \cos\xi + 2\xi \sin^2\xi \biggr] </math> |
|
<math>~=</math> |
<math>~ 2\biggl[\sin\xi + \xi \cos\xi \biggr]^{-2}\biggl[\xi-\sin\xi \cos\xi \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[\sin\xi + \xi \cos\xi \biggr]^{-3} 2 \biggl[\xi \sin\xi + \xi^2 \cos\xi -\sin^2\xi \cos\xi - \xi \sin\xi \cos^2\xi \biggr] \, , </math> |
and,
<math>~x^{}</math> |
<math>~=</math> |
<math>~2 \biggl[\sin\xi + \xi \cos\xi \biggr]^{-2}\biggl[1-\cos^2\xi + \sin^2\xi \biggr] - 4\biggl[\sin\xi + \xi \cos\xi \biggr]^{-3}\biggl[\xi-\sin\xi \cos\xi \biggr]\biggl[2\cos\xi - \xi\sin\xi \biggr] </math> |
|
<math>~=</math> |
<math>~4 \biggl[\sin\xi + \xi \cos\xi \biggr]^{-3}\biggl\{ \sin^2\xi \biggl[\sin\xi + \xi \cos\xi \biggr] - \biggl[\xi-\sin\xi \cos\xi \biggr]\biggl[2\cos\xi - \xi\sin\xi \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~4 \biggl[\sin\xi + \xi \cos\xi \biggr]^{-3}\biggl[ \sin^3\xi + \xi \sin\xi \cos\xi + \xi^2 \sin\xi -2\xi \cos\xi - \xi\sin^2\xi \cos\xi + 2\sin\xi \cos^2\xi \biggr] </math> |
Graphical Reassessment
Before plowing ahead and plugging these expressions into the polytropic wave equation, I plotted the trial eigenfunction, <math>~\epsilon(\xi/\pi)</math> (see the blue curve in the accompanying "Trial Eigenfunction" figure), and noticed that it passes through <math>~\pm \infty</math> midway through the configuration. This is a very unphysical behavior. On the other hand, the inverse of this function (see the red curve) exhibits a relatively desirable behavior because it increases monotonically from negative one at the center. As plotted, however, the function has one node. In searching for the eigenfunction of the fundamental mode of oscillation, it might be better to add "1" to the inverse of the function and thereby get rid of all nodes. (Keep in mind, however, that the red curve might be displaying the eigenfunction associated with the first overtone.)
Let's therefore try,
<math>~x = 1 + \frac{1}{\epsilon} = 1 - \frac{1}{2} \biggl[\xi \cdot \frac{\cos\xi}{\sin\xi} + 1 \biggr] = \frac{1}{2} \biggl[1- \xi \cdot \frac{\cos\xi}{\sin\xi} \biggr] \, .</math>
In this case we have,
<math>~x^'</math> |
<math>~=</math> |
<math>~ \frac{1}{2}\biggl[\xi - \frac{\cos\xi}{\sin\xi} + \xi \cdot \frac{\cos^2\xi}{\sin^2\xi} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{1}{2\sin^2\xi}\biggl[\xi \sin^2\xi - \sin\xi \cos\xi + \xi \cos^2\xi \biggr] \, , </math> |
|
<math>~=</math> |
<math>~ \frac{1}{2\sin^2\xi}\biggl[\xi - \sin\xi \cos\xi \biggr] \, , </math> |
and,
<math>~x^{}</math> |
<math>~=</math> |
<math>~ - \frac{\cos\xi}{\sin^3\xi}\biggl[\xi - \sin\xi \cos\xi \biggr] + \frac{1}{2\sin^2\xi}\biggl[1 - \cos^2\xi + \sin^2\xi \biggr] </math> |
|
<math>~=</math> |
<math>~ 1 - \frac{\cos\xi}{\sin^3\xi}\biggl[\xi - \sin\xi \cos\xi \biggr] \, . </math> |
Now let's plug these expressions into the polytropic (n = 1) wave equation, namely,
<math>~-\sigma^2 \xi^3 x</math> |
<math>~=</math> |
<math>~ \sin\xi \biggl[ \xi^2 x^{} + 2\xi x^' - 2\alpha x \biggr] + \cos\xi \biggl[ 2\xi^2 x^' + 2\alpha \xi x \biggr] \, . </math> |
The first term inside the square brackets on the right-hand-side gives,
<math>~\xi^2 x^{} + 2\xi x^' - 2\alpha x </math> |
<math>~=</math> |
<math>~ \xi^2 - \frac{\cos\xi}{\sin^3\xi}\biggl(\xi^3 - \xi^2\sin\xi \cos\xi \biggr) + \frac{1}{\sin^2\xi}\biggl(\xi^2 - \xi \sin\xi \cos\xi \biggr) - \alpha \biggl(1- \xi \cdot \frac{\cos\xi}{\sin\xi} \biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\sin^3\xi} \biggl[ \xi^2 \sin^3\xi - \cos\xi (\xi^3 - \xi^2\sin\xi \cos\xi ) + \sin\xi (\xi^2 - \xi \sin\xi \cos\xi ) - \alpha (\sin^3\xi - \xi \cos\xi \sin^2\xi ) \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\sin^3\xi} \biggl[ \xi^2 \sin\xi (1-\cos^2\xi) + \xi^2\sin\xi \cos^2\xi - \xi^3 \cos\xi + \xi^2\sin\xi - \xi \sin^2\xi \cos\xi - \alpha \sin^3\xi + \alpha \xi \cos\xi \sin^2\xi \biggr] </math> |
|
<math>~=</math> |
<math>~ - \alpha + \frac{1}{\sin^3\xi} \biggl[ 2\xi^2 \sin\xi - \xi^3 \cos\xi - \xi \sin^2\xi \cos\xi + \alpha \xi \cos\xi \sin^2\xi \biggr] \, ; </math> |
and the second term inside the square brackets on the right-hand-side gives,
<math>~2\xi^2 x^' + 2\alpha \xi x </math> |
<math>~=</math> |
<math>~ \frac{1}{\sin^2\xi}\biggl(\xi^3 - \xi^2 \sin\xi \cos\xi \biggr) +\frac{\alpha}{\sin\xi} \biggl(\xi \sin\xi - \xi^2 \cos\xi \biggr) \, . </math> |
Put together, then, we have,
RHS |
<math>~=</math> |
<math>\frac{1}{\sin^2\xi} \biggl[ 2\xi^2 \sin\xi - \xi^3 \cos\xi - \xi \sin^2\xi \cos\xi + \alpha \xi \cos\xi \sin^2\xi \biggr] + \frac{\cos\xi}{\sin^2\xi}\biggl(\xi^3 - \xi^2 \sin\xi \cos\xi \biggr) -\alpha\sin\xi + \alpha \cdot \frac{\cos\xi}{\sin\xi} \biggl(\xi \sin\xi - \xi^2 \cos\xi \biggr) </math> |
|
<math>~=</math> |
<math>\frac{1}{\sin^2\xi} \biggl[ 2\xi^2 \sin\xi - \xi^3 \cos\xi - \xi \sin^2\xi \cos\xi + \alpha \xi \cos\xi \sin^2\xi + \xi^3\cos\xi - \xi^2 \sin\xi \cos^2\xi \biggr] + \frac{\alpha}{\sin\xi} \biggl[ -\sin^2\xi + \xi \sin\xi \cos\xi - \xi^2 \cos^2\xi \biggr] </math> |
|
<math>~=</math> |
<math>\frac{\xi}{\sin\xi} \biggl[ 2\xi - \sin\xi \cos\xi - \xi \cos^2\xi \biggr] - \frac{\alpha}{\sin\xi} \biggl[ \sin^2\xi+\xi^2 \cos^2\xi \biggr] </math> |
|
<math>~=</math> |
<math> \frac{\xi^2}{\sin\xi} \biggl[ 1+\sin^2\xi - \biggl(\frac{\sin\xi}{\xi}\biggr) \cos\xi - \alpha \biggl( \frac{\sin^2\xi}{\xi^2} +\cos^2\xi \biggr)\biggr] \, , </math> |
and,
LHS |
<math>~=</math> |
<math> ~-\frac{\xi \sigma^2}{2} \biggl( \frac{ \xi^2 }{\sin\xi} \biggr) \biggl[\sin\xi - \xi \cos\xi \biggr] \, . </math> |
If our trial eigenfunction is a proper solution to the polytropic wave equation, then the difference of these two expressions should be zero. Let's see:
<math>\frac{\sin\xi}{\xi^2} \biggl( \mathrm{RHS} - \mathrm{LHS} \biggr)</math> |
<math>~=</math> |
<math> ~ 1+\sin^2\xi - \biggl(\frac{\sin\xi}{\xi}\biggr) \cos\xi - \alpha \biggl( \frac{\sin^2\xi}{\xi^2} +\cos^2\xi \biggr) + \frac{\xi \sigma^2}{2} \biggl[\sin\xi - \xi \cos\xi \biggr] \, . </math> |
This expression clearly is not zero, so our trial eigenfunction is not a good one. However, the terms in the wave equation did combine somewhat to give a fairly compact — albeit nonzero — expression. So we may be on the right track!
New Idea Involving Logarithmic Derivatives
Simplistic Layout
Let's begin, again, with the relevant LAWE, as provided above. After dividing through by <math>~x</math>, we have,
<math>
(\sin\xi )\frac{\xi^2}{x} \cdot \frac{d^2x}{d\xi^2} + 2 \biggl[ \sin\xi + \xi \cos \xi \biggr] \frac{\xi}{x} \cdot \frac{dx}{d\xi} +
\biggl[ \sigma^2 \xi^3 - 2\alpha ( \sin\xi - \xi \cos \xi ) \biggr] = 0 \, ,
</math>
where,
<math>~\sigma^2</math> |
<math>~\equiv</math> |
<math> ~\frac{\omega^2}{2\pi G\rho_c \gamma_g} \, , </math> |
<math>~\alpha</math> |
<math>~\equiv</math> |
<math> ~3-\frac{4}{\gamma_g} \, . </math> |
Now, in addition to recognizing that,
<math>~\frac{\xi}{x} \cdot \frac{dx}{d\xi} </math> |
<math>~=</math> |
<math>~\frac{d\ln x}{d\ln \xi} \, ,</math> |
in a separate context, we showed that, quite generally,
<math>~ \frac{\xi^2}{x} \cdot \frac{d^2x}{d\xi^2} </math> |
<math>~=</math> |
<math>~ \frac{d}{d\ln\xi} \biggl[ \frac{d\ln x}{d\ln \xi} \biggr] - \biggl[ 1 - \frac{d\ln x}{d\ln \xi} \biggr]\cdot \frac{d\ln x}{d\ln \xi} \, . </math> |
Hence, if we assume that the eigenfunction is a power-law of <math>~\xi</math>, that is, assume that,
<math>~x = a_0 \xi^{c_0} \, ,</math>
then the logarithmic derivative of <math>~x</math> is a constant, namely,
<math>~\frac{d\ln x}{d\ln\xi} = c_0 \, ,</math>
and the two key derivative terms will be,
<math>~\frac{\xi}{x} \cdot \frac{dx}{d\xi} = c_0 \, ,</math> |
and |
<math>~\frac{\xi^2}{x} \cdot \frac{d^2x}{d\xi^2} = c_0(c_0-1) \, .</math> |
In this case, the LAWE is no longer a differential equation but, instead, takes the form,
<math>~-\sigma^2 \xi^3</math> |
<math>~=</math> |
<math>~ c_0(c_0-1) \sin\xi + 2c_0 [ \sin\xi + \xi \cos \xi ] - 2\alpha ( \sin\xi - \xi \cos \xi ) </math> |
|
<math>~=</math> |
<math>~ \sin\xi [c_0(c_0-1) +2c_0 -2\alpha ] + \xi \cos \xi [2(c_0+\alpha) ] </math> |
|
<math>~=</math> |
<math>~ \sin\xi [c_0^2 + c_0 -2\alpha ] + \xi \cos \xi [2(c_0+\alpha) ] \, . </math> |
Now, the cosine term will go to zero if <math>~c_0 = -\alpha</math>; and the sine term will go to zero if,
<math>~\alpha</math> |
<math>~=</math> |
<math>~3 </math> |
<math>~\Rightarrow ~~~ \gamma_g</math> |
<math>~=</math> |
<math>~\infty \, . </math> |
If these two — rather strange — conditions are met, then we have a marginally unstable configuration because, <math>~\sigma^2 = 0</math>. This, in and of itself, is not very physically interesting. However, it may give us a clue regarding how to more generally search for a physically reasonable radial eigenfunction.
More general Assumption
Try,
<math>~x</math> |
<math>~=</math> |
<math>~\xi^{c_0} \biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr] </math> |
<math>~\Rightarrow ~~~\frac{dx}{d\xi}</math> |
<math>~=</math> |
<math>~\xi^{c_0} \frac{d}{d\xi}\biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr] + c_0\xi^{c_0-1} \biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr] </math> |
|
<math>~=</math> |
<math>~\xi^{c_0} \biggl[ b_0\cos\xi - d_0 \xi\sin\xi +d_0\cos\xi\biggr] + c_0\xi^{c_0-1} \biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr] </math> |
<math>~\Rightarrow ~~~\frac{d\ln x}{d\ln \xi}</math> |
<math>~=</math> |
<math>~\xi \biggl[ b_0\cos\xi - d_0 \xi\sin\xi +d_0\cos\xi\biggr]\biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr]^{-1} + c_0 </math> |
|
<math>~=</math> |
<math>~\biggl[ (b_0+d_0)\xi\cos\xi - d_0 \xi^2\sin\xi \biggr]\biggl[a_0 + b_0\sin\xi + d_0 \xi\cos\xi \biggr]^{-1} + c_0 </math> |
Another Viewpoint
Development
Multiplying through the above LAWE by <math>~(x \xi^{-3})</math> gives,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{\sin\xi }{\xi} \cdot \frac{d^2x}{d\xi^2} + 2 \biggl[\frac{ \sin\xi + \xi \cos \xi }{\xi^2}\biggr] \frac{dx}{d\xi} + \biggl[ \sigma^2 - 2\alpha \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr]x </math> |
Notice that,
<math>~\frac{d}{d\xi}\biggl[\frac{\sin\xi}{\xi}\biggr]</math> |
<math>~=</math> |
<math>~ - \frac{\sin\xi}{\xi^2} + \frac{\cos\xi}{\xi} </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{\xi\cos\xi - \sin\xi }{\xi^2} \biggr] \, . </math> |
And, hence,
<math>~\frac{d^2}{d\xi^2}\biggl[\frac{\sin\xi}{\xi}\biggr]</math> |
<math>~=</math> |
<math>~ \frac{d}{d\xi}\biggl[ \frac{\cos\xi }{\xi} - \frac{\sin\xi }{\xi^2} \biggr] </math> |
|
<math>~=</math> |
<math>~ -\frac{\cos\xi}{\xi^2} -\frac{\sin\xi}{\xi} + \frac{2\sin\xi}{\xi^3} - \frac{\cos\xi}{\xi^2} </math> |
|
<math>~=</math> |
<math>~ -\frac{\sin\xi}{\xi} + 2\biggl[ \frac{\sin\xi -\xi\cos\xi}{\xi^3} \biggr] \, . </math> |
So, we can write,
<math>~\frac{d^2}{d\xi^2} \biggl\{ \biggl( \frac{\sin\xi}{\xi}\biggr)x \biggr\}</math> |
<math>~=</math> |
<math>~\frac{d}{d\xi} \biggl\{ \biggl(\frac{\sin\xi}{\xi}\biggr)\frac{dx}{d\xi} + x\frac{d}{d\xi} \biggl[ \biggl(\frac{\sin\xi}{\xi}\biggr) \biggr] \biggr\}</math> |
|
<math>~=</math> |
<math>~ \frac{\sin\xi}{\xi} \cdot \frac{d^2 x}{d\xi^2} + 2\frac{dx}{d\xi} \cdot \biggl[\frac{d}{d\xi}\biggr(\frac{\sin\xi}{\xi}\biggr) \biggr] + x \cdot \frac{d^2}{d\xi^2} \biggl(\frac{\sin\xi}{\xi}\biggr) </math> |
|
<math>~=</math> |
<math>~ \frac{\sin\xi}{\xi} \cdot \frac{d^2 x}{d\xi^2} + 2\frac{dx}{d\xi} \cdot \biggl[ \frac{\xi\cos\xi - \sin\xi }{\xi^2} \biggr] + x \cdot \biggl\{ -\frac{\sin\xi}{\xi} + 2\biggl[ \frac{\sin\xi -\xi\cos\xi}{\xi^3} \biggr] \biggr\} \, . </math> |
This means that we can rewrite the LAWE as,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2}{d\xi^2} \biggl\{ \biggl( \frac{\sin\xi}{\xi}\biggr)x \biggr\} - 2\frac{dx}{d\xi} \cdot \biggl[ \frac{\xi\cos\xi - \sin\xi }{\xi^2} \biggr] - x \cdot \biggl\{ -\frac{\sin\xi}{\xi} + 2\biggl[ \frac{\sin\xi -\xi\cos\xi}{\xi^3} \biggr] \biggr\} + 2 \biggl[\frac{ \sin\xi + \xi \cos \xi }{\xi^2}\biggr] \frac{dx}{d\xi} + \biggl[ \sigma^2 - 2\alpha \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr]x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2}{d\xi^2} \biggl\{ \biggl( \frac{\sin\xi}{\xi}\biggr)x \biggr\} + 4 \biggl[\frac{ \sin\xi }{\xi^2}\biggr] \frac{dx}{d\xi} + \biggl\{ \frac{\sin\xi}{\xi} + \sigma^2 - 2(1+\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr\} \cdot x \, . </math> |
We recognize, also, that,
<math>~\frac{1}{\xi} \cdot \frac{d}{d\xi}\biggl[ \biggl(\frac{\sin\xi}{\xi} \biggr) x \biggr]</math> |
<math>~=</math> |
<math>~ \biggl[ \frac{\xi\cos\xi - \sin\xi }{\xi^3} \biggr]x + \biggl(\frac{\sin\xi}{\xi^2} \biggr)\frac{dx}{d\xi} \, . </math> |
<math>~\Rightarrow ~~~ 4\biggl(\frac{\sin\xi}{\xi^2} \biggr)\frac{dx}{d\xi} </math> |
<math>~=</math> |
<math>~ \frac{4}{\xi} \cdot \frac{d}{d\xi}\biggl[ \biggl(\frac{\sin\xi}{\xi} \biggr) x \biggr] + 4\biggl[ \frac{\sin\xi - \xi\cos\xi }{\xi^3} \biggr]x \, . </math> |
So the LAWE becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2}{d\xi^2} \biggl\{ \biggl( \frac{\sin\xi}{\xi}\biggr)x \biggr\} + \frac{4}{\xi} \cdot \frac{d}{d\xi}\biggl[ \biggl(\frac{\sin\xi}{\xi} \biggr) x \biggr] + 4\biggl[ \frac{\sin\xi - \xi\cos\xi }{\xi^3} \biggr]x + \biggl\{ \frac{\sin\xi}{\xi} + \sigma^2 - 2(1+\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr\} \cdot x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2}{d\xi^2} \biggl\{ \biggl( \frac{\sin\xi}{\xi}\biggr)x \biggr\} + \frac{4}{\xi} \cdot \frac{d}{d\xi}\biggl[ \biggl(\frac{\sin\xi}{\xi} \biggr) x \biggr] + \biggl\{ \frac{\sin\xi}{\xi} + \sigma^2 + [4- 2(1+\alpha)] \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr\} \cdot x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2 \Upsilon}{d\xi^2} + \frac{4}{\xi} \cdot \frac{d\Upsilon}{d\xi} + \Upsilon + \biggl[ \sigma^2 + 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x \, , </math> |
where we have introduced the new, modified eigenfunction,
<math>\Upsilon \equiv \biggl( \frac{\sin\xi}{\xi} \biggr) x \, .</math>
Alternatively, the LAWE may be written as,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2 \Upsilon}{d\xi^2} + \frac{4}{\xi} \cdot \frac{d\Upsilon}{d\xi} + \biggl[ \sigma^2 + 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) + \frac{\sin\xi}{\xi} \biggr] \cdot x \, ; </math> |
or,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{\xi^2}{\Upsilon} \cdot \frac{d^2 \Upsilon}{d\xi^2} + \frac{4\xi}{\Upsilon} \cdot \frac{d\Upsilon}{d\xi} + \biggl[ \sigma^2 + 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) + \frac{\sin\xi}{\xi} \biggr] \cdot \frac{\xi^3}{\sin\xi} </math> |
|
<math>~=</math> |
<math>~ \frac{\xi^2}{\Upsilon} \cdot \frac{d^2 \Upsilon}{d\xi^2} + \frac{4\xi}{\Upsilon} \cdot \frac{d\Upsilon}{d\xi} + \biggl[ \sigma^2 \biggl(\frac{\xi^3}{\sin\xi} \biggr) + 2(1-\alpha) \biggl( 1 - \xi \cot \xi \biggr) + \xi^2 \biggr] </math> |
Now, if we adopt the homentropic convention that arises from setting, <math>~\gamma = (n+1)/n</math>, then for our <math>~n=1</math> polytropic configuration, we should set, <math>~\gamma = 2</math> and, hence, <math>~\alpha = 1</math>. This will mean that the lat term in this LAWE naturally goes to zero. Hence, we have,
<math>~- \sigma^2 x</math> |
<math>~=</math> |
<math>~ \frac{d^2 \Upsilon}{d\xi^2} + \frac{4}{\xi} \cdot \frac{d\Upsilon}{d\xi} + \Upsilon \, ; </math> |
or,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2 \Upsilon}{d\xi^2} + \frac{4}{\xi} \cdot \frac{d\Upsilon}{d\xi} + \biggl[1 + \sigma^2 \biggl(\frac{\xi}{\sin\xi}\biggr) \biggr] \Upsilon \, ; </math> |
or,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{\xi^2}{\Upsilon} \cdot \frac{d^2 \Upsilon}{d\xi^2} + \frac{4\xi}{\Upsilon} \cdot \frac{d\Upsilon}{d\xi} + \biggl[\xi^2 + \sigma^2 \biggl(\frac{\xi^3}{\sin\xi}\biggr) \biggr] \, . </math> |
Does this help?
Check for Mistakes
Given the definition of <math>~\Upsilon</math>, its first derivative is,
<math>~\frac{d\Upsilon}{d\xi} </math> |
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{dx}{d\xi} +x\biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \, , </math> |
and its second derivative is,
<math>~\frac{d^2\Upsilon}{d\xi^2} </math> |
<math>~=</math> |
<math>~\frac{d}{d\xi} \biggl\{ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{dx}{d\xi} +x\biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + 2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \cdot \frac{dx}{d\xi} + x \cdot \frac{d}{d\xi} \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + 2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \cdot \frac{dx}{d\xi} + x \biggl[ -\frac{\sin\xi}{\xi} - \frac{2\cos\xi}{\xi^2} + \frac{2\sin\xi}{\xi^3} \biggr] </math> |
Hence, the "upsilon" LAWE becomes,
<math>~-\sigma^2 x</math> |
<math>~=</math> |
<math>~ \frac{d^2 \Upsilon}{d\xi^2} + \frac{4}{\xi} \cdot \frac{d\Upsilon}{d\xi} + \Upsilon + \biggl[ 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + 2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \cdot \frac{dx}{d\xi} + x \biggl[ -\frac{\sin\xi}{\xi} - \frac{2\cos\xi}{\xi^2} + \frac{2\sin\xi}{\xi^3} \biggr] + \frac{4}{\xi} \cdot \biggl\{ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{dx}{d\xi} +x\biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \biggr\} + \biggl[\frac{\sin\xi}{\xi} + 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + \biggl\{\biggl( \frac{4\sin\xi}{\xi^2} \biggr) + 2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \biggr\}\cdot \frac{dx}{d\xi} + \biggl[ -\frac{\sin\xi}{\xi} - \frac{2\cos\xi}{\xi^2} + \frac{2\sin\xi}{\xi^3} + \frac{4\cos\xi}{\xi^2} - \frac{4\sin\xi}{\xi^3} + \frac{\sin\xi}{\xi} + 2(1-\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + \biggl[ \frac{2\cos\xi}{\xi} + \frac{2\sin\xi}{\xi^2} \biggr] \cdot \frac{dx}{d\xi} + \biggl[- 2\biggl( \frac{\sin\xi -\xi\cos\xi}{\xi^3} \biggr) + (2-2\alpha) \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\sin\xi}{\xi} \biggr) \frac{d^2x}{d\xi^2} + 2\biggl[ \frac{\sin\xi}{\xi^2} + \frac{\cos\xi}{\xi} \biggr] \cdot \frac{dx}{d\xi} + \biggl[-2\alpha \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr] \cdot x \, . </math> |
This should be compared with the first expression, above, namely,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{\sin\xi }{\xi} \cdot \frac{d^2x}{d\xi^2} + 2 \biggl[\frac{ \sin\xi + \xi \cos \xi }{\xi^2}\biggr] \frac{dx}{d\xi} + \biggl[ \sigma^2 - 2\alpha \biggl( \frac{\sin\xi - \xi \cos \xi}{\xi^3} \biggr) \biggr]x \, , </math> |
and it matches! Q.E.D.
Motivated by Yabushita's Discovery
Initial Exploration
This subsection is being developed following our realization — see the accompanying overview — that the eigenfunction is known analytically for marginally unstable, pressure-truncated configurations having <math>~3 \le n \le \infty</math>. Specifically, from the work of Yabushita (1975) we have the following,
Exact Solution to the Isothermal LAWE | ||
<math>~\sigma_c^2 = 0</math> |
and |
<math>~x = 1 - \biggl( \frac{1}{\xi e^{-\psi}}\biggr) \frac{d\psi}{d\xi} \, .</math> |
And from our own recent work, we have discovered the following,
Precise Solution to the Polytropic LAWE | ||
<math>~\sigma_c^2 = 0</math> |
and |
<math>~x_P \equiv \frac{3(n-1)}{2n}\biggl[1 + \biggl(\frac{n-3}{n-1}\biggr) \biggl( \frac{1}{\xi \theta^{n}}\biggr) \frac{d\theta}{d\xi}\biggr] </math> |
if the adiabatic exponent is assigned the value, <math>~\gamma_g = (n+1)/n</math>, in which case the parameter, <math>~\alpha = (3-n)/(n+1)</math>. Using this polytropic displacement function as a guide, let's try for the case of <math>~n=1</math>, an expression of the form,
<math>~x</math> |
<math>~=</math> |
<math>~A - B\biggl[ \biggl( \frac{1}{\xi \theta}\biggr) \frac{d\theta}{d\xi} \biggr]</math> |
|
<math>~=</math> |
<math>~A - B \biggl[ \biggl( \frac{1}{\sin\xi}\biggr) \frac{d}{d\xi} \biggl( \frac{\sin\xi}{\xi} \biggr)\biggr]</math> |
|
<math>~=</math> |
<math>~A - B \biggl( \frac{1}{\sin\xi}\biggr) \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] </math> |
|
<math>~=</math> |
<math>~A + \frac{B}{\xi^2} \biggl( 1-\frac{\xi \cos\xi}{\sin\xi} \biggr) \, ,</math> |
in which case,
<math>~\frac{dx}{d\xi}</math> |
<math>~=</math> |
<math>~- B \biggl\{ \biggl( \frac{- \cos\xi}{\sin^2\xi}\biggr) \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] +\biggl( \frac{1}{\sin\xi}\biggr) \biggl[ -\frac{\sin\xi}{\xi} - \frac{\cos\xi}{\xi^2} - \frac{\cos\xi}{\xi^2} + \frac{2\sin\xi}{\xi^3} \biggr] \biggr\}</math> |
|
<math>~=</math> |
<math>~- \frac{B}{\xi^3} \biggl\{ \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] +\biggl[ 2 -\xi^2 - \frac{2\xi\cos\xi}{\sin\xi} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{B}{\xi^3} \biggl\{ 2 -\xi^2 - \frac{\xi\cos\xi}{\sin\xi} - \frac{\xi^2 \cos^2\xi}{\sin^2\xi} \biggr\} \, , </math> |
What if, instead, we try the more generalized form,
Then we have,
Probably this also means,
|
Let's check against the more general derivation, which gives after recognizing that, <math>~B \leftrightarrow (3-n)/(n-1)</math>,
<math>~\frac{dx}{d\xi}</math> |
<math>~=</math> |
<math>~ \biggl(\frac{3-n}{n-1}\biggr) \biggl\{ \frac{1}{\xi} + \frac{n(\theta^')^2 }{\xi \theta^{n+1}} + \frac{3\theta^' }{\xi^2 \theta^{n}} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^3} \biggl\{ \xi^2 + \xi^2 \biggl( \frac{\xi}{\sin\xi}\biggr)^2 \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr]^2 + \frac{3\xi^2}{\sin\xi} \biggl[ \frac{\cos\xi}{\xi} - \frac{\sin\xi}{\xi^2} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^3} \biggl\{ \xi^2 + 3\biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] + \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr]^2 \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^3} \biggl\{ \xi^2 + 3\biggl[ \frac{\xi \cos\xi}{\sin\xi} - 1 \biggr] + \biggl[ \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 - 2\biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr) + 1 \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^3} \biggl\{ \xi^2 + \biggl[ \frac{\xi \cos\xi}{\sin\xi} - 2 \biggr] + \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} \, . </math> |
This matches the preceding, direct derivation.
Also,
<math>~\frac{d^2x}{d\xi^2}</math> |
<math>~=</math> |
<math>~\frac{3B}{\xi^4} \biggl\{ \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] +\biggl[ 2 -\xi^2 - \frac{2\xi\cos\xi}{\sin\xi} \biggr] \biggr\} </math> |
|
|
<math>~- \frac{B}{\xi^3} \biggl\{ \biggl[- \frac{1}{\sin\xi} - \frac{2\cos^2\xi}{\sin^3\xi} \biggr] \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] + \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ - 2\xi \cos\xi + \sin\xi + \xi^2 \sin\xi + \xi \cos\xi \biggr] </math> |
|
|
<math>~ +\biggl[ -2\xi - \frac{2\cos\xi}{\sin\xi} + \frac{2\xi\sin\xi}{\sin\xi} + \frac{2\xi\cos^2\xi}{\sin^2\xi}\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{B}{\xi^4} \biggl\{ \biggl( \frac{3\cos\xi}{\sin^2\xi}\biggr) \biggl[ - \xi^2 \cos\xi + \xi \sin\xi \biggr] +\biggl[ 6 - 3\xi^2 - \frac{6\xi\cos\xi}{\sin\xi} \biggr] + \biggl[\frac{1}{\sin\xi} + \frac{2\cos^2\xi}{\sin^3\xi} \biggr] \biggl[ - \xi^3 \cos\xi + \xi^2 \sin\xi \biggr] </math> |
|
|
<math>~ + \biggl( \frac{\cos\xi}{\sin^2\xi}\biggr) \biggl[ 2\xi^2 \cos\xi - \xi \sin\xi - \xi^3 \sin\xi - \xi^2 \cos\xi \biggr] +\biggl[ 2\xi^2 + \frac{2\xi \cos\xi}{\sin\xi} - \frac{2\xi^2\sin\xi}{\sin\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi}\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{B}{\xi^4} \biggl\{ \biggl[ - \frac{3\xi^2 \cos^2\xi}{\sin^2\xi} + \frac{3\xi \cos\xi}{\sin\xi} \biggr] +\biggl[ 6 - 3\xi^2 - \frac{6\xi\cos\xi}{\sin\xi} \biggr] + \biggl[ - \frac{\xi^3 \cos\xi}{\sin\xi} + \xi^2 \biggr] + \biggl[ - \frac{2\xi^3 \cos^3\xi}{\sin^3\xi} + \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} \biggr] </math> |
|
|
<math>~ + \biggl[ \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} - \frac{\xi \cos\xi}{\sin\xi} - \frac{\xi^3 \cos\xi}{\sin\xi} - \frac{\xi^2 \cos^2\xi}{\sin^2\xi} \biggr] +\biggl[ 2\xi^2 + \frac{2\xi \cos\xi}{\sin\xi} - \frac{2\xi^2\sin\xi}{\sin\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi}\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^4} \biggl\{ 6 - 2\xi^2 - \frac{2\xi\cos\xi}{\sin\xi} - \frac{2\xi^2 \cos^2\xi}{\sin^2\xi} - \frac{2\xi^3 \cos\xi}{\sin\xi} - \frac{2\xi^3 \cos^3\xi}{\sin^3\xi} \biggr\} \, . </math> |
Let's also check this against the more general derivation, which gives after again recognizing that, <math>~B \leftrightarrow (3-n)/(n-1)</math>,
<math>\frac{d^2 x}{d\xi^2}</math> |
<math>~=</math> |
<math>~ \biggl(\frac{n-3}{n-1}\biggr) \biggl\{ \frac{4}{\xi^2} + \frac{2n(\theta^')}{\xi \theta} + \frac{12\theta^' }{\xi^3 \theta^{n}}+ \frac{8n(\theta^')^2}{\xi^2 \theta^{n+1}} + (n+1) \frac{n(\theta^')^3 }{\xi \theta^{n+2}} \biggr\} </math> |
|
<math>~=</math> |
<math>~-B \biggl\{ \frac{4}{\xi^2} + \frac{2}{\xi \theta} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr] + \frac{12}{\xi^3 \theta}\biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr] + \frac{8 }{\xi^2 \theta^{2}} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr]^2 + \frac{2 }{\xi \theta^{3}} \biggl[ \frac{\sin\xi}{\xi^2}\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr]^3\biggr\} </math> |
|
<math>~=</math> |
<math>~-\frac{B}{\xi^4} \biggl\{ 4\xi^2 + 2\xi^2 \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr) + 12\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr) + 8 \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)^2 + 2\biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)^3\biggr\} </math> |
|
<math>~=</math> |
<math>~-\frac{2B}{\xi^4} \biggl\{ 2\xi^2 + \frac{\xi^3\cos\xi}{\sin\xi} - \xi^2+ \frac{6\xi\cos\xi}{\sin\xi} - 6 + \frac{4\xi^2\cos^2\xi}{\sin^2\xi} - \frac{8\xi\cos\xi}{\sin\xi} + 4 + \biggl(\frac{\xi^2\cos^2\xi}{\sin^2\xi} - \frac{2\xi\cos\xi}{\sin\xi} + 1\biggr) \biggl(\frac{\xi\cos\xi}{\sin\xi} - 1\biggr)\biggr\} </math> |
|
<math>~=</math> |
<math>~-\frac{2B}{\xi^4} \biggl\{-2 + \xi^2 - \frac{2\xi\cos\xi}{\sin\xi} + \frac{\xi^3\cos\xi}{\sin\xi} + \frac{4\xi^2\cos^2\xi}{\sin^2\xi} - \biggl(\frac{\xi^2\cos^2\xi}{\sin^2\xi} - \frac{2\xi\cos\xi}{\sin\xi} + 1\biggr) + \frac{\xi^3\cos^3\xi}{\sin^3\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi} + \frac{\xi\cos\xi}{\sin\xi} \biggr\} </math> |
|
<math>~=</math> |
<math>~-\frac{2B}{\xi^4} \biggl\{-3 + \xi^2 + \frac{\xi\cos\xi}{\sin\xi} + \frac{\xi^3\cos\xi}{\sin\xi} + \frac{\xi^2\cos^2\xi}{\sin^2\xi} + \frac{\xi^3\cos^3\xi}{\sin^3\xi} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{B}{\xi^4} \biggl\{6 -2 \xi^2 - \frac{2\xi\cos\xi}{\sin\xi} - \frac{2\xi^2\cos^2\xi}{\sin^2\xi} - \frac{2\xi^3\cos\xi}{\sin\xi} - \frac{2\xi^3\cos^3\xi}{\sin^3\xi} \biggr\} \, . </math> |
A cross-check with the first attempt to derive this second derivative expression initially unveiled a couple of coefficient errors. These have now been corrected and both expressions agree.
Succinct Demonstration
Given that, for <math>~n=1</math>, we should set <math>~\gamma_\mathrm{g} = (n+1)/n = 2 \Rightarrow \alpha = (3-4/\gamma_\mathrm{g}) = +1</math>, and,
<math>~Q \equiv - \frac{d\ln\theta}{d\ln\xi}</math> |
<math>~=</math> |
<math>~ - \frac{\xi^2}{\sin\xi} \cdot \frac{d}{d\xi}\biggl[ \frac{\sin\xi}{\xi}\biggr] = 1 - \xi \cot\xi \, . </math> |
If we then employ the displacement function,
<math>~x</math> |
<math>~=</math> |
<math>~A + \frac{B}{\xi^2} \biggl[ 1 - \xi \cot\xi \biggr] \, ,</math> |
the LAWE becomes,
LAWE |
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1)Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + (n+1)\biggl[ \biggl(\frac{\sigma_c^2}{6\gamma_g } \biggr) \frac{\xi^2}{\theta} -\alpha Q\biggr] \frac{ x}{\xi^2} </math> |
|
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - 2Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi^3}{\sin\xi} - 2Q\biggr] \frac{ x}{\xi^2} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\xi^2} + \biggl[2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{ x}{\xi^2} + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x </math> |
|
<math>~=</math> |
<math>~ \frac{2B}{\xi^4} \biggl\{3 - \xi^2 - \frac{\xi\cos\xi}{\sin\xi} - \biggl(\frac{\xi\cos\xi}{\sin\xi} \biggr)^2 - \frac{\xi^3\cos\xi}{\sin\xi} - \biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr)^3 \biggr\} </math> |
|
|
<math>~ + \frac{2B}{\xi^4}\biggl[1 + \frac{\xi\cos\xi}{\sin\xi} \biggr] \biggl\{ \xi^2 - 2 + \frac{\xi \cos\xi}{\sin\xi} + \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} </math> |
|
|
<math>~ + \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \biggl[ \frac{A}{\xi^2} + \frac{B}{\xi^4} \biggl( 1-\frac{\xi \cos\xi}{\sin\xi} \biggr)\biggr] + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x </math> |
|
<math>~=</math> |
<math>~ \frac{2B}{\xi^4} \biggl\{3 - \xi^2 - \frac{\xi\cos\xi}{\sin\xi} - \biggl(\frac{\xi\cos\xi}{\sin\xi} \biggr)^2 - \frac{\xi^3\cos\xi}{\sin\xi} - \biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr)^3 </math> |
|
|
<math>~ + \xi^2\biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr) - 2\biggl( \frac{\xi\cos\xi}{\sin\xi} \biggr) + \biggl(\frac{\xi \cos\xi}{\sin\xi} \biggr)^2 + \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^3 + \xi^2 - 2 + \frac{\xi \cos\xi}{\sin\xi} + \biggl(\frac{\xi \cos\xi}{\sin\xi}\biggr)^2 \biggr\} </math> |
|
|
<math>~ - \frac{2B}{\xi^4} \biggl[ 1 - \frac{2\xi\cos\xi}{\sin\xi} + \biggl(\frac{\xi \cos\xi}{\sin\xi} \biggr)^2 \biggr] + \frac{2A}{\xi^2}\biggl[\frac{\xi\cos\xi}{\sin\xi} -1\biggr] + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x </math> |
|
<math>~=</math> |
<math>~ \frac{2A}{\xi^2}\biggl[\frac{\xi\cos\xi}{\sin\xi} -1\biggr] + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x </math> |
Pretty amazing degree of cancelation! So the above-hypothesized displacement function does satisfy the <math>~n=1</math>, polytropic LAWE — for any value of the coefficient, <math>~B</math> — if we set <math>~A = 0</math> and <math>~\sigma_c^2=0</math>. If we set <math>~B = 3</math>, the function will be normalized such that it goes to unity at the center. In summary, then, we have,
<math>~x_P\biggr|_{n=1}</math> |
<math>~=</math> |
<math>~\frac{3}{\xi^2} \biggl[ 1 - \xi \cot\xi \biggr] \, .</math> |
What About Bipolytropes?
Here we will try to find an analytic expression for the radial displacement function, <math>~x</math>, for a bipolytropic envelope whose polytropic index is, <math>~n_e = 1</math>. As in the above succinct derivation, the relevant LAWE is,
LAWE |
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1)Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + (n+1)\biggl[ \biggl(\frac{\sigma_c^2}{6\gamma_g } \biggr) \frac{\xi^2}{\theta} -\alpha Q\biggr] \frac{ x}{\xi^2} </math> |
|
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - 2Q \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi^3}{\sin\xi} - 2Q\biggr] \frac{ x}{\xi^2} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\xi^2} + \biggl[2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{1}{\xi} \cdot \frac{dx}{d\xi} + \biggl[- 2 + \frac{2\xi\cos\xi}{\sin\xi} \biggr] \frac{ x}{\xi^2} + \biggl[ \biggl(\frac{\sigma_c^2}{6 } \biggr) \frac{\xi}{\sin\xi} \biggr] x </math> |
First Attempt
Let's try,
<math>~x</math> |
<math>~=</math> |
<math>~ A + \frac{B}{(\xi - F)^2} \biggl[1 - (\xi-D) \cot(\xi-C) \biggr] \, . </math> |
First, note that,
<math>~\frac{d}{d\xi}\biggl[\cot(\xi - C) \biggr]</math> |
<math>~=</math> |
<math>~\frac{d}{d\xi}\biggl[ \frac{ \cos(\xi - C) }{ \sin(\xi - C)}\biggr]</math> |
|
<math>~=</math> |
<math>~ - \biggl[ 1 + \cot^2(\xi - C)\biggr] \, . </math> |
Hence,
<math>~\frac{dx}{d\xi}</math> |
<math>~=</math> |
<math>~ - \frac{2B}{(\xi-F)^3} \biggl[1 - (\xi-D) \cot(\xi-C) \biggr] - \frac{B}{(\xi-F)^2} \biggl\{ \cot(\xi-C) - (\xi-D) [1 + \cot^2(\xi-C) ] \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{B}{(\xi-F)^3} \biggl\{\biggl[2 - 2(\xi-D) \cot(\xi-C) \biggr] - (\xi-F) \biggl[ \cot(\xi-C) - (\xi-D) [1 + \cot^2(\xi-C) ]\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{B}{(\xi-F)^3} \biggl\{ 2 - \cot(\xi-C)\biggl[ 2(\xi-D) + (\xi-F) \biggr] + (\xi-F) (\xi-D) [1 + \cot^2(\xi-C) ] \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{B}{(\xi-F)^3} \biggl\{ 2 - \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) + [ \xi^2 - (D+F)\xi + FD] + [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{B}{(\xi-F)^3} \biggl\{ [ \xi^2 - (D+F)\xi + FD+2] - \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) + [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) \biggr\} \, . </math> |
And,
<math>~\frac{d^2x}{d\xi^2}</math> |
<math>~=</math> |
<math>~ \frac{3B}{(\xi-F)^4} \biggl\{ [ \xi^2 - (D+F)\xi + FD+2] - \biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) + [ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) \biggr\} </math> |
|
|
<math>~ - \frac{B}{(\xi-F)^3} \biggl\{ [ 2\xi - (D+F)] - 3 \cot(\xi-C) - \biggl[3\xi - (2D +F) \biggr] \frac{d \cot(\xi-C)}{d\xi} + [ 2\xi - (D+F)]\cot^2(\xi-C) + \biggl[ \xi^2 - (D+F)\xi + FD \biggr] \frac{d \cot^2(\xi-C) }{d\xi} \biggr\} </math> |
<math>~\Rightarrow ~~~\biggl[ \frac{(\xi-F)^4}{B} \biggr] \frac{d^2x}{d\xi^2}</math> |
<math>~=</math> |
<math>~ 3[ \xi^2 - (D+F)\xi + FD+2] - 3\biggl[3\xi - (2D +F) \biggr] \cot(\xi-C) + 3[ \xi^2 - (D+F)\xi + FD]\cot^2(\xi-C) </math> |
|
|
<math>~ - (\xi-F)[ 2\xi - (D+F)] + 3 (\xi-F) \cot(\xi-C) - (\xi-F)[ 2\xi - (D+F)]\cot^2(\xi-C) </math> |
|
|
<math>~ + (\xi-F)\biggl[3\xi - (2D +F) \biggr] \frac{d \cot(\xi-C)}{d\xi} - (\xi-F)\biggl[ \xi^2 - (D+F)\xi + FD \biggr] \frac{d \cot^2(\xi-C) }{d\xi} </math> |
|
<math>~=</math> |
<math>~ 3[ \xi^2 - (D+F)\xi + FD+2] - (\xi-F)[ 2\xi - (D+F)] + \biggl\{3 (\xi-F) - 3\biggl[3\xi - (2D +F) \biggr] \biggr\} \cot(\xi-C) </math> |
|
|
<math>~ + \biggl\{ 3[ \xi^2 - (D+F)\xi + FD] - (\xi-F)[ 2\xi - (D+F)] \biggr\}\cot^2(\xi-C) </math> |
|
|
<math>~ - (\xi-F)\biggl[3\xi - (2D +F) \biggr] \biggl[ 1 + \cot^2(\xi - C)\biggr] + (\xi-F)\biggl[ \xi^2 - (D+F)\xi + FD \biggr] 2\cot(\xi-C)\biggl[ 1 + \cot^2(\xi - C)\biggr] </math> |
|
<math>~=</math> |
<math>~ 3[ \xi^2 - (D+F)\xi + FD+2] - (\xi-F)[ 2\xi - (D+F)] - (\xi-F) [3\xi - (2D +F) ] + \biggl\{3 (\xi-F) - 3 [3\xi - (2D +F) ] + 2 (\xi-F) [ \xi^2 - (D+F)\xi + FD ] \biggr\} \cot(\xi-C) </math> |
|
|
<math>~ + \biggl\{ 3[ \xi^2 - (D+F)\xi + FD] - (\xi-F)[ 2\xi - (D+F)] - (\xi-F) [3\xi - (2D +F) ] \biggr\}\cot^2(\xi-C) + 2 (\xi-F) [ \xi^2 - (D+F)\xi + FD ] \cot^3(\xi - C) \, . </math> |
Let's set <math>~C = D = F</math> and see if these expressions match the ones above.
<math>~\frac{dx}{d\xi} \biggr|_{C=D=F}</math> |
<math>~=</math> |
<math>~ - \frac{B}{\xi^3} \biggl\{ 2 + \xi^2 - 3\xi \cot\xi + \xi^2 \cot^2\xi \biggr\} \, . </math> |
<math>~\frac{\xi^4}{B} \cdot \frac{d^2x}{d\xi^2} \biggr|_{C=D=F}</math> |
<math>~=</math> |
<math>~ 3[ \xi^2 +2] - (\xi)[ 2\xi ] - \xi [3\xi ] + \biggl\{3 (\xi) - 3 [3\xi ] + 2 \xi [ \xi^2 ] \biggr\} \cot(\xi) </math> |
|
|
<math>~ + \biggl\{ 3[ \xi^2 ] - \xi[ 2\xi ] - \xi [3\xi ] \biggr\}\cot^2\xi + 2 \xi [ \xi^2 ] \cot^3\xi </math> |
|
<math>~=</math> |
<math>~ 3 \xi^2 +6- 2\xi^2 - 3\xi^2 + \biggl[ 3 \xi - 9\xi + 2 \xi^3 \biggr] \cot(\xi) + \biggl[ 3\xi^2 - 2\xi^2 - 3\xi^2 \biggr] \cot^2\xi + 2 \xi^3 \cot^3\xi </math> |
|
<math>~=</math> |
<math>~ 6- 2\xi^2 + [ - 6\xi + 2 \xi^3 ] \cot(\xi) - 2\xi^2 \cot^2\xi + 2 \xi^3 \cot^3\xi </math> |
Second Attempt
Up to this point we have been rather cavalier about the use of <math>~\xi</math> (and <math>~\xi_i</math>) to represent the envelope's dimensionless radius (and interface location). Let's switch to <math>~\eta</math>,
<math>~r^*</math> |
<math>~=</math> |
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta</math> |
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} + \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, . </math> |
and, throughout the envelope we have,
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \, ; </math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \theta^{-1}_i \biggl( \frac{2}{\pi} \biggr)^{1/2} \biggl(-\eta^2 \frac{d\phi}{d\eta} \biggr) \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggr]^{-1} = 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) \, . </math> |
Hence, the LAWE relevant to the envelope is,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl[ \frac{\rho^*}{P^*}\biggr] \biggl[ \frac{ M_r^*}{(r^*)} \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} + \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl[ \frac{\rho^*}{ P^* } \biggr] \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_e }{(r^*)^2} \biggl[ \frac{M_r^*}{r^*} \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} + \frac{1}{2\pi \theta_i^4} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-2} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \biggr] \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\alpha_e \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggr]^{-2} \biggl[2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \eta \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \frac{2 \eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} + \frac{1}{2\pi \theta_i^5 \phi} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\alpha_e \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{5}_i (4\pi) \eta^{-1} \biggr] \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \frac{2 \eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} + \frac{1}{2\pi \theta_i^5 \phi} \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} \biggr\} x ~-~ \alpha_e \biggl[ \frac{2\eta}{\phi} \biggl(- \frac{d\phi}{d\eta} \biggr) \biggr] \frac{x}{\eta^2} \, . </math> |
If we assume that, <math>~\alpha_e = (3 - 4/2) = 1</math> and <math>~\sigma_c^2 = 0</math>, then the relevant envelope LAWE is,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ \biggl[ 2 Q \biggr] \frac{x}{\eta^2} \, , </math> |
where,
<math>~ Q \equiv - \frac{d \ln \phi}{ d\ln \eta} \, . </math>
Now consider the,
Precise Solution to the Polytropic LAWE | ||
<math>~x_P</math> |
<math>~=</math> |
<math>~\frac{b(n-1)}{2n}\biggl[1 + \biggl(\frac{n-3}{n-1}\biggr) \biggl( \frac{1}{\eta \phi^{n}}\biggr) \frac{d\phi}{d\eta}\biggr]</math> |
|
<math>~=</math> |
<math>~-b\biggl[ \biggl( \frac{1}{\eta \phi}\biggr) \frac{d\phi}{d\eta}\biggr]</math> |
|
<math>~=</math> |
<math>~\frac{b}{\eta^2}\biggl[ -\frac{d\ln \phi}{d\ln \eta}\biggr] </math> |
|
<math>~=</math> |
<math>~\frac{bQ}{\eta^2} \, .</math> |
From our accompanying discussion, we recall that the most general solution to the <math>n=1</math> Lane-Emden equation can be written in the form,
<math> \phi = A \biggl[ \frac{\sin(\eta - B)}{\eta} \biggr] \, , </math>
where <math>A</math> and <math>B</math> are constants whose values can be obtained from our accompanying parameter table. The first derivative of this function is,
<math> \frac{d\phi}{d\eta} = \frac{A}{\eta^2} \biggl[ \eta\cos(\eta-B) - \sin(\eta-B) \biggr] \, . </math>
Hence,
<math>~Q = -\frac{d\ln\phi}{d\ln\eta}</math> |
<math>~=</math> |
<math>~ - \frac{\eta}{\phi} \cdot \frac{A}{\eta^2} \biggl[ \eta\cos(\eta-B) - \sin(\eta-B) \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[1- \eta\cot(\eta-B) \biggr] </math> |
<math>~\Rightarrow ~~~ x_P</math> |
<math>~=</math> |
<math>~ \frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B) \biggr] \, . </math> |
What is this in terms of the dimensionless radius, <math>~r^*/R^*</math>? Well,
<math>\frac{~r^*}{R^*}</math> |
<math>~=</math> |
<math>\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \biggl[\frac{\sqrt{2\pi}~\theta_i^2}{\eta_s} \biggl(\frac{\mu_e}{\mu_c}\biggr)\biggr]</math> |
|
<math>~=</math> |
<math>\frac{\eta}{\eta_s} = \frac{\eta}{(\pi + B)} </math> |
<math>~\Rightarrow ~~~ \eta</math> |
<math>~=</math> |
<math>\frac{~r^*}{R^*}\biggl(\pi + B \biggr) \, .</math> |
Also,
<math>~\eta-B</math> |
<math>~=</math> |
<math>\frac{~r^*}{R^*}\biggl(\pi + B \biggr) -B = \pi \biggl( \frac{r^*}{R^*}\biggr) - B\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr]</math> |
|
<math>~=</math> |
<math>\pi + \pi \biggl[ \biggl( \frac{r^*}{R^*}\biggr)-1\biggr] - B\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr]</math> |
|
<math>~=</math> |
<math>\pi - (\pi + B)\biggl[1-\biggl( \frac{r^*}{R^*}\biggr)\biggr] \, .</math> |
[12 January 2019]: Here's what appears to work pretty well, empirically:
|
Let's work through the analytic derivatives again. Keeping in mind that,
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - B) \biggr]</math> |
<math>~=</math> |
<math>~ - \biggl[ 1 + \cot^2(\eta - B)\biggr] \, , </math> |
and starting with the guess,
<math>~x_P</math> |
<math>~=</math> |
<math>~ \frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B) \biggr] \, , </math> |
we have,
<math>~ \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~ -\frac{2b}{\eta^3} \biggl[1- \eta\cot(\eta-B) \biggr] - \frac{b}{\eta^2} \biggl\{ \cot(\eta-B) - \eta \biggl[ 1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
<math>~ \Rightarrow ~~~ \biggl( \frac{\eta^3}{b} \biggr) \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~ - \biggl[2- 2\eta\cot(\eta-B) \biggr] - \biggl\{ \eta \cot(\eta-B) - \eta^2 \biggl[ 1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \, . </math> |
The second derivative then gives,
<math>~ \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ \frac{d}{d\eta}\biggl\{ \frac{b}{\eta^3} \biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ - \frac{3b}{\eta^4} \biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] </math> |
|
|
<math>~ +\frac{b}{\eta^3} \biggl\{ 2\eta + \cot(\eta-B) + 2\eta \cot^2(\eta - B) + \eta\frac{d}{d\eta}\biggl[\cot(\eta-B)\biggr] + 2\eta^2\cot(\eta-B) \frac{d}{d\eta} \biggl[ \cot(\eta - B) \biggr] \biggr\} </math> |
<math>~\Rightarrow~~~ \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ \frac{b}{\eta^4} \biggl[ 6 - 3\eta^2 - 3\eta\cot(\eta-B) - 3\eta^2\cot^2(\eta - B) \biggr] </math> |
|
|
<math>~ +\frac{b}{\eta^4} \biggl\{ 2\eta^2 + \eta \cot(\eta-B) + 2\eta^2 \cot^2(\eta - B) - \eta^2\biggl[ 1 + \cot^2(\eta - B)\biggr] - 2\eta^3\cot(\eta-B) \biggl[ 1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
<math>~\Rightarrow~~~\frac{\eta^4}{b}\cdot \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ 6 - 3\eta^2 - 3\eta\cot(\eta-B) - 3\eta^2\cot^2(\eta - B) </math> |
|
|
<math>~ ~+~ 2\eta^2 + \eta \cot(\eta-B) + 2\eta^2 \cot^2(\eta - B) -\eta^2 - \eta^2 \cot^2(\eta - B) - 2\eta^3\cot(\eta-B) - 2\eta^3\cot^3(\eta-B) </math> |
|
<math>~=</math> |
<math>~ 2\biggl[ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-B) - \eta^2\cot^2(\eta - B) - \eta^3\cot^3(\eta-B) \biggr] \, . </math> |
Recalling that,
<math>~Q = \biggl[1- \eta\cot(\eta-B) \biggr] \, ,</math>
plugging these expressions into the relevant envelope LAWE gives,
LAWE |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ 2 Q \cdot \frac{x}{\eta^2} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x}{\eta^2} </math> |
|
<math>~=</math> |
<math>~\frac{b}{\eta^4} \biggl\{ \frac{\eta^4}{b} \cdot \frac{d^2x}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b} \cdot \frac{dx}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x}{b} \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-B) - \eta^2\cot^2(\eta - B) - \eta^3\cot^3(\eta-B) </math> |
|
|
<math>~ + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[1- \eta\cot(\eta-B) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-B) - \eta^2\cot^2(\eta - B) - \eta^3\cot^3(\eta-B) + \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] </math> |
|
|
<math>~ + \eta\cot(\eta-B) \biggl[\eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B)\biggr] ~+~\eta\cot(\eta-B) \biggl[1- \eta\cot(\eta-B) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ - (\eta + \eta^3)\cot(\eta-B) - \eta^3\cot^3(\eta-B) ~+~2\eta\cot(\eta-B) </math> |
|
|
<math>~ + \eta^3\cot(\eta-B) -2 \eta\cot(\eta-B) + \eta^2\cot^2(\eta-B) + \eta^3\cot^3(\eta - B) ~+~\eta\cot(\eta-B) ~-~\eta^2\cot^2(\eta-B) \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ [- \eta \cot(\eta-B) - \eta\cot(\eta-B) ~+~2\eta\cot(\eta-B) ] + [\eta^3\cot(\eta-B) - \eta^3 \cot(\eta-B) ] </math> |
|
|
<math>~ + [\eta^2\cot^2(\eta-B) ~-~\eta^2\cot^2(\eta-B) ] + [\eta^3\cot^3(\eta - B) - \eta^3\cot^3(\eta-B) ] \biggr\} </math> |
|
<math>~=</math> |
<math>~0 \, .</math> |
Okay. Now let's determine at what value of <math>~\eta</math> the logarithmic derivative of <math>~x_P</math> goes to negative one.
<math>~\frac{d\ln x_P}{d\ln \eta} = \frac{\eta}{x_P} \cdot \frac{dx_P}{d\eta} </math> |
<math>~=</math> |
<math>~\frac{\eta^3}{b }\biggl[1- \eta\cot(\eta-B) \biggr]^{-1} \cdot \frac{dx_P}{d\eta} </math> |
|
<math>~=</math> |
<math>~ \biggl[1- \eta\cot(\eta-B) \biggr]^{-1} \biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] \, . </math> |
Setting this to negative one, we have,
<math>~ -\biggl[1- \eta\cot(\eta-B) \biggr] </math> |
<math>~=</math> |
<math>~ \biggl[ \eta^2 -2 + \eta\cot(\eta-B) + \eta^2\cot^2(\eta - B) \biggr] </math> |
<math>~ \Rightarrow~~~1 </math> |
<math>~=</math> |
<math>~ \eta^2\biggl[ 1 + \cot^2(\eta - B) \biggr] </math> |
|
<math>~=</math> |
<math>~ \eta^2\biggl[ \frac{1}{\sin^2(\eta - B)} \biggr] </math> |
<math>~ \Rightarrow~~~1 </math> |
<math>~=</math> |
<math>~ \frac{\eta^2}{\sin^2(\eta - B)} \, . </math> |
And this occurs when,
<math>~\biggl(\frac{A}{\phi } \biggr)^2 = 1 \, .</math>
Third Attempt
Prior to the Brute-Force Trial Fit
Let's work through the analytic derivatives again. Keeping in mind that,
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - C) \biggr]</math> |
<math>~=</math> |
<math>~ - \biggl[ 1 + \cot^2(\eta - C)\biggr] \, , </math> |
and starting with the guess,
<math>~x_P</math> |
<math>~=</math> |
<math>~ \frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-C) \biggr] \, , </math> |
we have,
<math>~ \biggl( \frac{\eta^3}{b} \biggr) \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~ \eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C) \, , </math> |
and,
<math>~\frac{\eta^4}{b}\cdot \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ 2\biggl[ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-C) - \eta^2\cot^2(\eta - C) - \eta^3\cot^3(\eta-C) \biggr] \, . </math> |
Note that the relevant logarithmic derivative is,
If we know the logarithmic slope and the value of <math>~\eta</math> at the interface, then we can solve for <math>~y_i \equiv \eta_i \cot(\eta_i-C) \, ,</math> via the quadratic relation,
(In practice it appears as though the "plus" solution to this quadratic equation is desired if the quantity inside the last set of curly braces is positive; and the "minus" solution is desired if this quantity is negative.) Once the value of <math>~y_i</math> is known, we can solve for the key coefficient, <math>~C</math>, via the relation,
|
Recalling that,
<math>~Q = \biggl[1- \eta\cot(\eta-B) \biggr] \, ,</math>
plugging these expressions into the relevant envelope LAWE gives,
LAWE |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ 2 Q \cdot \frac{x}{\eta^2} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x}{\eta^2} </math> |
|
<math>~=</math> |
<math>~\frac{b}{\eta^4} \biggl\{ \frac{\eta^4}{b} \cdot \frac{d^2x}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b} \cdot \frac{dx}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x}{b} \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-C) - \eta^2\cot^2(\eta - C) - \eta^3\cot^3(\eta-C) </math> |
|
|
<math>~ + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[1- \eta\cot(\eta-C) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ 3 - \eta^2 - (\eta + \eta^3)\cot(\eta-C) - \eta^2\cot^2(\eta - C) - \eta^3\cot^3(\eta-C) + \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] ~-~ \biggl[1- \eta\cot(\eta-C) \biggr] </math> |
|
|
<math>~ + \eta\cot(\eta-B) \biggl[\eta^2 -2 + \eta\cot(\eta-C) + \eta^2\cot^2(\eta - C)\biggr] ~+~\eta\cot(\eta-B) \biggl[1- \eta\cot(\eta-C) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ (\eta - \eta^3)\cot(\eta-C) - \eta^3\cot^3(\eta-C) + \eta\cot(\eta-B) \biggl[\eta^2 -1 + \eta^2\cot^2(\eta - C) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl\{ (\eta - \eta^3) [ \cot(\eta-C) - \cot(\eta-B) ] + \eta^3 \cot^2(\eta - C) [\cot(\eta-B)- \cot(\eta-C)] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^4} \biggl[ \cot(\eta-C) - \cot(\eta-B) \biggr] \biggl[ \eta - \eta^3 - \eta^3 \cot^2(\eta - C) \biggr] </math> |
|
<math>~=</math> |
<math>~\frac{2b}{\eta^3} \biggl[ \cot(\eta-C) - \cot(\eta-B) \biggr] \biggl\{ 1 - \eta^2\biggl[1 + \cot^2(\eta - C)\biggr] \biggr\}\, . </math> |
This will go to zero if <math>~C = (B-2m\pi), </math> where <math>~m</math> is a positive integer. When <math>~m =1</math>, for example,
<math>~\cot(\eta-C)</math> |
<math>~=</math> |
<math>~\cot[\eta - (B-2\pi)] = \cot(\eta -B) \, . </math> |
Okay. Now let's determine at what value of <math>~\eta</math> the logarithmic derivative of <math>~x_P</math> goes to negative one.
Brute-Force Trial Fit
Using a couple of separate Excel spreadsheets — FaulknerBipolytrope2.xlsx/mu100Mode0 and AnalyticTrialBipolytropeA.xlsx/Sheet2, both stored in a DropBox account under the folder Wiki_edits/Bipolytrope/LinearPerturbation — we used an inelegant and inefficient trial & error technique in search of an eigenfunction that had the same analytic form as the one represented above for <math>~x_P</math>, but that, when plotted, appeared to qualitatively match the numerically determined envelope eigenfunction. Then, on a whiteboard — see the photo, here on the right — we formulated a concise expression for a trial function that seemed to work pretty well. Our primary finding was that <math>~\alpha</math>, appearing as the argument to the <math>~\tan\alpha</math> function, needed to be shifted by something like <math>~-3\pi/4</math>.
THIS SPACE INTENTIONALLY LEFT BLANK
|
Following Up on the Brute-Force Trial Fit
In an accompanying discussion — see especially Attempt #2 — we have determined by visual inspection that a decent fit to the envelope's eigenfunction is given by the expression,
<math>~x_\mathrm{trial}</math> |
<math>~=</math> |
<math>~ \frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \biggl[ \frac{\tan(\eta_i - \Lambda - 3\pi/4) + f_\alpha}{1 - f_\alpha \cdot \tan(\eta_i - \Lambda - 3\pi/4)} \biggr] \biggr\} - a_0 </math> |
|
<math>~=</math> |
<math>~ \frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \cot(\Lambda - E)\biggr\} - a_0 \, , </math> |
Limiting Parameter Values | |||
---|---|---|---|
min | max | <math>~\alpha = \alpha_s</math> | |
<math>~\eta_\mathrm{F}</math> | <math>~\eta_i</math> | <math>~\eta_s</math> | <math>~\frac{8}{\pi} ( \eta_s - \eta_i )^2 + 2\eta_s - \eta_i</math> |
<math>~\alpha</math> | <math>~-\frac{\pi}{2}</math> | <math>~-\frac{5\pi}{8}</math> | <math>~\eta_i - \eta_s - \frac{3\pi}{4}</math> |
<math>~\Lambda</math> | <math>~\eta_i - \frac{\pi}{4}</math> | <math>~\eta_i - \frac{\pi}{8}</math> | <math>~\eta_s</math> |
where, over the range, <math>~\eta_i \le \eta \le \eta_s \, ,</math>
<math>~E</math> |
<math>~\equiv</math> |
<math>~\eta_i - \frac{5\pi}{4} + \tan^{-1} f_\alpha \, ,</math> |
<math>~\Lambda(\eta)</math> |
<math>~\equiv</math> |
<math>~ \eta_i + g_\mathrm{F} \biggl[ \eta_i - 2\eta_s + \eta \biggr] = \Lambda_0 + g_\mathrm{F}\eta \, ,</math> |
<math>~\frac{1}{f_\alpha} = \tan(\alpha_s)</math> |
<math>~\equiv</math> |
<math>~ \tan[ - (\eta_s - \eta_i + \tfrac{3\pi}{4}) ] \, ,</math> |
<math>~g_\mathrm{F}</math> |
<math>~\equiv</math> |
<math>~ \frac{\pi}{8(\eta_s - \eta_i)} \, .</math> |
Here, we reference a separate discussion of the bipolytrope's underlying equilibrium structure
<math>~B = \eta_i - \frac{\pi}{2} + \tan^{-1}f</math> | <math>~E = \eta_i - \frac{5\pi}{4} + \tan^{-1}f_\alpha</math> | ||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||
Also … <math>~B = \eta_s - \pi</math> | <math>~</math> | ||||||||||||||||||||||||||||||
|
<math>~</math> |
Let's examine the first and second derivatives of this trial eigenfunction, recognizing that,
<math>~\frac{dx_\mathrm{trial}}{d\eta} = \frac{d\Lambda}{d\eta} \cdot \frac{dx_\mathrm{trial}}{d\Lambda}= g_\mathrm{F} \cdot \frac{dx_\mathrm{trial}}{d\Lambda}</math> |
and |
<math>~\frac{d^2x_\mathrm{trial}}{d\eta^2} = \frac{d\Lambda}{d\eta} \cdot \frac{d}{d\Lambda} \biggl[ g_\mathrm{F}\cdot \frac{dx_\mathrm{trial}}{d\Lambda} \biggr] = g_\mathrm{F}^2 \cdot \frac{d^2x_\mathrm{trial}}{d\Lambda^2} \, . </math> |
and drawing from the derivative expressions already derived, above. For the first derivative, we have,
<math>~\frac{dx_\mathrm{trial}}{d\eta}</math> |
<math>~=</math> |
<math>~ g_\mathrm{F} \biggl( \frac{b_0}{\Lambda^3} \biggr) \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] \, . </math> |
And the second derivative gives,
<math>~\frac{d^2x_\mathrm{trial}}{d\eta^2}</math> |
<math>~=</math> |
<math>~ g_\mathrm{F}^2 \biggl(\frac{2b_0}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 - (\Lambda + \Lambda^3)\cot(\Lambda-E) - \Lambda^2\cot^2(\Lambda - E) - \Lambda^3\cot^3(\Lambda-E) \biggr] \, . </math> |
Hence,
LAWE |
<math>~=</math> |
<math>~ \frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx_\mathrm{trial}}{d\eta} ~-~ 2 Q \cdot \frac{x_\mathrm{trial}}{\eta^2} </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl\{ 4 -2 \biggl[1- \eta\cot(\eta-B) \biggr]\biggr\}\frac{1}{\eta} \cdot \frac{dx_\mathrm{trial}}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2x_\mathrm{trial}}{\eta^2} </math> |
|
<math>~=</math> |
<math>~\frac{b_0}{\eta^4} \biggl\{ \frac{\eta^4}{b_0} \cdot \frac{d^2x_\mathrm{trial}}{d\eta^2} + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b_0} \cdot \frac{dx_\mathrm{trial}}{d\eta} ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 x_\mathrm{trial}}{b_0} \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{b_0}{\eta^4} \biggl\{ \frac{\eta^4}{b_0} \cdot g_\mathrm{F}^2 \biggl(\frac{2b_0}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 - (\Lambda + \Lambda^3)\cot(\Lambda-E) - \Lambda^2\cot^2(\Lambda - E) - \Lambda^3\cot^3(\Lambda-E) \biggr] </math> |
|
|
<math>~ + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \frac{2\eta^3}{b_0} \cdot g_\mathrm{F} \biggl( \frac{b_0}{\Lambda^3} \biggr) \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] </math> |
|
|
<math>~ ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \frac{2\eta^2 }{b_0} \cdot \biggl[\frac{b_0}{\Lambda^2} \biggl\{ 1 - \Lambda \cot(\Lambda - E)\biggr\} - a_0\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{b_0}{\eta^4} \biggl\{ g_\mathrm{F}^2 \biggl(\frac{2\eta^4}{\Lambda^4} \biggr) \biggl[ 3 - \Lambda^2 - (\Lambda + \Lambda^3)\cot(\Lambda-E) - \Lambda^2\cot^2(\Lambda - E) - \Lambda^3\cot^3(\Lambda-E) \biggr] </math> |
|
|
<math>~ + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \cdot g_\mathrm{F} \biggl( \frac{2\eta^3}{\Lambda^3} \biggr) \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] </math> |
|
|
<math>~ ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[\frac{2\eta^2}{\Lambda^2} [ 1 - \Lambda \cot(\Lambda - E) ] - \frac{2\eta^2 a_0}{b_0} \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{2b_0}{\Lambda^4\eta^2} \biggl\{ g_\mathrm{F}^2 \eta^2 \biggl[ 3 - \Lambda^2 - (\Lambda + \Lambda^3)\cot(\Lambda-E) - \Lambda^2\cot^2(\Lambda - E) - \Lambda^3\cot^3(\Lambda-E) \biggr] </math> |
|
|
<math>~ + \biggl[ 1 + \eta\cot(\eta-B) \biggr] \cdot g_\mathrm{F} \Lambda \eta \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] </math> |
|
|
<math>~ ~-~ \biggl[1- \eta\cot(\eta-B) \biggr] \biggl[\Lambda^2 [ 1 - \Lambda \cot(\Lambda - E) ] - \frac{a_0\Lambda^4}{b_0} \biggr] \biggr\} </math> |
<math>~\Rightarrow~~~\biggl(\frac{\Lambda^4}{2b_0}\biggr) \cdot</math> LAWE |
<math>~=</math> |
<math>~ g_\mathrm{F}^2 \biggl[ 3 - \Lambda^2 - (\Lambda + \Lambda^3)\cot(\Lambda-E) - \Lambda^2\cot^2(\Lambda - E) - \Lambda^3\cot^3(\Lambda-E) \biggr] </math> |
|
|
<math>~ + \frac{g_\mathrm{F} \Lambda}{ \eta } \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] ~-~ \biggl(\frac{\Lambda}{\eta}\biggr)^2\biggl[ 1 - \Lambda \cot(\Lambda - E) - \frac{a_0\Lambda^2}{b_0} \biggr] </math> |
|
|
<math>~ + \biggl[ \eta\cot(\eta-B) \biggr] \biggl\{ \frac{g_\mathrm{F} \Lambda }{\eta } \biggl[ \Lambda ^2 -2 + \Lambda\cot(\Lambda-E) + \Lambda^2\cot^2(\Lambda - E) \biggr] ~+~ \biggl( \frac{\Lambda}{\eta}\biggr)^2 \biggl[ 1 - \Lambda \cot(\Lambda - E) - \frac{a_0\Lambda^2}{b_0 }\biggr] \biggr\} </math> |
Fourth Attempt
XXXX
If we assume that, <math>~\alpha_e = (3 - 4/2) = 1</math> and <math>~\sigma_c^2 = 0</math>, then the relevant envelope LAWE is,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 -2Q \biggr\}\frac{1}{\eta} \cdot \frac{dx}{d\eta} ~-~ \biggl[ 2 Q \biggr] \frac{x}{\eta^2} \, , </math> |
where,
<math>~Q \equiv - \frac{d \ln \phi}{ d\ln \eta}</math> |
<math>~=</math> |
<math>~ \biggl[1- \eta\cot(\eta-B_0) \biggr] \, . </math> |
Let's work through the analytic derivatives again. Keeping in mind that,
<math>~\frac{d}{d\eta}\biggl[\cot(\eta - B) \biggr]</math> |
<math>~=</math> |
<math>~ - \biggl[ 1 + \cot^2(\eta - B)\biggr] \, ; </math> |
and that the,
Precise Solution to the Polytropic LAWE | ||
<math>~x_P</math> |
<math>~=</math> |
<math>~\frac{b(n-1)}{2n}\biggl[1 + \biggl(\frac{n-3}{n-1}\biggr) \biggl( \frac{1}{\eta \phi^{n}}\biggr) \frac{d\phi}{d\eta}\biggr]</math> |
|
<math>~=</math> |
<math>~-b\biggl[ \biggl( \frac{1}{\eta \phi}\biggr) \frac{d\phi}{d\eta}\biggr]</math> |
|
<math>~=</math> |
<math>~\frac{b}{\eta^2}\biggl[ -\frac{d\ln \phi}{d\ln \eta}\biggr] </math> |
|
<math>~=</math> |
<math>~\frac{bQ}{\eta^2} </math> |
<math>~\Rightarrow ~~~ x_P</math> |
<math>~=</math> |
<math>~ \frac{b}{\eta^2} \biggl[1- \eta\cot(\eta-B_0) \biggr] \, . </math> |
As we have already tried once, above, let's try a more general form of this expression, namely,
<math>~x_Q</math> |
<math>~=</math> |
<math>~ A + \frac{C}{(\eta - F)^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] \, . </math> |
Hence,
<math>~\frac{dx_Q}{d\eta}</math> |
<math>~=</math> |
<math>~ \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] \frac{d}{d\eta}\biggl[ \frac{C}{(\eta - F)^2} \biggr] - \frac{C}{(\eta - F)^2} \frac{d}{d\eta} \biggl[ (\eta-D) \cot(\eta-B) \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[1 - (\eta-D) \cot(\eta-B) \biggr]\biggl[ \frac{-2C}{(\eta - F)^3} \biggr] - \frac{C}{(\eta - F)^2} \biggl[ \cot(\eta-B) \biggr] + \frac{C(\eta - D)}{(\eta - F)^2}\biggl[1 + \cot^2(\eta - B)\biggr] </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^3} \biggl\{ - 2 + 2(\eta-D) \cot(\eta-B) - (\eta - F) \biggl[ \cot(\eta-B) \biggr] + (\eta - D)(\eta - F) \biggl[1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^3} \biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} \, . </math> |
And,
<math>~\frac{d^2x_Q}{d\eta^2}</math> |
<math>~=</math> |
<math>~\biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} \frac{d}{d\eta}\biggl[\frac{C}{(\eta-F)^3} \biggr] </math> |
|
|
<math>~+\frac{C}{(\eta-F)^3} \cdot \frac{d}{d\eta} \biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} </math> |
|
<math>~=</math> |
<math>~\biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} \biggl[\frac{-3C}{(\eta-F)^4} \biggr] </math> |
|
|
<math>~+\frac{C}{(\eta-F)^3} \biggl\{ [2\eta - (D+F) ] + \cot(\eta-B) - (\eta - 2D + F) \biggl[1 + \cot^2(\eta-B) \biggr] + [2\eta -(D+F) ] \cot^2(\eta - B) - 2[\eta^2 -\eta(D+F) + DF]\cot(\eta - B)\biggl[1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^4} \biggl\{ -3[(\eta - D)(\eta - F) - 2] - 3(\eta - 2D + F) \cot(\eta-B) - 3 (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} </math> |
|
|
<math>~+\frac{C}{(\eta-F)^3} \biggl\{ [2\eta - (D+F) ] - (\eta - 2D + F) + \cot(\eta-B) - (\eta - 2D + F) \cot^2(\eta-B) + [2\eta -(D+F) ] \cot^2(\eta - B) - 2[\eta^2 -\eta(D+F) + DF]\cot(\eta - B) - 2[\eta^2 -\eta(D+F) + DF]\cot^3(\eta - B) \biggr\} </math> |
YYYY
And,
<math>~\frac{d^2 x_Q}{d\eta^2}</math> |
<math>~=</math> |
<math>~\biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} \frac{d}{d\eta}\biggl[\frac{C}{(\eta-F)^3} \biggr] </math> |
|
|
<math>~ +\frac{C}{(\eta-F)^3} \cdot \frac{d}{d\eta}\biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} </math> |
|
<math>~=</math> |
<math>~\biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\}\biggl[\frac{-3C}{(\eta-F)^4} \biggr] </math> |
|
|
<math>~ +\frac{C}{(\eta-F)^3} \cdot \biggl\{ \frac{d}{d\eta}\biggl[ (\eta - 2D + F) \cot(\eta-B) \biggr] +\frac{d}{d\eta}\biggl[ (\eta - D)(\eta - F) \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^4} \biggl\{ -3[(\eta - D)(\eta - F) - 2] -3(\eta - 2D + F) \cot(\eta-B) -3(\eta - D)(\eta - F) \cot^2(\eta - B) </math> |
|
|
<math>~ + (\eta-F)\frac{d}{d\eta}\biggl[ (\eta - 2D + F) \cot(\eta-B) \biggr] +(\eta-F)\frac{d}{d\eta}\biggl[ (\eta - D)(\eta - F) \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^4} \biggl\{ -3[(\eta - D)(\eta - F) - 2] -3(\eta - 2D + F) \cot(\eta-B) -3(\eta - D)(\eta - F) \cot^2(\eta - B) </math> |
|
|
<math>~ + (\eta-F) \cot(\eta-B) \frac{d}{d\eta}\biggl[ (\eta - 2D + F) \biggr] + (\eta-F) (\eta - 2D + F) \frac{d}{d\eta}\biggl[ \cot(\eta-B) \biggr] </math> |
|
|
<math>~ +(\eta-F) \cot^2(\eta - B) \frac{d}{d\eta}\biggl[ \eta^2 -\eta(D+F) + DF \biggr] +(\eta-F) (\eta - D)(\eta - F) \frac{d}{d\eta}\biggl[ \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^4} \biggl\{ -3[(\eta - D)(\eta - F) - 2] -3(\eta - 2D + F) \cot(\eta-B) -3(\eta - D)(\eta - F) \cot^2(\eta - B) </math> |
|
|
<math>~ + (\eta-F) \cot(\eta-B) - (\eta-F) (\eta - 2D + F) \biggl[ 1 + \cot^2(\eta - B)\biggr] </math> |
|
|
<math>~ +(\eta-F) \cot^2(\eta - B) \biggl[ 2\eta - (D+F) \biggr] -2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B)\biggl[ 1 + \cot^2(\eta - B)\biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{C}{(\eta-F)^4} \biggl\{ -3[(\eta - D)(\eta - F) - 2] - (\eta-F) (\eta - 2D + F) </math> |
|
|
<math>~ + \biggl[ (\eta-F) -3(\eta - 2D + F) -2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) </math> |
|
|
<math>~ +\biggl[ (\eta-F) [ 2\eta - (D+F) ] -3(\eta - D)(\eta - F) -2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) - (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) \biggr\} </math> |
So the envelope LAWE becomes,
<math>~\frac{(\eta-F)^4}{C} \cdot \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{(\eta-F)^4}{C} \cdot \frac{d^2x_Q}{d\eta^2} + \frac{(\eta-F)^4}{C} \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \cdot \frac{dx_Q}{d\eta} ~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2x_Q}{\eta^2} </math> |
|
<math>~=</math> |
<math>~ \biggl\{ -3[(\eta - D)(\eta - F) - 2] - (\eta-F) (\eta - 2D + F) + \biggl[ (\eta-F) -3(\eta - 2D + F) -2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) </math> |
|
|
<math>~ +\biggl[ (\eta-F) [ 2\eta - (D+F) ] -3(\eta - D)(\eta - F) -2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) - (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) \biggr\} </math> |
|
|
<math>~ + (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) + (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr\} </math> |
|
|
<math>~ ~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl\{ A + \frac{C}{(\eta - F)^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] \biggr\} </math> |
|
<math>~=</math> |
<math>~ -3[(\eta - D)(\eta - F) - 2] - (\eta-F) (\eta - 2D + F) + \biggl[ (\eta-F) -3(\eta - 2D + F) -2 (\eta-F) (\eta - D)(\eta - F)\biggr] \cot(\eta - B) </math> |
|
|
<math>~ + (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ [(\eta - D)(\eta - F) - 2] + (\eta - 2D + F) \cot(\eta-B) \biggr\} </math> |
|
|
<math>~ +\biggl[ (\eta-F) [ 2\eta - (D+F) ] -3(\eta - D)(\eta - F) -2 (\eta-F) (\eta - D)(\eta - F) \cot(\eta - B) - (\eta-F) (\eta - 2D + F)\biggr] \cot^2(\eta - B) </math> |
|
|
<math>~ + (\eta-F) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl[ (\eta - D)(\eta - F) \cot^2(\eta - B) \biggr] ~-~ (\eta-F)^2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl[1 - (\eta-D) \cot(\eta-B) \biggr] </math> |
|
|
<math>~ ~-~ \frac{(\eta-F)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2A}{\eta^2} \, . </math> |
What does this reduce to if <math>~A = D = F = 0</math>.
<math>~\frac{\eta^4}{C} \cdot \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ -3[(\eta )(\eta ) - 2] - (\eta) (\eta ) + \biggl[ (\eta) -3(\eta ) -2 (\eta) (\eta )(\eta )\biggr] \cot(\eta - B) </math> |
|
|
<math>~ + (\eta) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl\{ [(\eta )(\eta ) - 2] + (\eta ) \cot(\eta-B) \biggr\} </math> |
|
|
<math>~ +\biggl[ (\eta) [ 2\eta ] -3(\eta )(\eta ) -2 (\eta) (\eta )(\eta) \cot(\eta - B) - (\eta-) (\eta )\biggr] \cot^2(\eta - B) </math> |
|
|
<math>~ + (\eta) \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta} \biggl[ (\eta )(\eta ) \cot^2(\eta - B) \biggr] ~-~ (\eta)^2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2}{\eta^2} \biggl[1 - (\eta) \cot(\eta-B) \biggr] </math> |
|
|
<math>~ ~-~ \frac{(\eta)^4}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \frac{2A}{\eta^2} \, . </math> |
|
<math>~=</math> |
<math>~ 6 - 4\eta^2 -2 (\eta + \eta^3 ) \cot(\eta - B) + 2 \biggl[ 1 + \eta\cot(\eta-B_0) \biggr] \biggl[ \eta^2 - 2 + \eta \cot(\eta-B) \biggr] - 2\biggl[ \eta^2 + \eta^3 \cot(\eta - B) \biggr] \cot^2(\eta - B) </math> |
|
|
<math>~ + 2 \biggl[ 1 + \eta\cot(\eta-B_0) \biggr]\biggl[ \eta^2 \cot^2(\eta - B) \biggr] ~-~2 \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \biggl[1 - \eta \cot(\eta-B) \biggr] ~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] </math> |
|
<math>~=</math> |
<math>~ 6 - 4\eta^2 -2 (\eta + \eta^3 ) \cot(\eta - B) + 2\eta^2 - 4 + 2\eta \cot(\eta-B) + 2 \eta^3 \cot(\eta-B_0) ~-~4 \eta\cot(\eta-B_0) + 2 \eta^2\cot(\eta-B_0) \cot(\eta-B) - 2\eta^2 \cot^2(\eta - B) - 2 \eta^3 \cot^3(\eta - B) </math> |
|
|
<math>~ + 2 \eta^2 \cot^2(\eta - B) + 2 \eta^3 \cot(\eta-B_0) \cot^2(\eta - B) -2 + 4 \eta\cot(\eta-B_0) - 2\eta^2\cot^2(\eta-B_0) ~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] </math> |
|
<math>~=</math> |
<math>~ - 2\eta^2 -2 \eta^3 \biggl[ \cot(\eta - B) + \cot^3(\eta - B) \biggr] + \cot(\eta-B_0) \biggl[ 2 \eta^3 + 2 \eta^2 \cot(\eta-B) + 2 \eta^3 \cot^2(\eta - B) \biggr] - 2\eta^2\cot^2(\eta-B_0) ~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] </math> |
|
<math>~=</math> |
<math>~ - 2\eta^2 + 2 \eta^3\biggl[ \cot(\eta-B_0) - \cot(\eta-B)\biggr] \biggl[ 1 + \cot^2(\eta - B)\biggr] + 2 \eta^2 \cot(\eta-B_0)\biggl[ \cot(\eta-B) - \cot(\eta-B_0) \biggr] ~-~ \frac{2A\eta^2}{C} \biggl[ 1- \eta\cot(\eta-B_0) \biggr] \, . </math> |
Related Discussions
- Radial Oscillations of Uniform-density sphere
- Radial Oscillations of Isolated Polytropes
- Setup
- n = 1: Attempt at Formulating an Analytic Solution
- n = 3: Numerical Solution to compare with M. Schwarzschild (1941)
- n = 5: Attempt at Formulating an Analytic Solution
- In an accompanying Chapter within our "Ramblings" Appendix, we have played with the adiabatic wave equation for polytropes, examining its form when the primary perturbation variable is an enthalpy-like quantity, rather than the radial displacement of a spherical mass shell. This was done in an effort to mimic the approach that has been taken in studies of the stability of Papaloizou-Pringle tori.
- <math>~n=3</math> … M. Schwarzschild (1941, ApJ, 94, 245), Overtone Pulsations of the Standard Model: This work is referenced in §38.3 of [KW94]. It contains an analysis of the radial modes of oscillation of <math>~n=3</math> polytropes, assuming various values of the adiabatic exponent.
- <math>~n=2</math> … C. Prasad & H. S. Gurm (1961, MNRAS, 122, 409), Radial Pulsations of the Polytrope, n = 2
- <math>~n=\tfrac{3}{2}</math> … D. Lucas (1953, Bul. Soc. Roy. Sci. Liege, 25, 585) … Citation obtained from the Prasad & Gurm (1961) article.
- <math>~n=1</math> … L. D. Chatterji (1951, Proc. Nat. Inst. Sci. [India], 17, 467) … Citation obtained from the Prasad & Gurm (1961) article.
- Composite Polytropes … M. Singh (1968, MNRAS, 140, 235-240), Effect of Central Condensation on the Pulsation Characteristics
- Summary of Known Analytic Solutions … R. Stothers (1981, MNRAS, 197, 351-361), Analytic Solutions of the Radial Pulsation Equation for Rotating and Magnetic Star Models
- Interesting Composite! … C. Prasad (1948, MNRAS, 108, 414-416), Radial Oscillations of a Particular Stellar Model
© 2014 - 2021 by Joel E. Tohline |