Difference between revisions of "User:Tohline/Appendix/Ramblings/PowerSeriesExpressions"
(52 intermediate revisions by the same user not shown) | |||
Line 31: | Line 31: | ||
</div> | </div> | ||
<table border="1" align="center" cellpadding="8" width="70%"> | |||
<tr> | |||
<th align="center" bgcolor="yellow"> | |||
LaTeX mathematical expressions cut-and-pasted directly from | |||
<br /> | |||
NIST's ''Digital Library of Mathematical Functions'' | |||
</th> | |||
</tr> | |||
<tr> | |||
<td align="left"> | |||
As a primary point of reference, note that according to [http://dlmf.nist.gov/1.2 §1.2 of NIST's ''Digital Library of Mathematical Functions''], the binomial theorem states that, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(a+b)^{n}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 47: | Line 53: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 | a^{n}+\binom{n}{1}a^{n-1}b+\binom{n}{2}a^{n-2}b^{2}+\dots+\binom{n}{n-1}ab^{n-1}+b^{n}, | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</ | where, for nonnegative integer values of <math>~k</math> and <math>~n</math> and <math>~k \le n</math>, the notation, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\binom{n}{k}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 75: | Line 71: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \frac{n!}{(n-k)!k!}=\binom{n}{n-k}. | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
---- | |||
< | |||
'''Our Example:''' Setting <math>~a = 1</math> gives, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(1+b)^{n}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 95: | Line 91: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1+\binom{n}{1}b+\binom{n}{2}b^{2}+\binom{n}{3}b^{3}+\binom{n}{4}b^{4}+\dots | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 115: | Line 105: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | 1+\frac{n!}{(n-1)!}~b + \frac{n!}{(n-2)! 2!}~b^{2} + \frac{n!}{(n-3)! 3!}~b^{3} + \frac{n!}{(n-4)! 4!}~b^{4} + \dots | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 135: | Line 119: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 | 1+ nb + \biggl[ \frac{n(n-1)}{2!}\biggr] b^{2} + \biggl[ \frac{n(n-1)(n-2)}{3!} \biggr] b^{3} + \biggl[ \frac{n(n-1)(n-2)(n-3)}{4!} \biggr] b^{4} + \dots | ||
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</ | |||
</td> | |||
< | </tr> | ||
</table> | |||
Note, for example, that, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(1+x)^{-1}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1 - x +x^2 - x^3 + x^4 - x^5 + \cdots \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 164: | Line 147: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~(1+x)^{-2}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 170: | Line 153: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1 - 2x + 3x^2 - 4x^3 + 5x^4 - 6x^5 + \cdots \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(1+x)^{-3}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1 - 3x + \biggl[ \frac{3\cdot 4 }{ 2} \biggr]x^2 - \biggl[ \frac{ 3\cdot 4 \cdot 5}{ 2\cdot 3} \biggr]x^3 | ||
1 | + \biggl[ \frac{3\cdot 4 \cdot 5 \cdot 6 }{2\cdot 3 \cdot 4 } \biggr]x^4 - \biggl[ \frac{3\cdot 4 \cdot 5 \cdot 6 \cdot 7}{2\cdot 3 \cdot 4 \cdot 5 } \biggr]x^5 + \cdots </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 200: | Line 175: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1 - 3x + 6x^2 - 10x^3 + 15x^4 - 21x^5 + \cdots \, ;</math> | ||
1 | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 211: | Line 184: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~(1+x)^{-4}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1 - 4x + \biggl[ \frac{4\cdot 5 }{ 2} \biggr]x^2 - \biggl[ \frac{ 4\cdot 5 \cdot 6}{ 2\cdot 3} \biggr]x^3 | ||
1 | + \biggl[ \frac{4\cdot 5 \cdot 6 \cdot 7 }{2\cdot 3 \cdot 4 } \biggr]x^4 - \biggl[ \frac{4\cdot 5 \cdot 6 \cdot 7 \cdot 8}{2\cdot 3 \cdot 4 \cdot 5 } \biggr]x^5 + \cdots </math> | ||
</td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~1 - 4x + 10 x^2 - 20x^3 | ||
+ 35x^4 - 56x^5 + \cdots \, .</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
See also: | |||
* [http://mathworld.wolfram.com/BinomialTheorem.html Wolfram's presentation] | |||
===Exponential=== | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~e^x</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
==Expressions with Astrophysical Relevance== | |||
===Polytropic Lane-Emden Function=== | |||
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation, | |||
<div align="center"> | |||
{{ User:Tohline/Math/EQ_SSLaneEmden01 }} | |||
</div> | |||
A general power-series should be of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Theta_H</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align=" | <td align="left"> | ||
<math>~ | <math>~ | ||
\theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
First derivative: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\xi | <math>~\frac{d\Theta_H}{d\xi}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Left-hand-side of Lane-Emden equation: | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 306: | Line 287: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 312: | Line 293: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the [[#Binomial|binomial theorem]] recursively): | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Theta_H^n</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 324: | Line 313: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{n( | <math>~ | ||
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 | |||
~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3 | |||
+ \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4 | |||
~~+ ~~ \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
where, | |||
<div align="center"> | |||
<div | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~F</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 367: | Line 349: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~e^{ | <math>~ | ||
a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
<font color="red">First approximation</font>: Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>. This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 380: | Line 362: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Theta_H^n</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2 | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. Remembering to include a negative sign on the RHS, we find: | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\xi^{-1}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~2a</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~0</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~a=0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\xi^{0}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~2\cdot 3 b</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~-1</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~b=- \frac{1}{6}</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 468: | Line 445: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\xi^{1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2^2\cdot 3 c</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~-na</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\Rightarrow ~~~c=0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\xi^{2}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~2^2\cdot 5 d</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~d=+\frac{n}{120}</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds: | |||
* Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged. | |||
* The coefficient is zero for all other terms that contain ''odd'' powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>. | |||
* The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~f</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 508: | Line 491: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8} \biggr) \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 516: | Line 497: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~h</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{n(122n^2 -183n + 70)}{3265920} \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
<tr> | |||
In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is: | |||
<div align="center" id="PolytropicLaneEmden"> | |||
<table border="1" width="80%" cellpadding="8" align="center"> | |||
<tr><th align="center">For Spherically Symmetric Configurations</th></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~\theta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 - \frac{n}{378} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^6 + \biggl[ \frac{n(122n^2 -183n + 70)}{3265920} \biggr] \xi^8 + \cdots | |||
\ | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</td></tr></table> | |||
</div> | |||
NOTE: For cylindrically symmetric, rather than spherically symmetric, configurations, the analogous power-series expression appears as equation (15) in the article by [http://adsabs.harvard.edu/abs/1964ApJ...140.1056O J. P. Ostriker (1964, ApJ, 140, 1056)] titled, ''The Equilibrium of Polytropic and Isothermal Cylinders''. | |||
===Isothermal Lane-Emden Function=== | |||
<!-- As we have discussed in [[User:Tohline/SSC/Structure/IsothermalSphere#Governing_Relations|a separate chapter]], the 2<sup>nd</sup>-order ODE that governs the radial density distribution in an isothermal sphere is, | |||
<div align="center" id="Chandrasekhar"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{1}{\xi^2}\frac{d}{d\xi}\biggl( \xi^2 \frac{d\psi}{d\xi}\biggr)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~e^{-\psi} \, .</math> | ||
</td> | |||
</math> | |||
</td> | |||
</tr> | </tr> | ||
</table> | |||
</div> | |||
--> | |||
Here we seek a power-series expression for the isothermal, Lane-Emden function — expanded about the coordinate center — that approximately satisfies the [[User:Tohline/SSC/Structure/IsothermalSphere#Chandrasekhar|isothermal Lane-Emden equation]]; making the variable substitution (sorry for the unnecessary complication!), <math>~\psi(\xi) \leftrightarrow w(r)</math>, the governing ODE is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~e^{-w} \, . </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
A general power-series should be of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~w</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Derivatives: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{dw}{dr}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
a + 2br + 3cr^2 + 4dr^3 + 5er^4 + 6fr^5 + 7gr^6 + 8hr^7 +\cdots \, ; | |||
</math> | </math> | ||
</td> | </td> | ||
Line 607: | Line 616: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d^2w}{dr^2}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2b + 2\cdot 3cr + 2^2\cdot 3dr^2 + 2^2\cdot 5er^3 + 2\cdot 3 \cdot 5fr^4 + 2\cdot 3 \cdot 7gr^5 + 2^3\cdot 7hr^6 +\cdots \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Put together, then, the left-hand-side of the isothermal Lane-Emden equation becomes: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2b + 2\cdot 3cr + 2^2\cdot 3dr^2 + 2^2\cdot 5er^3 + 2\cdot 3 \cdot 5fr^4 + 2\cdot 3 \cdot 7gr^5 + 2^3\cdot 7hr^6 | |||
+ | + \frac{2}{r}\biggl[ a + 2br + 3cr^2 + 4dr^3 + 5er^4 + 6fr^5 + 7gr^6 + 8hr^7 \biggr] + \cdots | ||
</math> | </math> | ||
</td> | </td> | ||
Line 642: | Line 654: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{2a}{r} + r^0(6b) + r^1(2^2\cdot 3c) + r^2(2^2\cdot 3d + 2^3d) + r^3(2^2\cdot 5e + 2\cdot 5e) | ||
+ r^4(2\cdot 3\cdot 5 f + 2^2\cdot 3f) + r^5(2\cdot 3\cdot 7 g+ 2\cdot 7g) + r^6(2^3 \cdot 7 h + 2^4 h) + \cdots | |||
+ | |||
+ | |||
+ r^6 | |||
</math> | </math> | ||
</td> | </td> | ||
Line 656: | Line 665: | ||
</div> | </div> | ||
Drawing on the [[#Exponential|above power-series expression for an exponential function]], and adopting the convention that <math>~w_0 = 0</math>, the right-hand-side becomes, | |||
<div align="center"> | <div align="center"> | ||
<table border=" | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~e^{-w}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
e^{0}\cdot e^{-ar} \cdot e^{-br^2} \cdot e^{-cr^3} \cdot e^{-dr^4} \cdot e^{-er^5} \cdot e^{-fr^6} \cdot e^{-gr^7} \cdot e^{-hr^8} \cdots | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 683: | Line 685: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\biggl[ 1 -ar + \frac{a^2r^2}{2!} - \frac{a^3r^3}{3!} + \frac{a^4r^4}{4!} - \frac{a^5r^5}{5!} + \frac{a^6r^6}{6!} + \cdots \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 698: | Line 699: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\times \biggl[ 1 -br^2 + \frac{b^2r^4}{2!} - \frac{b^3r^6}{3!} + \cdots \biggr] \times \biggl[ 1 -cr^3 + \frac{c^2r^6}{2!} + \cdots \biggr] | |||
\times \biggl[1 - dr^4\biggr] \times \biggl[1 - er^5\biggr]\times \biggl[1 - fr^6\biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 713: | Line 714: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} \biggr] | |||
\times \biggl[ 1 -cr^3 + \frac{c^2r^6}{2} -br^2 + bcr^5 + \frac{b^2r^4}{2} - \frac{b^3r^6}{6} \biggr] | |||
\times \biggl[1 - dr^4 - er^5 - fr^6\biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 741: | Line 736: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl\{ | ||
1 | \biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} \biggr] | ||
- | - dr^4 \biggl[ 1 -ar + \frac{a^2r^2}{2} \biggr] - er^5 \biggl[ 1 -ar \biggr] - fr^6 | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 753: | Line 749: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 -br^2+ | \times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] | ||
+r^6\biggl( | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\biggl[ | ||
1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} | |||
- dr^4 + adr^5 - \frac{a^2d r^6}{2} - er^5 + aer^6 - fr^6 | |||
\biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 792: | Line 776: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 807: | Line 790: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\biggl[ | ||
1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) + r^5\biggl(ad - e-\frac{a^5}{5\cdot 24}\biggr) | |||
+ r^6 \biggl(\frac{a^6}{30\cdot 24} - \frac{a^2d}{2} + ae - f \biggr) | |||
\biggr] | |||
\times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 822: | Line 807: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~ | ||
1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) + r^5\biggl(ad - e-\frac{a^5}{5\cdot 24}\biggr) | |||
+ r^6 \biggl(\frac{a^6}{30\cdot 24} - \frac{a^2d}{2} + ae - f \biggr) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~-br^2\biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) \biggr] | ||
-cr^3 \biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} \biggr] | |||
+ \frac{b^2r^4}{2}\biggl[ 1 -ar + \frac{a^2r^2}{2} \biggr] | |||
+ bcr^5\biggl[1 -ar \biggr] | |||
+ r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~r</math>. Beginning with the highest order terms, we initially find, | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
< | |||
< | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{-1}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~2a</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~0</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~a=0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{0}:</math> | ||
</math> | </td> | ||
<td align="center"> | |||
<math>~6b</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~1</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\Rightarrow ~~~b = + \frac{1}{6}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{1}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~2^2\cdot 3c</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~-a</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-\frac{ | <math>~\Rightarrow ~~~c = -\frac{a}{2^2\cdot 3} =0</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{2}:</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~(2^2\cdot 3d + 2^3d)</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\frac{a^2}{2} - b</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~d = \frac{1}{20}\biggl( \frac{a^2}{2} - b \biggr) = - \frac{1}{120}</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
With this initial set of coefficient values in hand, we can rewrite (and significantly simplify) our approximate expression for the RHS, namely, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 968: | Line 918: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~e^{-w}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
1 | 1 -d r^4 -e r^5 -f r^6 | ||
-br^2 ( 1 -d r^4 ) + \frac{b^2r^4}{2} - \frac{b^3r^6}{6} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 982: | Line 933: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 989: | Line 940: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | 1 -br^2+ r^4 \biggl(\frac{b^2}{2} -d \biggr) -e r^5 | ||
+r^6\biggl( bd - \frac{b^3}{6} -f \biggr) \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 995: | Line 947: | ||
</table> | </table> | ||
</div> | </div> | ||
Continuing, then, with equating terms with like powers on both sides of the equation, we find, | |||
<div align="center"> | <div align="center"> | ||
<table border=" | <table border="1" cellpadding="5" align="center"> | ||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{3}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~30e</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~0</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~e=0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{4}:</math> | ||
</td> | |||
\ | <td align="center"> | ||
</math> | <math>~(2\cdot 3\cdot 5 f + 2^2\cdot 3f)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~\biggl(\frac{b^2}{2} -d \biggr) </math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~f = \frac{1}{2\cdot 3\cdot 7}\biggl(\frac{1}{2^3\cdot 3^2}+\frac{1}{2^3\cdot 3 \cdot 5}\biggr) = \frac{1}{2\cdot 3^3\cdot 5 \cdot 7}</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{5}:</math> | ||
</td> | |||
<td align="center"> | |||
<math>~(2\cdot 3\cdot 7 g+ 2\cdot 7g)</math> | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~-e</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~g = 0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,061: | Line 1,005: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r^{6}:</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~(2^3 \cdot 7 h + 2^4 h)</math> | ||
</td> | |||
<td align="center"> | |||
<math>~\biggl( bd - \frac{b^3}{6} -f \biggr)</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\Rightarrow ~~~ | ||
- \frac{ | h = -\frac{1}{2^3\cdot 3^2}\biggl( \frac{1}{2^4\cdot 3^2 \cdot 5} + \frac{1}{2^4\cdot 3^4} + \frac{1}{2\cdot 3^3\cdot 5\cdot 7}\biggr) | ||
+ | = -\frac{61}{2^{6} \cdot 3^6\cdot 5\cdot 7} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 1,081: | Line 1,023: | ||
</div> | </div> | ||
<div align="center"> | |||
<table border="1" cellpadding=" | Result: | ||
<tr> | <div align="center" id="IsothermalLaneEmden"> | ||
<table border="1" width="80%" cellpadding="8" align="center"> | |||
<tr><th align="center">For Spherically Symmetric Configurations</th></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~r | <math>~w(r) | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\frac{r^2}{6} - \frac{r^4}{120} + \frac{r^6}{1890} - \frac{61 r^8}{1,632,960} + \cdots \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</td></tr></table> | |||
</div> | |||
See also: | |||
* Equation (377) from §22 in Chapter IV of [[User:Tohline/Appendix/References#C67|C67]]). | |||
NOTE: For cylindrically symmetric, rather than spherically symmetric, configurations, an analytic expression for the function, <math>~w(r)</math>, is presented as equation (56) in a paper by [http://adsabs.harvard.edu/abs/1964ApJ...140.1056O J. P. Ostriker (1964, ApJ, 140, 1056)] titled, ''The Equilibrium of Polytropic and Isothermal Cylinders''. | |||
===Displacement Function for Polytropic LAWE=== | |||
The [[User:Tohline/SSC/Stability/Polytropes#Adiabatic_.28Polytropic.29_Wave_Equation|LAWE for polytropic spheres]] may be written as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~0 </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \frac{(n+1)}{\theta} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] \frac{dx}{d\xi} + | ||
\frac{(n+1)}{\theta}\biggl[\frac{\sigma_c^2}{6\gamma } - | |||
\frac{\alpha}{\xi} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] x </math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,124: | Line 1,076: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\theta \frac{d^2x}{d\xi^2} + \biggl[4\theta - (n+1)\xi \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] \frac{1}{\xi}\frac{dx}{d\xi} + | ||
\frac{(n+1)}{6} \biggl[\frac{\sigma_c^2}{\gamma } - | |||
\frac{6\alpha}{\xi} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] x \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
where, <math>~\theta(\xi)</math> is the polytropic Lane-Emden function describing the configuration's unperturbed radial density distribution, and <math>~\gamma</math>, <math>~\sigma_c^2</math>, and <math>~\alpha \equiv (3-4/\gamma)</math> are constants. Here we seek a power-series expression for the displacement function, <math>~x(r)</math>, expanded about the center of the configuration, that approximately satisfies this LAWE. | |||
First we note that, near the center, an accurate [[#PolytropicLaneEmden|power-series expression for the polytropic Lane-Emden function]] is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\theta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 - \frac{n}{378} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^6 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Hence, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~-\frac{d\theta}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{3} \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] | |||
\, .</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Therefore, near the center of the configuration, the LAWE may be written as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~6~\theta \frac{d^2x}{d\xi^2} + \biggl\{ 12~\theta | |||
- (n+1)\xi \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] \biggr\} \frac{2}{\xi}\frac{dx}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - | |||
(n+1) \biggl\{ \frac{\sigma_c^2}{\gamma } - | |||
\frac{2\alpha}{\xi} \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] \biggr\} x </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>\Rightarrow~~~ ~6\biggl[ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 \biggr] \frac{d^2x}{d\xi^2} | |||
+ \biggl\{ 12 \biggl[ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 \biggr] | |||
- (n+1)\biggl[ \xi^2 - \frac{n}{10} \xi^4 \biggr] \biggr\} \frac{2}{\xi}\frac{dx}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - | |||
(n+1) \biggl\{ \mathfrak{F} | |||
+ 2\alpha \biggl[ \frac{n}{10} \xi^2 - \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] \biggr\} x </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>\Rightarrow~~~ ~\biggl( 6 - \xi^2 + \frac{n}{20} \xi^4 \biggr) \frac{d^2x}{d\xi^2} | |||
+ \biggl[ 12 - (n+3)\xi^2 + \frac{n(n+2)}{10} \xi^4 \biggr] \frac{2}{\xi}\frac{dx}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - | |||
(n+1) \biggl[ \mathfrak{F} | |||
+ \frac{n\alpha}{5} \xi^2 - \frac{2n\alpha}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] x \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, for present purposes, we have kept terms in the series no higher than <math>~\xi^4</math>. Let's now adopt a power-series expression for the displacement function of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6\cdots | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{1}{\xi}\frac{dx}{d\xi}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{a}{\xi} + 2b + 3 c\xi + 4d\xi^2 + 5e\xi^3 + 6f\xi^4 +\cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2x}{d\xi^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2b + 6c\xi + 12d\xi^2 + 20e\xi^3 + 30f\xi^4 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Substituting these expressions into the LAWE gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( 6 - \xi^2 + \frac{n}{20} \xi^4 \biggr) \biggl( 2b + 6c\xi + 12d\xi^2 + 20e\xi^3 + 30f\xi^4 \biggr) | |||
+ \biggl[ 12 - (n+3)\xi^2 + \frac{n(n+2)}{10} \xi^4 \biggr] \biggl( \frac{2a}{\xi} + 4b + 6 c\xi + 8d\xi^2 + 10e\xi^3 + 12f\xi^4 \biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - | |||
(n+1) \biggl[ \mathfrak{F} | |||
+ \frac{n\alpha}{5} \xi^2 - \frac{2n\alpha}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] \biggl( 1 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 \biggr)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{-1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~24a</math> | |||
</td> | |||
<td align="center"> | |||
<math>~0</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~a=0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{0}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~(12b + 48b)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-(n+1)\mathfrak{F}</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~b = - \frac{(n+1)\mathfrak{F}}{60}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~[36c+72c-2a(n+3)]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-a(n+1)\mathfrak{F}</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~108c = 2a(n+3)-a(n+1)\mathfrak{F} \Rightarrow~~c=0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\xi^{2}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~[72d-2b+96d-4b(n+3)]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\biggl[-b(n+1)\mathfrak{F}-\frac{n(n+1)\alpha}{5}\biggr]</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~d = - (n+1)\biggl\{ \frac{n\alpha +\mathfrak{F}[(4n+14)-(n+1)\mathfrak{F} ]}{10080} \biggr\}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
In summary, the desired, approximate power-series expression for the polytropic displacement function is: | |||
<div align="center" id="PolytropicDisplacement"> | |||
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x(\xi)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 - \frac{(n+1)\mathfrak{F}}{60} \xi^2- (n+1)\biggl\{ \frac{n\alpha +\mathfrak{F}[(4n+14)-(n+1)\mathfrak{F} ]}{10080} \biggr\} \xi^4 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
===Displacement Function for Isothermal LAWE=== | |||
The [[User:Tohline/SSC/Stability/Isothermal#Taff_and_Van_Horn_.281974.29|LAWE for isothermal spheres]] may be written as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2 x}{dr^2} + \biggl[4 - r \biggl(\frac{dw }{dr}\biggr) \biggr] \frac{1}{r}\frac{dx}{dr}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ \frac{\sigma_c^2}{6\gamma} - \frac{\alpha}{r} \biggl(\frac{dw }{dr}\biggr)\biggr] x \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, <math>~w(r)</math> is the isothermal Lane-Emden function describing the configuration's unperturbed radial density distribution, and <math>~\gamma</math>, <math>~\sigma_c^2</math>, and <math>~\alpha \equiv (3-4/\gamma)</math> are constants. Here we seek a power-series expression for the displacement function, <math>~x(r)</math>, expanded about the center of the configuration, that approximately satisfies this LAWE. | |||
First we note that, near the center, an accurate [[#Isothermal_Lane-Emden_Function|power-series expression for the isothermal Lane-Emden function]] is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~w(r) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{r^2}{6} - \frac{r^4}{120} + \frac{r^6}{1890} - \frac{61 r^8}{1,632,960} + \cdots \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Hence, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{dw}{dr}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{r}{3} - \frac{r^3}{30} + \frac{r^5}{315} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Therefore, near the center of the configuration, the LAWE may be written as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2 x}{dr^2} + \biggl[4 - \biggl(\frac{r^2}{3} - \frac{r^4}{30} + \frac{r^6}{315}\biggr) \biggr] \frac{1}{r}\frac{dx}{dr}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{6} \biggl[ \frac{\sigma_c^2}{\gamma} - 2\alpha \biggl(1 - \frac{r^2}{10} + \frac{r^4}{105}\biggr) \biggr] x \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Let's now adopt a power-series expression for the displacement function of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 + ar + br^2 + cr^3 + dr^4 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{1}{r}\frac{dx}{dr}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{a}{r} + 2b + 3 cr + 4dr^2 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d^2x}{dr^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2b + 6cr + 12dr^2 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Substituting these expressions into the LAWE gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~2b + 6cr + 12dr^2 + \biggl[4 - \biggl(\frac{r^2}{3} - \frac{r^4}{30} + \frac{r^6}{315}\biggr) \biggr] \biggl[ \frac{a}{r} + 2b + 3 cr + 4dr^2 \biggr] </math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{6} \biggl[ \frac{\sigma_c^2}{\gamma} - 2\alpha \biggl(1 - \frac{r^2}{10} + \frac{r^4}{105}\biggr) \biggr] \biggl( 1 + ar + br^2 + cr^3 + dr^4 \biggr) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Keeping terms only up through <math>~r^2</math> leads to the following simplification: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
2b + 6cr + 12dr^2 | |||
+ 4 \biggl[ \frac{a}{r} + 2b + 3 cr + 4dr^2 \biggr] | |||
- \frac{r^2}{3} \biggl[ \frac{a}{r} + 2b \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{\mathfrak{F} }{6} \biggl( 1 + ar + br^2 \biggr) | |||
- \frac{\alpha}{3} \biggl(\frac{r^2}{10} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
where, | |||
<div align="center"> | |||
<math>~\mathfrak{F} \equiv \frac{\sigma_c^2}{\gamma} - 2\alpha \, .</math> | |||
</div> | |||
Finally, balancing terms of like powers on both sides of the equation leads us to conclude the following: | |||
<div align="center"> | |||
<table border="1" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="center">Term</td> | |||
<td align="center">LHS</td> | |||
<td align="center">RHS</td> | |||
<td align="center">Implication</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^{-1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~4a</math> | |||
</td> | |||
<td align="center"> | |||
<math>~0</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~a = 0 </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^{0}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~2b + 8b</math> | |||
</td> | |||
<td align="center"> | |||
<math>~- \frac{\mathfrak{F}}{6}</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~b = - \frac{\mathfrak{F}}{60}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^{1}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~6c + 12c - \frac{a}{3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-\frac{a\mathfrak{F}}{6}</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~c=0</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^{2}:</math> | |||
</td> | |||
<td align="center"> | |||
<math>~12d + 16d - \frac{2b}{3}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~-\frac{\mathfrak{F}b}{6} - \frac{\alpha}{30}</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\Rightarrow ~~~ | |||
28d = \frac{1}{30}\biggl[ 5b (4- \mathfrak{F} ) - \alpha \biggr] ~ | |||
\Rightarrow~ | |||
d = \frac{1}{10080}\biggl[ \mathfrak{F}(\mathfrak{F} -4) - 12\alpha \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
In summary, the desired, approximate power-series expression for the isothermal displacement function is: | |||
<div align="center" id="IsothermalDisplacement"> | |||
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x(r)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
1 - \frac{\mathfrak{F}}{60} r^2 + \frac{1}{10080}\biggl[ \mathfrak{F}(\mathfrak{F} -4) - 12\alpha \biggr] r^4 + \cdots | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
==Taylor Series (Hunter77)== | |||
===First (Unsuccessful) Try=== | |||
First: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{''}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'''} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - (3\Delta) f_3^' + \frac{3^2}{2} (\Delta)^2 f^{''}_3 - \frac{3^2}{2} (\Delta)^3 f_3^{'''} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
- \frac{3^2}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - f_0 - (3\Delta) f_3^' - \frac{3^2}{2} (\Delta)^3 f_3^{'''} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Note that, replacing the <math>~(\Delta)^3 f_3^{'''}</math> term with the expression derived in the ''Second'' step, below, gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
- \frac{3^2}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - f_0 - (3\Delta) f_3^' + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{3^2}{2} \biggl\{ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
- f_1 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\}\biggl[ -\frac{3}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - f_0 - 3 (\Delta) f_3^' + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
3 f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[\frac{15}{2^2} \biggr] f_3 | |||
+ \biggl[- \frac{3}{2}\biggr] (\Delta) f_3^' | |||
+ \biggl[- \frac{3^2\cdot 5}{2^3} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[1 + \frac{15}{2^2} \biggr] f_3 + \biggl[-3 - \frac{3}{2}\biggr] (\Delta) f_3^' + \biggl[\frac{3^3}{2^3}- \frac{3^2\cdot 5}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \biggl[- \frac{9}{4} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Then, replacing the <math>~(\Delta)^4 f_3^{iv}</math> term with the expression derived in the ''Third'' step, below, gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
- \frac{3^2}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[- \frac{9}{4} \biggr] \biggl\{ | |||
\biggl[-\frac{1}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{1}{2} \biggr] f_1 | |||
- f_2 | |||
+ \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
\biggr\}\biggl[- 2^2\cdot 3 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[-3 \biggr]f_0 | |||
+ \biggl[\frac{3^3 }{2} \biggr] f_1 | |||
- 3^3 f_2 | |||
+ \biggl[ \frac{3 \cdot 11}{2} \biggr] f_3 | |||
+ \biggl[- 2\cdot 3^2 \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_0 | |||
+ \biggl[\frac{3^3 }{2} - \frac{3^3}{2^2}\biggr] f_1 | |||
- 3^3 f_2 | |||
+ \biggl[\frac{3 \cdot 11}{2} + \frac{19}{2^2} \biggr] f_3 + \biggl[- 2\cdot 3^2- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_0 | |||
+ \biggl[\frac{3^3}{2^2}\biggr] f_1 | |||
- 3^3 f_2 | |||
+ \biggl[\frac{5\cdot 17}{2^2} \biggr] f_3 + \biggl[- \frac{3^2\cdot 5}{2}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Second: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 2\Delta) f_3^' + \frac{1}{2} (- 2\Delta)^2 f^{''}_3 + \frac{1}{6} (- 2\Delta)^3 f_3^{'''} + \frac{1}{24}(- 2\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - 2(\Delta) f_3^' + 2 (\Delta)^2 f^{''}_3 - \frac{2^2}{3} (\Delta)^3 f_3^{'''} + \frac{2}{3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 - 2(\Delta) f_3^' | |||
- \frac{2^2}{3} (\Delta)^3 f_3^{'''} + \frac{2}{3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[\frac{2^2}{3^2} \biggr] \biggl[ f_3 - f_0 - (3\Delta) f_3^' - \frac{3^2}{2} (\Delta)^3 f_3^{'''} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
+ f_3 \biggl[1-\frac{2^2}{3^2} \biggr] | |||
+ \biggl[ \frac{2^2}{3^2} (3\Delta) - 2(\Delta) \biggr] f_3^' | |||
+ \biggl[ \biggl(\frac{2^2}{3^2} \biggr) \frac{3^2}{2} (\Delta)^3 - \frac{2^2}{3} (\Delta)^3 \biggr] f_3^{'''} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \frac{2}{3}(\Delta)^4 - \biggl( \frac{2^2}{3^2} \biggr) \frac{3^3}{2^3}(\Delta)^4 \biggr] f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{'''} | |||
+ \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
- \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{'''} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
- f_1 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Now, replacing the <math>~(\Delta)^4 f_3^{iv}</math> term with the expression derived in the ''Third'' step, below, gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
- \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{'''} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
- f_1 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[- \frac{5}{6} \biggr] \biggl\{ | |||
\biggl[-\frac{1}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{1}{2} \biggr] f_1 | |||
- f_2 | |||
+ \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ -2^2\cdot 3\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
- f_1 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[-\frac{2\cdot 5 }{3^2} \biggr]f_0 | |||
+ \biggl[5\biggr] f_1 | |||
+ \biggl[- 2\cdot 5 \biggr] f_2 | |||
+ \biggl[ \frac{5\cdot 11}{3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2^2\cdot 5}{3}\biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{2^2}{3^2} -\frac{2\cdot 5 }{3^2} \biggr] f_0 | |||
+ \biggl[4\biggr] f_1 | |||
+ \biggl[- 2\cdot 5 \biggr] f_2 | |||
+ \biggl[\frac{5}{3^2} + \frac{5\cdot 11}{3^2}\biggr] f_3 | |||
+ \biggl[- \frac{2^2\cdot 5}{3} - \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[-\frac{2}{3} \biggr] f_0 | |||
+ \biggl[4\biggr] f_1 | |||
+ \biggl[- 2\cdot 5 \biggr] f_2 | |||
+ \biggl[\frac{2^2\cdot 5}{3}\biggr] f_3 | |||
+ \biggl[- \frac{2\cdot 11}{3}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Third: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- \Delta) f_3^' + \frac{1}{2} (- \Delta)^2 f^{''}_3 + \frac{1}{6} (- \Delta)^3 f_3^{'''} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2} \biggr] (\Delta)^2 f^{''}_3 + \biggl[ - \frac{1}{2\cdot 3} \biggr] (\Delta)^3 f_3^{'''} + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \frac{1}{2} \biggr] \biggl\{ | |||
2f_0 | |||
+ \biggl[- \frac{3^3}{2^2}\biggr] f_1 | |||
+ \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \biggl[- \frac{9}{4} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} \biggl[-\frac{2}{3^2}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ - \frac{1}{2\cdot 3} \biggr] \biggl\{ | |||
\biggl[\frac{2^2}{3^2} \biggr] f_0 | |||
- f_1 | |||
+ f_3 \biggl[\frac{5}{3^2} \biggr] | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} \biggl[-\frac{3}{2}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[ -\frac{2}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{3}{2^2}\biggr] f_1 | |||
+ \biggl[-\frac{19}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{2}\biggr] (\Delta) f_3^' + \biggl[\frac{1}{4} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 | |||
+ \biggl[- \frac{1}{2^2} \biggr] f_1 | |||
+ f_3 \biggl[\frac{5}{2^2\cdot 3^2} \biggr] | |||
+ \biggl[- \frac{1}{2\cdot 3}\biggr] (\Delta) f_3^' | |||
+ \biggl[- \frac{5}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{3^2} -\frac{2}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{3}{2^2}- \frac{1}{2^2} \biggr] f_1 | |||
+ \biggl[\frac{5}{2^2\cdot 3^2} -\frac{19}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{2}- \frac{1}{2\cdot 3}\biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{1}{4} - \frac{5}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[-\frac{1}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{1}{2} \biggr] f_1 | |||
+ \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{1}{2^2\cdot 3} \biggr] (\Delta)^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
- \biggl[\frac{1}{2^2\cdot 3} \biggr] (\Delta)^4 f_3^{iv} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[-\frac{1}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{1}{2} \biggr] f_1 | |||
- f_2 | |||
+ \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
And, finally: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{''}_3 + \frac{1}{6} (\Delta)^3 f_3^{'''} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2} \biggl\{ | |||
- f_0 | |||
+ \biggl[\frac{3^3}{2^2}\biggr] f_1 | |||
- 3^3 f_2 | |||
+ \biggl[\frac{5\cdot 17}{2^2} \biggr] f_3 + \biggl[- \frac{3^2\cdot 5}{2}\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ - \frac{2}{3^2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{6} \biggl\{ | |||
\biggl[-\frac{2}{3} \biggr] f_0 | |||
+ \biggl[4\biggr] f_1 | |||
+ \biggl[- 2\cdot 5 \biggr] f_2 | |||
+ \biggl[\frac{2^2\cdot 5}{3}\biggr] f_3 | |||
+ \biggl[- \frac{2\cdot 11}{3}\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ -\frac{3}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{24}\biggl\{ | |||
\biggl[-\frac{1}{3^2} \biggr]f_0 | |||
+ \biggl[\frac{1}{2} \biggr] f_1 | |||
- f_2 | |||
+ \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ -2^2\cdot 3 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[ \frac{1}{3^2} \biggr] f_0 | |||
+ \biggl[- \frac{3}{2^2}\biggr] f_1 | |||
+\biggl[ 3 \biggr] f_2 | |||
+ \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{5}{2}\biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{2\cdot 3} \biggr] f_0 | |||
+ \biggl[-1 \biggr] f_1 | |||
+ \biggl[ \frac{5}{2} \biggr] f_2 | |||
+ \biggl[- \frac{5}{3}\biggr] f_3 | |||
+ \biggl[\frac{11}{2\cdot 3}\biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{2\cdot 3^2} \biggr]f_0 | |||
+ \biggl[- \frac{1}{2^2} \biggr] f_1 | |||
+ \biggl[ \frac{1}{2} \biggr] f_2 | |||
+ \biggl[ -\frac{11}{2^2 \cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{1}{3}\biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{1}{3^2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3^2} \biggr] f_0 + | |||
\biggl[- \frac{3}{2^2} - 1 - \frac{1}{2^2} \biggr] f_1 | |||
+\biggl[ 3 + \frac{5}{2} + \frac{1}{2} \biggr] f_2 | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[1 - \frac{5\cdot 17}{2^2\cdot 3^2} - \frac{5}{3} - \frac{11}{2^2 \cdot 3^2} \biggr] f_3 | |||
+ \biggl[1 + \frac{5}{2} + \frac{11}{2\cdot 3} + \frac{1}{3} \biggr] (\Delta) f_3^' | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{1}{3} \biggr] f_0 + | |||
\biggl[- 2\biggr] f_1 | |||
+\biggl[ 6 \biggr] f_2 | |||
+ \biggl[- \frac{10}{3} \biggr] f_3 | |||
+ \biggl[\frac{17}{3} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Result: | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr> | |||
<th align="center"> | |||
Definitely WRONG! | |||
</th> | |||
</tr> | |||
<tr><td> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{3} ~ f_0 - 2 f_1 + 6 f_2 | |||
- \frac{10}{3} ~ f_3 | |||
+ \frac{17}{3} (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr> | |||
</table> | |||
</div> | |||
When I used an Excel spreadsheet to test this out against a parabola, the integration quickly became wildly unstable, strongly suggesting that there is an error in the derivation. My first attempt to uncover this error produced a new coefficient on the <math>~(\Delta) f_3^'</math>, namely, | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr> | |||
<th align="center"> | |||
Somewhat Improved | |||
</th> | |||
</tr> | |||
<tr><td> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{3} ~ f_0 - 2 f_1 + 6 f_2 | |||
- \frac{10}{3} ~ f_3 | |||
+ 4 (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr> | |||
</table> | |||
</div> | |||
Although it showed improvement, this expression still blows up. So I have not bothered to revise the original (definitely WRONG!) derivation. Instead, let's start all over and approach it with a more gradual derivation. | |||
===Second Try=== | |||
We will work from the following foundation expression in which <math>~f_4</math> is the variable that we desire to evaluate, and the "known" quantities are: <math>~f_3</math>, <math>~f_3^'</math>, <math>~f_2</math>, <math>~f_1</math>, and <math>~f_0</math>. | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{''}_3 + \frac{1}{6} (\Delta)^3 f_3^{'''} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Let's use similar Taylor-series expansions for <math>~f_2</math>, <math>~f_3</math>, etc. in order to eliminate the <math>~f_3^{''}</math> term, the <math>~f_3^{'''}</math> term, etc. | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_2</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- \Delta) f_3^' + \frac{1}{2} (- \Delta)^2 f^{''}_3 + \frac{1}{6} (- \Delta)^3 f_3^{'''} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 2\Delta) f_3^' + \frac{1}{2} (- 2\Delta)^2 f^{''}_3 + \frac{1}{6} (- 2\Delta)^3 f_3^{'''} + \frac{1}{24}(- 2\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{''}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'''} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
---- | |||
First: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~-\frac{1}{2} (- \Delta)^2 f^{''}_3 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- \Delta) f_3^' - f_2+ \frac{1}{6} (- \Delta)^3 f_3^{'''} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
\frac{1}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_3 + (\Delta) f_3^' + f_2+ \frac{1}{6} (\Delta)^3 f_3^{'''} - \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
f_4 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' - f_3 + (\Delta) f_3^' + f_2 + \mathcal{O}(\Delta^3) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_2 + 2(\Delta) f_3^' + \mathcal{O}(\Delta^3) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr><td align="center"><math>~\mathcal{O}(\Delta^3)</math></td></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
f_4 | |||
</math> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_2 + 2(\Delta) f_3^' + \mathcal{O}(\Delta^3) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
This expression works very well for a parabola. | |||
---- | |||
Second: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_1</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 2) \Delta f_3^' + 2 (\Delta)^2 f^{''}_3 + \biggl[- \frac{2^3}{6}\biggr] \Delta^3 f_3^{'''} + \biggl[ \frac{2^4}{2^3\cdot 3} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 2) \Delta f_3^' + \biggl[- \frac{2^3}{6}\biggr] \Delta^3 f_3^{'''} + \biggl[ \frac{2^4}{2^3\cdot 3} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ 2 \biggl\{ | |||
- f_3 + (\Delta) f_3^' + f_2+ \frac{1}{2\cdot 3} (\Delta)^3 f_3^{'''} - \frac{1}{2^3\cdot 3}(\Delta)^4 f_3^{iv} | |||
\biggr\} \biggl[ 2 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3\biggl[ 1 - 2^2\biggr] + (2^2 - 2) \Delta f_3^' + 2^2f_2 | |||
+ \biggl[\frac{2}{3} - \frac{2^3}{6}\biggr] \Delta^3 f_3^{'''} | |||
+ \biggl[ \frac{2^4}{2^3\cdot 3} - \frac{1}{2\cdot 3}\biggr] \Delta^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3\biggl[ -3\biggr] + (2) \Delta f_3^' + 2^2f_2 | |||
+ \biggl[- \frac{2}{3}\biggr] \Delta^3 f_3^{'''} | |||
+ \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~ | |||
\biggl[\frac{2}{3}\biggr] \Delta^3 f_3^{'''} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
+ \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This also allows us to improve the expression for the <math>~f_3^{''}</math> term, as initially derived in the "First" subsection, above. Namely, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{1}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_2 - f_3 + (\Delta) f_3^' - \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{6} \biggl\{ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
+ \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} | |||
\biggr\} \biggl[ \frac{3}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{1}{2^2\cdot 3} \biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Hence, an improved expression for <math>~f_4</math> is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^4) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
- \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{6} \biggl\{ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
\biggr\} \biggl[ \frac{3}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{2} f_1 + 3f_2 - \frac{3}{2} f_3 + 3(\Delta) f_3^' + \mathcal{O}(\Delta^4) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr><td align="center"><math>~\mathcal{O}(\Delta^4)</math></td></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
f_4 | |||
</math> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{2} f_1 + 3f_2 - \frac{3}{2} f_3 + 3(\Delta) f_3^' + \mathcal{O}(\Delta^4) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
---- | |||
Third: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{''}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'''} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ - 3 \biggr] (\Delta) f_3^' + \biggl[ \frac{3^3}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ 3^2 \biggl\{ | |||
- \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{1}{2^2\cdot 3} \biggr](\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[-\frac{3^3}{2^2} \biggr] \biggl\{ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
+ \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + \biggl[ - 3 \biggr] (\Delta) f_3^' + \biggl[ \frac{3^3}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[- \frac{3^2 }{4} \biggr] f_1 + \biggl[ 2\cdot 3^2 \biggr]f_2 + \biggl[ - \frac{3^2 \cdot 7}{4} \biggr] f_3 + \biggl[ \frac{3^3}{2} \biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{3^3}{2^2} \biggr] f_1 | |||
+ \biggl[-3^3 \biggr] f_2 | |||
+ \biggl[\frac{3^4}{2^2} \biggr]f_3 | |||
+ \biggl[- \frac{3^3}{2} \biggr] \Delta f_3^' | |||
+ \biggl[- \frac{3^3}{2^3} \biggr] \Delta^4 f_3^{iv} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{3^3}{2^2} - \frac{3^2 }{4} \biggr] f_1 + \biggl[ 2\cdot 3^2 -3^3\biggr]f_2 + \biggl[ 1+ \frac{3^4}{2^2} - \frac{3^2 \cdot 7}{4} \biggr] f_3 | |||
+ \biggl[ \frac{3^3}{2} - \frac{3^3}{2} -3\biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{3^3}{2^3} + \frac{3}{2^2} - \frac{3^3}{2^3}\biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ -3\biggr] (\Delta) f_3^' | |||
+ \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ | |||
- \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ -3\biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Hence, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{1}{2} (\Delta)^2 f^{''}_3 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[\frac{1}{2^2\cdot 3} \biggr]\biggl\{ | |||
- f_0 + \biggl[\frac{3^2}{2}\biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ -3\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ - \frac{2^2}{3} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{1}{2} \biggr] f_1 | |||
+ f_2 + \biggl[- \frac{11}{2 \cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{1}{3} \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{1}{2} - \frac{1}{4} \biggr] f_1 | |||
+ 3 f_2 + \biggl[- \frac{11}{2 \cdot 3^2} - \frac{7}{4} \biggr] f_3 | |||
+ \biggl[\frac{1}{3} + \frac{3}{2} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 | |||
+ 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
And, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\biggl[\frac{2}{3}\biggr] \Delta^3 f_3^{'''} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \frac{1}{2} \biggr] \biggl\{ | |||
- f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ -3\biggr] (\Delta) f_3^' | |||
\biggr\} \biggl[ - \frac{2^2}{3} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 3 \biggr] f_1 | |||
+ \biggl[ 2\cdot 3 \biggr] f_2 + \biggl[- \frac{11}{3} \biggr] f_3 | |||
+ \biggl[ 2 \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 | |||
+ \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 | |||
+ \biggl[ 4 \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
---- | |||
Finally, then: | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~f_4</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{''}_3 + \frac{1}{6} (\Delta)^3 f_3^{'''} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2} \biggl\{ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 | |||
+ 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
\biggr\}\biggl[ 2 \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2\cdot 3} \biggl\{ | |||
\biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 | |||
+ \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 | |||
+ \biggl[ 4 \biggr] (\Delta) f_3^' | |||
\biggr\}\biggl[ \frac{3}{2} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2^3\cdot 3} \biggl\{ | |||
- f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ -3\biggr] (\Delta) f_3^' | |||
\biggr\}\biggl[- \frac{2^2}{3} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 | |||
+ 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2^2} \biggl\{ | |||
\biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 | |||
+ \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 | |||
+ \biggl[ 4 \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \frac{1}{2\cdot 3^2} \biggl\{ | |||
f_0 + \biggl[ - \frac{3^2}{2} \biggr] f_1 + \biggl[ 3^2 \biggr]f_2 + \biggl[- \frac{11}{2} \biggr] f_3 | |||
+ \biggl[ 3\biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 | |||
+ 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl\{ | |||
\biggl[ \frac{1}{2\cdot 3} \biggr] f_0 + \biggl[- 1 \biggr] f_1 | |||
+ \biggl[ \frac{5}{2} \biggr] f_2 + \biggl[- \frac{5}{3} \biggr] f_3 | |||
+ \biggl[ 1 \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl\{ | |||
\biggl[ \frac{1}{2\cdot 3^2} \biggr] f_0 + \biggl[ - \frac{1}{2^2} \biggr] f_1 + \biggl[ \frac{1}{2} \biggr]f_2 + \biggl[- \frac{11}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[ \frac{1}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{1}{3^2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3^2} \biggr] f_0 | |||
+ \biggl[- 1 - \frac{3}{4} - \frac{1}{2^2} \biggr] f_1 | |||
+ \biggl[ 3 + \frac{5}{2} + \frac{1}{2} \biggr] f_2 | |||
+ \biggl[1 - \frac{5\cdot 17}{2^2\cdot 3^2} - \frac{5}{3} - \frac{11}{2^2\cdot 3^2} \biggr] f_3 | |||
+ \biggl[2 + \frac{11}{2\cdot 3} + \frac{1}{2\cdot 3} \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{1}{3} \biggr] f_0 | |||
+ \biggl[- 2\biggr] f_1 | |||
+ \biggl[ 6 \biggr] f_2 | |||
+ \biggl[- \frac{2\cdot 5}{3} \biggr] f_3 | |||
+ \biggl[4 \biggr] (\Delta) f_3^' | |||
+ \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<div align="center"> | |||
<table border="1" cellpadding="8" align="center"> | |||
<tr><td align="center"><math>~\mathcal{O}(\Delta^5)</math></td></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
f_4 | |||
</math> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{3} f_0 - 2 f_1 + 6 f_2 - \frac{2\cdot 5}{3} f_3 + 4 (\Delta) f_3^' + \mathcal{O}(\Delta^5) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 20:29, 11 July 2020
Approximate Power-Series Expressions
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Broadly Used Mathematical Expressions (shown here without proof)
Binomial
<math>~(1 \pm x)^n</math> |
<math>~=</math> |
<math>~ 1 ~\pm ~nx + \biggl[\frac{n(n-1)}{2!}\biggr]x^2 ~\pm~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]x^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]x^4 ~~\pm ~~ \cdots </math> for <math>~(x^2 < 1)</math> |
LaTeX mathematical expressions cut-and-pasted directly from
|
|||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As a primary point of reference, note that according to §1.2 of NIST's Digital Library of Mathematical Functions, the binomial theorem states that,
where, for nonnegative integer values of <math>~k</math> and <math>~n</math> and <math>~k \le n</math>, the notation,
Our Example: Setting <math>~a = 1</math> gives,
|
Note, for example, that,
<math>~(1+x)^{-1}</math> |
<math>~=</math> |
<math>~1 - x +x^2 - x^3 + x^4 - x^5 + \cdots \, ;</math> |
<math>~(1+x)^{-2}</math> |
<math>~=</math> |
<math>~1 - 2x + 3x^2 - 4x^3 + 5x^4 - 6x^5 + \cdots \, ;</math> |
<math>~(1+x)^{-3}</math> |
<math>~=</math> |
<math>~1 - 3x + \biggl[ \frac{3\cdot 4 }{ 2} \biggr]x^2 - \biggl[ \frac{ 3\cdot 4 \cdot 5}{ 2\cdot 3} \biggr]x^3 + \biggl[ \frac{3\cdot 4 \cdot 5 \cdot 6 }{2\cdot 3 \cdot 4 } \biggr]x^4 - \biggl[ \frac{3\cdot 4 \cdot 5 \cdot 6 \cdot 7}{2\cdot 3 \cdot 4 \cdot 5 } \biggr]x^5 + \cdots </math> |
|
<math>~=</math> |
<math>~1 - 3x + 6x^2 - 10x^3 + 15x^4 - 21x^5 + \cdots \, ;</math> |
<math>~(1+x)^{-4}</math> |
<math>~=</math> |
<math>~1 - 4x + \biggl[ \frac{4\cdot 5 }{ 2} \biggr]x^2 - \biggl[ \frac{ 4\cdot 5 \cdot 6}{ 2\cdot 3} \biggr]x^3 + \biggl[ \frac{4\cdot 5 \cdot 6 \cdot 7 }{2\cdot 3 \cdot 4 } \biggr]x^4 - \biggl[ \frac{4\cdot 5 \cdot 6 \cdot 7 \cdot 8}{2\cdot 3 \cdot 4 \cdot 5 } \biggr]x^5 + \cdots </math> |
|
<math>~=</math> |
<math>~1 - 4x + 10 x^2 - 20x^3 + 35x^4 - 56x^5 + \cdots \, .</math> |
See also:
Exponential
<math>~e^x</math> |
<math>~=</math> |
<math>~ 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots </math> |
Expressions with Astrophysical Relevance
Polytropic Lane-Emden Function
We seek a power-series expression for the polytropic, Lane-Emden function, <math>~\Theta_\mathrm{H}(\xi)</math> — expanded about the coordinate center, <math>~\xi = 0</math> — that approximately satisfies the Lane-Emden equation,
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H^n</math> |
A general power-series should be of the form,
<math>~\Theta_H</math> |
<math>~=</math> |
<math>~ \theta_0 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math> |
First derivative:
<math>~\frac{d\Theta_H}{d\xi}</math> |
<math>~=</math> |
<math>~ a + 2b\xi + 3c\xi^2 + 4d\xi^3 + 5e\xi^4 + 6f\xi^5 + 7g\xi^6 + 8h\xi^7 + \cdots </math> |
Left-hand-side of Lane-Emden equation:
<math>~\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr)</math> |
<math>~=</math> |
<math>~ \frac{2a}{\xi} + 2\cdot 3b + 2^2\cdot 3c\xi + 2^2\cdot 5d\xi^2 + 2\cdot 3\cdot 5e\xi^3 + 2\cdot 3\cdot 7f\xi^4 + 2^3\cdot 7g\xi^5 + 2^3\cdot 3^2h\xi^6 + \cdots </math> |
Right-hand-side of Lane-Emden equation (adopt the normalization, <math>~\theta_0=1</math>, then use the binomial theorem recursively):
<math>~\Theta_H^n</math> |
<math>~=</math> |
<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 ~+~ \biggl[\frac{n(n-1)(n-2)}{3!}\biggr]F^3 + \biggl[\frac{n(n-1)(n-2)(n-3)}{4!}\biggr]F^4 ~~+ ~~ \cdots </math> |
where,
<math>~F</math> |
<math>~\equiv</math> |
<math>~ a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6 + g\xi^7 + h\xi^8 + \cdots </math> |
|
<math>~=</math> |
<math>~ a\xi\biggl[1 + \frac{b}{a}\xi + \frac{c}{a}\xi^2 + \frac{d}{a}\xi^3 + \frac{e}{a}\xi^4 + \frac{f}{a}\xi^5 + \frac{g}{a}\xi^6 + \frac{h}{a}\xi^7 + \cdots\biggr] \, . </math> |
First approximation: Assume that <math>~e=f=g=h=0</math>, in which case the LHS contains terms only up through <math>~\xi^2</math>. This means that we must ignore all terms on the RHS that are of higher order than <math>~\xi^2</math>; that is,
<math>~\Theta_H^n</math> |
<math>~\approx</math> |
<math>~ 1 ~+ ~nF + \biggl[\frac{n(n-1)}{2!}\biggr]F^2 </math> |
|
<math>~\approx</math> |
<math>~ 1 ~+ ~n(a\xi+b\xi^2) + \biggl[\frac{n(n-1)}{2!}\biggr]a^2\xi^2 </math> |
|
<math>~\approx</math> |
<math>~ 1 ~+~na\xi + ~\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]\xi^2\, . </math> |
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>. Remembering to include a negative sign on the RHS, we find:
Term | LHS | RHS | Implication |
<math>~\xi^{-1}:</math> |
<math>~2a</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~a=0</math> |
<math>~\xi^{0}:</math> |
<math>~2\cdot 3 b</math> |
<math>~-1</math> |
<math>~\Rightarrow ~~~b=- \frac{1}{6}</math> |
<math>~\xi^{1}:</math> |
<math>~2^2\cdot 3 c</math> |
<math>~-na</math> |
<math>~\Rightarrow ~~~c=0</math> |
<math>~\xi^{2}:</math> |
<math>~2^2\cdot 5 d</math> |
<math>~-\biggl[n b + \frac{n(n-1)a^2}{2}\biggr]</math> |
<math>~\Rightarrow ~~~d=+\frac{n}{120}</math> |
By including higher and higher order terms in the series expansion for <math>~\Theta_H</math>, and proceeding along the same line of deductive reasoning, one finds:
- Expressions for the four coefficients, <math>~a, b, c, d</math>, remain unchanged.
- The coefficient is zero for all other terms that contain odd powers of <math>~\xi</math>; specifically, for example, <math>~e = g = 0</math>.
- The coefficients of <math>~\xi^6</math> and <math>~\xi^8</math> are, respectively,
<math>~f</math> |
<math>~=</math> |
<math>~- \frac{n}{378}\biggl(\frac{n}{5}-\frac{1}{8} \biggr) \, ;</math> |
<math>~h</math> |
<math>~=</math> |
<math>~\frac{n(122n^2 -183n + 70)}{3265920} \, .</math> |
In summary, the desired, approximate power-series expression for the polytropic Lane-Emden function is:
For Spherically Symmetric Configurations | |||
---|---|---|---|
|
NOTE: For cylindrically symmetric, rather than spherically symmetric, configurations, the analogous power-series expression appears as equation (15) in the article by J. P. Ostriker (1964, ApJ, 140, 1056) titled, The Equilibrium of Polytropic and Isothermal Cylinders.
Isothermal Lane-Emden Function
Here we seek a power-series expression for the isothermal, Lane-Emden function — expanded about the coordinate center — that approximately satisfies the isothermal Lane-Emden equation; making the variable substitution (sorry for the unnecessary complication!), <math>~\psi(\xi) \leftrightarrow w(r)</math>, the governing ODE is,
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math> |
<math>~=</math> |
<math>~e^{-w} \, . </math> |
A general power-series should be of the form,
<math>~w</math> |
<math>~=</math> |
<math>~ w_0 + ar + br^2 + cr^3 + dr^4 + er^5 + fr^6 + gr^7 + hr^8 +\cdots </math> |
Derivatives:
<math>~\frac{dw}{dr}</math> |
<math>~=</math> |
<math>~ a + 2br + 3cr^2 + 4dr^3 + 5er^4 + 6fr^5 + 7gr^6 + 8hr^7 +\cdots \, ; </math> |
<math>~\frac{d^2w}{dr^2}</math> |
<math>~=</math> |
<math>~ 2b + 2\cdot 3cr + 2^2\cdot 3dr^2 + 2^2\cdot 5er^3 + 2\cdot 3 \cdot 5fr^4 + 2\cdot 3 \cdot 7gr^5 + 2^3\cdot 7hr^6 +\cdots \, . </math> |
Put together, then, the left-hand-side of the isothermal Lane-Emden equation becomes:
<math>~\frac{d^2w}{dr^2} +\frac{2}{r} \frac{d w}{dr} </math> |
<math>~=</math> |
<math>~ 2b + 2\cdot 3cr + 2^2\cdot 3dr^2 + 2^2\cdot 5er^3 + 2\cdot 3 \cdot 5fr^4 + 2\cdot 3 \cdot 7gr^5 + 2^3\cdot 7hr^6 + \frac{2}{r}\biggl[ a + 2br + 3cr^2 + 4dr^3 + 5er^4 + 6fr^5 + 7gr^6 + 8hr^7 \biggr] + \cdots </math> |
|
<math>~=</math> |
<math>~\frac{2a}{r} + r^0(6b) + r^1(2^2\cdot 3c) + r^2(2^2\cdot 3d + 2^3d) + r^3(2^2\cdot 5e + 2\cdot 5e) + r^4(2\cdot 3\cdot 5 f + 2^2\cdot 3f) + r^5(2\cdot 3\cdot 7 g+ 2\cdot 7g) + r^6(2^3 \cdot 7 h + 2^4 h) + \cdots </math> |
Drawing on the above power-series expression for an exponential function, and adopting the convention that <math>~w_0 = 0</math>, the right-hand-side becomes,
<math>~e^{-w}</math> |
<math>~=</math> |
<math>~ e^{0}\cdot e^{-ar} \cdot e^{-br^2} \cdot e^{-cr^3} \cdot e^{-dr^4} \cdot e^{-er^5} \cdot e^{-fr^6} \cdot e^{-gr^7} \cdot e^{-hr^8} \cdots </math> |
|
<math>~=</math> |
<math>~ \biggl[ 1 -ar + \frac{a^2r^2}{2!} - \frac{a^3r^3}{3!} + \frac{a^4r^4}{4!} - \frac{a^5r^5}{5!} + \frac{a^6r^6}{6!} + \cdots \biggr] </math> |
|
|
<math>~ \times \biggl[ 1 -br^2 + \frac{b^2r^4}{2!} - \frac{b^3r^6}{3!} + \cdots \biggr] \times \biggl[ 1 -cr^3 + \frac{c^2r^6}{2!} + \cdots \biggr] \times \biggl[1 - dr^4\biggr] \times \biggl[1 - er^5\biggr]\times \biggl[1 - fr^6\biggr] </math> |
|
<math>~\approx</math> |
<math>~ \biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} \biggr] \times \biggl[ 1 -cr^3 + \frac{c^2r^6}{2} -br^2 + bcr^5 + \frac{b^2r^4}{2} - \frac{b^3r^6}{6} \biggr] \times \biggl[1 - dr^4 - er^5 - fr^6\biggr] </math> |
|
<math>~\approx</math> |
<math>~\biggl\{ \biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} \biggr] - dr^4 \biggl[ 1 -ar + \frac{a^2r^2}{2} \biggr] - er^5 \biggl[ 1 -ar \biggr] - fr^6 \biggr\} </math> |
|
|
<math>~ \times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] </math> |
|
<math>~\approx</math> |
<math>~\biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + \frac{a^4r^4}{24} - \frac{a^5r^5}{5\cdot 24} + \frac{a^6r^6}{30\cdot 24} - dr^4 + adr^5 - \frac{a^2d r^6}{2} - er^5 + aer^6 - fr^6 \biggr] </math> |
|
|
<math>~ \times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] </math> |
|
<math>~\approx</math> |
<math>~\biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) + r^5\biggl(ad - e-\frac{a^5}{5\cdot 24}\biggr) + r^6 \biggl(\frac{a^6}{30\cdot 24} - \frac{a^2d}{2} + ae - f \biggr) \biggr] \times \biggl[ 1 -br^2 -cr^3 + \frac{b^2r^4}{2} + bcr^5 + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) \biggr] </math> |
|
<math>~\approx</math> |
<math>~ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) + r^5\biggl(ad - e-\frac{a^5}{5\cdot 24}\biggr) + r^6 \biggl(\frac{a^6}{30\cdot 24} - \frac{a^2d}{2} + ae - f \biggr) </math> |
|
|
<math>~-br^2\biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} + r^4\biggl(\frac{a^4}{24} - d\biggr) \biggr] -cr^3 \biggl[ 1 -ar + \frac{a^2r^2}{2} - \frac{a^3r^3}{6} \biggr] + \frac{b^2r^4}{2}\biggl[ 1 -ar + \frac{a^2r^2}{2} \biggr] + bcr^5\biggl[1 -ar \biggr] + r^6\biggl(\frac{c^2}{2}- \frac{b^3}{6}\biggr) </math> |
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~r</math>. Beginning with the highest order terms, we initially find,
Term | LHS | RHS | Implication |
<math>~r^{-1}:</math> |
<math>~2a</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~a=0</math> |
<math>~r^{0}:</math> |
<math>~6b</math> |
<math>~1</math> |
<math>~\Rightarrow ~~~b = + \frac{1}{6}</math> |
<math>~r^{1}:</math> |
<math>~2^2\cdot 3c</math> |
<math>~-a</math> |
<math>~\Rightarrow ~~~c = -\frac{a}{2^2\cdot 3} =0</math> |
<math>~r^{2}:</math> |
<math>~(2^2\cdot 3d + 2^3d)</math> |
<math>~\frac{a^2}{2} - b</math> |
<math>~\Rightarrow ~~~d = \frac{1}{20}\biggl( \frac{a^2}{2} - b \biggr) = - \frac{1}{120}</math> |
With this initial set of coefficient values in hand, we can rewrite (and significantly simplify) our approximate expression for the RHS, namely,
<math>~e^{-w}</math> |
<math>~\approx</math> |
<math>~ 1 -d r^4 -e r^5 -f r^6 -br^2 ( 1 -d r^4 ) + \frac{b^2r^4}{2} - \frac{b^3r^6}{6} </math> |
|
<math>~=</math> |
<math>~ 1 -br^2+ r^4 \biggl(\frac{b^2}{2} -d \biggr) -e r^5 +r^6\biggl( bd - \frac{b^3}{6} -f \biggr) \, . </math> |
Continuing, then, with equating terms with like powers on both sides of the equation, we find,
Term | LHS | RHS | Implication |
<math>~r^{3}:</math> |
<math>~30e</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~e=0</math> |
<math>~r^{4}:</math> |
<math>~(2\cdot 3\cdot 5 f + 2^2\cdot 3f)</math> |
<math>~\biggl(\frac{b^2}{2} -d \biggr) </math> |
<math>~\Rightarrow ~~~f = \frac{1}{2\cdot 3\cdot 7}\biggl(\frac{1}{2^3\cdot 3^2}+\frac{1}{2^3\cdot 3 \cdot 5}\biggr) = \frac{1}{2\cdot 3^3\cdot 5 \cdot 7}</math> |
<math>~r^{5}:</math> |
<math>~(2\cdot 3\cdot 7 g+ 2\cdot 7g)</math> |
<math>~-e</math> |
<math>~\Rightarrow ~~~g = 0</math> |
<math>~r^{6}:</math> |
<math>~(2^3 \cdot 7 h + 2^4 h)</math> |
<math>~\biggl( bd - \frac{b^3}{6} -f \biggr)</math> |
<math>~\Rightarrow ~~~ h = -\frac{1}{2^3\cdot 3^2}\biggl( \frac{1}{2^4\cdot 3^2 \cdot 5} + \frac{1}{2^4\cdot 3^4} + \frac{1}{2\cdot 3^3\cdot 5\cdot 7}\biggr) = -\frac{61}{2^{6} \cdot 3^6\cdot 5\cdot 7} </math> |
Result:
For Spherically Symmetric Configurations | |||
---|---|---|---|
|
See also:
- Equation (377) from §22 in Chapter IV of C67).
NOTE: For cylindrically symmetric, rather than spherically symmetric, configurations, an analytic expression for the function, <math>~w(r)</math>, is presented as equation (56) in a paper by J. P. Ostriker (1964, ApJ, 140, 1056) titled, The Equilibrium of Polytropic and Isothermal Cylinders.
Displacement Function for Polytropic LAWE
The LAWE for polytropic spheres may be written as,
<math>~0 </math> |
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[\frac{4}{\xi} - \frac{(n+1)}{\theta} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] \frac{dx}{d\xi} + \frac{(n+1)}{\theta}\biggl[\frac{\sigma_c^2}{6\gamma } - \frac{\alpha}{\xi} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] x </math> |
|
<math>~=</math> |
<math>~\theta \frac{d^2x}{d\xi^2} + \biggl[4\theta - (n+1)\xi \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] \frac{1}{\xi}\frac{dx}{d\xi} + \frac{(n+1)}{6} \biggl[\frac{\sigma_c^2}{\gamma } - \frac{6\alpha}{\xi} \biggl(- \frac{d\theta}{d\xi}\biggr)\biggr] x \, ,</math> |
where, <math>~\theta(\xi)</math> is the polytropic Lane-Emden function describing the configuration's unperturbed radial density distribution, and <math>~\gamma</math>, <math>~\sigma_c^2</math>, and <math>~\alpha \equiv (3-4/\gamma)</math> are constants. Here we seek a power-series expression for the displacement function, <math>~x(r)</math>, expanded about the center of the configuration, that approximately satisfies this LAWE.
First we note that, near the center, an accurate power-series expression for the polytropic Lane-Emden function is,
<math>~\theta</math> |
<math>~=</math> |
<math>~ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 - \frac{n}{378} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^6 + \cdots </math> |
Hence,
<math>~-\frac{d\theta}{d\xi}</math> |
<math>~\approx</math> |
<math>~ \frac{1}{3} \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] \, .</math> |
Therefore, near the center of the configuration, the LAWE may be written as,
<math>~6~\theta \frac{d^2x}{d\xi^2} + \biggl\{ 12~\theta - (n+1)\xi \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] \biggr\} \frac{2}{\xi}\frac{dx}{d\xi}</math> |
<math>~\approx</math> |
<math>~ - (n+1) \biggl\{ \frac{\sigma_c^2}{\gamma } - \frac{2\alpha}{\xi} \biggl[ \xi - \frac{n}{10} \xi^3 + \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^5 \biggr] \biggr\} x </math> |
<math>\Rightarrow~~~ ~6\biggl[ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 \biggr] \frac{d^2x}{d\xi^2} + \biggl\{ 12 \biggl[ 1 - \frac{\xi^2}{6} + \frac{n}{120} \xi^4 \biggr] - (n+1)\biggl[ \xi^2 - \frac{n}{10} \xi^4 \biggr] \biggr\} \frac{2}{\xi}\frac{dx}{d\xi}</math> |
<math>~\approx</math> |
<math>~ - (n+1) \biggl\{ \mathfrak{F} + 2\alpha \biggl[ \frac{n}{10} \xi^2 - \frac{n}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] \biggr\} x </math> |
<math>\Rightarrow~~~ ~\biggl( 6 - \xi^2 + \frac{n}{20} \xi^4 \biggr) \frac{d^2x}{d\xi^2} + \biggl[ 12 - (n+3)\xi^2 + \frac{n(n+2)}{10} \xi^4 \biggr] \frac{2}{\xi}\frac{dx}{d\xi}</math> |
<math>~\approx</math> |
<math>~ - (n+1) \biggl[ \mathfrak{F} + \frac{n\alpha}{5} \xi^2 - \frac{2n\alpha}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] x \, ,</math> |
where, for present purposes, we have kept terms in the series no higher than <math>~\xi^4</math>. Let's now adopt a power-series expression for the displacement function of the form,
<math>~x</math> |
<math>~=</math> |
<math>~ 1 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 + e\xi^5 + f\xi^6\cdots </math> |
<math>~\Rightarrow ~~~ \frac{1}{\xi}\frac{dx}{d\xi}</math> |
<math>~=</math> |
<math>~ \frac{a}{\xi} + 2b + 3 c\xi + 4d\xi^2 + 5e\xi^3 + 6f\xi^4 +\cdots </math> |
and,
<math>~\frac{d^2x}{d\xi^2}</math> |
<math>~=</math> |
<math>~ 2b + 6c\xi + 12d\xi^2 + 20e\xi^3 + 30f\xi^4 + \cdots </math> |
Substituting these expressions into the LAWE gives,
<math>~\biggl( 6 - \xi^2 + \frac{n}{20} \xi^4 \biggr) \biggl( 2b + 6c\xi + 12d\xi^2 + 20e\xi^3 + 30f\xi^4 \biggr) + \biggl[ 12 - (n+3)\xi^2 + \frac{n(n+2)}{10} \xi^4 \biggr] \biggl( \frac{2a}{\xi} + 4b + 6 c\xi + 8d\xi^2 + 10e\xi^3 + 12f\xi^4 \biggr)</math> |
<math>~\approx</math> |
<math>~ - (n+1) \biggl[ \mathfrak{F} + \frac{n\alpha}{5} \xi^2 - \frac{2n\alpha}{21} \biggl( \frac{n}{5} - \frac{1}{8} \biggr) \xi^4 \biggr] \biggl( 1 + a\xi + b\xi^2 + c\xi^3 + d\xi^4 \biggr)</math> |
Expressions for the various coefficients can now be determined by equating terms on the LHS and RHS that have like powers of <math>~\xi</math>.
Term | LHS | RHS | Implication |
<math>~\xi^{-1}:</math> |
<math>~24a</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~a=0</math> |
<math>~\xi^{0}:</math> |
<math>~(12b + 48b)</math> |
<math>~-(n+1)\mathfrak{F}</math> |
<math>~\Rightarrow ~~~b = - \frac{(n+1)\mathfrak{F}}{60}</math> |
<math>~\xi^{1}:</math> |
<math>~[36c+72c-2a(n+3)]</math> |
<math>~-a(n+1)\mathfrak{F}</math> |
<math>~\Rightarrow ~~~108c = 2a(n+3)-a(n+1)\mathfrak{F} \Rightarrow~~c=0</math> |
<math>~\xi^{2}:</math> |
<math>~[72d-2b+96d-4b(n+3)]</math> |
<math>~\biggl[-b(n+1)\mathfrak{F}-\frac{n(n+1)\alpha}{5}\biggr]</math> |
<math>~\Rightarrow ~~~d = - (n+1)\biggl\{ \frac{n\alpha +\mathfrak{F}[(4n+14)-(n+1)\mathfrak{F} ]}{10080} \biggr\}</math> |
In summary, the desired, approximate power-series expression for the polytropic displacement function is:
|
Displacement Function for Isothermal LAWE
The LAWE for isothermal spheres may be written as,
<math>~\frac{d^2 x}{dr^2} + \biggl[4 - r \biggl(\frac{dw }{dr}\biggr) \biggr] \frac{1}{r}\frac{dx}{dr}</math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{\sigma_c^2}{6\gamma} - \frac{\alpha}{r} \biggl(\frac{dw }{dr}\biggr)\biggr] x \, , </math> |
where, <math>~w(r)</math> is the isothermal Lane-Emden function describing the configuration's unperturbed radial density distribution, and <math>~\gamma</math>, <math>~\sigma_c^2</math>, and <math>~\alpha \equiv (3-4/\gamma)</math> are constants. Here we seek a power-series expression for the displacement function, <math>~x(r)</math>, expanded about the center of the configuration, that approximately satisfies this LAWE.
First we note that, near the center, an accurate power-series expression for the isothermal Lane-Emden function is,
<math>~w(r) </math> |
<math>~=</math> |
<math>~\frac{r^2}{6} - \frac{r^4}{120} + \frac{r^6}{1890} - \frac{61 r^8}{1,632,960} + \cdots \, .</math> |
Hence,
<math>~\frac{dw}{dr}</math> |
<math>~\approx</math> |
<math>~\frac{r}{3} - \frac{r^3}{30} + \frac{r^5}{315} \, .</math> |
Therefore, near the center of the configuration, the LAWE may be written as,
<math>~\frac{d^2 x}{dr^2} + \biggl[4 - \biggl(\frac{r^2}{3} - \frac{r^4}{30} + \frac{r^6}{315}\biggr) \biggr] \frac{1}{r}\frac{dx}{dr}</math> |
<math>~\approx</math> |
<math>~ - \frac{1}{6} \biggl[ \frac{\sigma_c^2}{\gamma} - 2\alpha \biggl(1 - \frac{r^2}{10} + \frac{r^4}{105}\biggr) \biggr] x \, . </math> |
Let's now adopt a power-series expression for the displacement function of the form,
<math>~x</math> |
<math>~=</math> |
<math>~ 1 + ar + br^2 + cr^3 + dr^4 + \cdots </math> |
<math>~\Rightarrow ~~~ \frac{1}{r}\frac{dx}{dr}</math> |
<math>~=</math> |
<math>~ \frac{a}{r} + 2b + 3 cr + 4dr^2 + \cdots </math> |
and,
<math>~\frac{d^2x}{dr^2}</math> |
<math>~=</math> |
<math>~ 2b + 6cr + 12dr^2 + \cdots </math> |
Substituting these expressions into the LAWE gives,
<math>~2b + 6cr + 12dr^2 + \biggl[4 - \biggl(\frac{r^2}{3} - \frac{r^4}{30} + \frac{r^6}{315}\biggr) \biggr] \biggl[ \frac{a}{r} + 2b + 3 cr + 4dr^2 \biggr] </math> |
<math>~\approx</math> |
<math>~ - \frac{1}{6} \biggl[ \frac{\sigma_c^2}{\gamma} - 2\alpha \biggl(1 - \frac{r^2}{10} + \frac{r^4}{105}\biggr) \biggr] \biggl( 1 + ar + br^2 + cr^3 + dr^4 \biggr) \, . </math> |
Keeping terms only up through <math>~r^2</math> leads to the following simplification:
<math>~ 2b + 6cr + 12dr^2 + 4 \biggl[ \frac{a}{r} + 2b + 3 cr + 4dr^2 \biggr] - \frac{r^2}{3} \biggl[ \frac{a}{r} + 2b \biggr] </math> |
<math>~\approx</math> |
<math>~ - \frac{\mathfrak{F} }{6} \biggl( 1 + ar + br^2 \biggr) - \frac{\alpha}{3} \biggl(\frac{r^2}{10} \biggr) </math> |
where,
<math>~\mathfrak{F} \equiv \frac{\sigma_c^2}{\gamma} - 2\alpha \, .</math>
Finally, balancing terms of like powers on both sides of the equation leads us to conclude the following:
Term | LHS | RHS | Implication |
<math>~r^{-1}:</math> |
<math>~4a</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~a = 0 </math> |
<math>~r^{0}:</math> |
<math>~2b + 8b</math> |
<math>~- \frac{\mathfrak{F}}{6}</math> |
<math>~\Rightarrow ~~~b = - \frac{\mathfrak{F}}{60}</math> |
<math>~r^{1}:</math> |
<math>~6c + 12c - \frac{a}{3}</math> |
<math>~-\frac{a\mathfrak{F}}{6}</math> |
<math>~\Rightarrow ~~~c=0</math> |
<math>~r^{2}:</math> |
<math>~12d + 16d - \frac{2b}{3}</math> |
<math>~-\frac{\mathfrak{F}b}{6} - \frac{\alpha}{30}</math> |
<math>~\Rightarrow ~~~ 28d = \frac{1}{30}\biggl[ 5b (4- \mathfrak{F} ) - \alpha \biggr] ~ \Rightarrow~ d = \frac{1}{10080}\biggl[ \mathfrak{F}(\mathfrak{F} -4) - 12\alpha \biggr] </math> |
In summary, the desired, approximate power-series expression for the isothermal displacement function is:
|
Taylor Series (Hunter77)
First (Unsuccessful) Try
First:
<math>~f_0</math> |
<math>~=</math> |
<math>~ f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 - (3\Delta) f_3^' + \frac{3^2}{2} (\Delta)^2 f^{}_3 - \frac{3^2}{2} (\Delta)^3 f_3^{'} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ - \frac{3^2}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ f_3 - f_0 - (3\Delta) f_3^' - \frac{3^2}{2} (\Delta)^3 f_3^{} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
Note that, replacing the <math>~(\Delta)^3 f_3^{}</math> term with the expression derived in the Second step, below, gives,
<math>~ - \frac{3^2}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ f_3 - f_0 - (3\Delta) f_3^' + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ - \frac{3^2}{2} \biggl\{ \biggl[\frac{2^2}{3^2} \biggr] f_0 - f_1 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} \biggr\}\biggl[ -\frac{3}{2} \biggr] </math> |
|
<math>~=</math> |
<math>~ f_3 - f_0 - 3 (\Delta) f_3^' + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ 3 f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[\frac{15}{2^2} \biggr] f_3 + \biggl[- \frac{3}{2}\biggr] (\Delta) f_3^' + \biggl[- \frac{3^2\cdot 5}{2^3} \biggr] (\Delta)^4 f_3^{iv} \biggr\} </math> |
|
<math>~=</math> |
<math>~ 2f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[1 + \frac{15}{2^2} \biggr] f_3 + \biggl[-3 - \frac{3}{2}\biggr] (\Delta) f_3^' + \biggl[\frac{3^3}{2^3}- \frac{3^2\cdot 5}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ 2f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \biggl[- \frac{9}{4} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
Then, replacing the <math>~(\Delta)^4 f_3^{iv}</math> term with the expression derived in the Third step, below, gives,
<math>~ - \frac{3^2}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ 2f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[- \frac{9}{4} \biggr] \biggl\{ \biggl[-\frac{1}{3^2} \biggr]f_0 + \biggl[\frac{1}{2} \biggr] f_1 - f_2 + \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' \biggr\}\biggl[- 2^2\cdot 3 \biggr] </math> |
|
<math>~=</math> |
<math>~ 2f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[-3 \biggr]f_0 + \biggl[\frac{3^3 }{2} \biggr] f_1 - 3^3 f_2 + \biggl[ \frac{3 \cdot 11}{2} \biggr] f_3 + \biggl[- 2\cdot 3^2 \biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ - f_0 + \biggl[\frac{3^3 }{2} - \frac{3^3}{2^2}\biggr] f_1 - 3^3 f_2 + \biggl[\frac{3 \cdot 11}{2} + \frac{19}{2^2} \biggr] f_3 + \biggl[- 2\cdot 3^2- \frac{9}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ - f_0 + \biggl[\frac{3^3}{2^2}\biggr] f_1 - 3^3 f_2 + \biggl[\frac{5\cdot 17}{2^2} \biggr] f_3 + \biggl[- \frac{3^2\cdot 5}{2}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
Second:
<math>~f_1</math> |
<math>~=</math> |
<math>~ f_3 + (- 2\Delta) f_3^' + \frac{1}{2} (- 2\Delta)^2 f^{}_3 + \frac{1}{6} (- 2\Delta)^3 f_3^{'} + \frac{1}{24}(- 2\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 - 2(\Delta) f_3^' + 2 (\Delta)^2 f^{}_3 - \frac{2^2}{3} (\Delta)^3 f_3^{'} + \frac{2}{3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 - 2(\Delta) f_3^' - \frac{2^2}{3} (\Delta)^3 f_3^{} + \frac{2}{3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ - \biggl[\frac{2^2}{3^2} \biggr] \biggl[ f_3 - f_0 - (3\Delta) f_3^' - \frac{3^2}{2} (\Delta)^3 f_3^{} + \frac{3^3}{2^3}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} \biggr] f_0 + f_3 \biggl[1-\frac{2^2}{3^2} \biggr] + \biggl[ \frac{2^2}{3^2} (3\Delta) - 2(\Delta) \biggr] f_3^' + \biggl[ \biggl(\frac{2^2}{3^2} \biggr) \frac{3^2}{2} (\Delta)^3 - \frac{2^2}{3} (\Delta)^3 \biggr] f_3^{} </math> |
|
|
<math>~ + \biggl[ \frac{2}{3}(\Delta)^4 - \biggl( \frac{2^2}{3^2} \biggr) \frac{3^3}{2^3}(\Delta)^4 \biggr] f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} \biggr] f_0 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{} + \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ - \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{} </math> |
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} \biggr] f_0 - f_1 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
Now, replacing the <math>~(\Delta)^4 f_3^{iv}</math> term with the expression derived in the Third step, below, gives,
<math>~ - \biggl[ \frac{2}{3} \biggr] (\Delta)^3f_3^{} </math> |
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} \biggr] f_0 - f_1 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[- \frac{5}{6} \biggr] \biggl\{ \biggl[-\frac{1}{3^2} \biggr]f_0 + \biggl[\frac{1}{2} \biggr] f_1 - f_2 + \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' \biggr\} \biggl[ -2^2\cdot 3\biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} \biggr] f_0 - f_1 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[-\frac{2\cdot 5 }{3^2} \biggr]f_0 + \biggl[5\biggr] f_1 + \biggl[- 2\cdot 5 \biggr] f_2 + \biggl[ \frac{5\cdot 11}{3^2} \biggr] f_3 + \biggl[- \frac{2^2\cdot 5}{3}\biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{2^2}{3^2} -\frac{2\cdot 5 }{3^2} \biggr] f_0 + \biggl[4\biggr] f_1 + \biggl[- 2\cdot 5 \biggr] f_2 + \biggl[\frac{5}{3^2} + \frac{5\cdot 11}{3^2}\biggr] f_3 + \biggl[- \frac{2^2\cdot 5}{3} - \frac{2}{3}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ \biggl[-\frac{2}{3} \biggr] f_0 + \biggl[4\biggr] f_1 + \biggl[- 2\cdot 5 \biggr] f_2 + \biggl[\frac{2^2\cdot 5}{3}\biggr] f_3 + \biggl[- \frac{2\cdot 11}{3}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
Third:
<math>~f_2</math> |
<math>~=</math> |
<math>~ f_3 + (- \Delta) f_3^' + \frac{1}{2} (- \Delta)^2 f^{}_3 + \frac{1}{6} (- \Delta)^3 f_3^{'} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2} \biggr] (\Delta)^2 f^{}_3 + \biggl[ - \frac{1}{2\cdot 3} \biggr] (\Delta)^3 f_3^{'} + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[ \frac{1}{2} \biggr] \biggl\{ 2f_0 + \biggl[- \frac{3^3}{2^2}\biggr] f_1 + \biggl[\frac{19}{2^2} \biggr] f_3 + \biggl[- \frac{9}{2}\biggr] (\Delta) f_3^' + \biggl[- \frac{9}{4} \biggr] (\Delta)^4 f_3^{iv} \biggr\} \biggl[-\frac{2}{3^2}\biggr] </math> |
|
|
<math>~ + \biggl[ - \frac{1}{2\cdot 3} \biggr] \biggl\{ \biggl[\frac{2^2}{3^2} \biggr] f_0 - f_1 + f_3 \biggl[\frac{5}{3^2} \biggr] + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \biggl[- \frac{5}{6} \biggr] (\Delta)^4 f_3^{iv} \biggr\} \biggl[-\frac{3}{2}\biggr] </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[ -\frac{2}{3^2} \biggr]f_0 + \biggl[\frac{3}{2^2}\biggr] f_1 + \biggl[-\frac{19}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{2}\biggr] (\Delta) f_3^' + \biggl[\frac{1}{4} \biggr] (\Delta)^4 f_3^{iv} \biggr\} </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{1}{2^2} \biggr] f_1 + f_3 \biggl[\frac{5}{2^2\cdot 3^2} \biggr] + \biggl[- \frac{1}{2\cdot 3}\biggr] (\Delta) f_3^' + \biggl[- \frac{5}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} \biggr\} </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ -1 \biggr](\Delta) f_3^' + \biggl[ \frac{1}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{3^2} -\frac{2}{3^2} \biggr]f_0 + \biggl[\frac{3}{2^2}- \frac{1}{2^2} \biggr] f_1 + \biggl[\frac{5}{2^2\cdot 3^2} -\frac{19}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{2}- \frac{1}{2\cdot 3}\biggr] (\Delta) f_3^' + \biggl[\frac{1}{4} - \frac{5}{2^3\cdot 3} \biggr] (\Delta)^4 f_3^{iv} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[-\frac{1}{3^2} \biggr]f_0 + \biggl[\frac{1}{2} \biggr] f_1 + \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \biggl[\frac{1}{2^2\cdot 3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ - \biggl[\frac{1}{2^2\cdot 3} \biggr] (\Delta)^4 f_3^{iv} </math> |
<math>~=</math> |
<math>~ \biggl[-\frac{1}{3^2} \biggr]f_0 + \biggl[\frac{1}{2} \biggr] f_1 - f_2 + \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
And, finally:
<math>~f_4</math> |
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{}_3 + \frac{1}{6} (\Delta)^3 f_3^{'} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \frac{1}{2} \biggl\{ - f_0 + \biggl[\frac{3^3}{2^2}\biggr] f_1 - 3^3 f_2 + \biggl[\frac{5\cdot 17}{2^2} \biggr] f_3 + \biggl[- \frac{3^2\cdot 5}{2}\biggr] (\Delta) f_3^' \biggr\} \biggl[ - \frac{2}{3^2} \biggr] </math> |
|
|
<math>~ + \frac{1}{6} \biggl\{ \biggl[-\frac{2}{3} \biggr] f_0 + \biggl[4\biggr] f_1 + \biggl[- 2\cdot 5 \biggr] f_2 + \biggl[\frac{2^2\cdot 5}{3}\biggr] f_3 + \biggl[- \frac{2\cdot 11}{3}\biggr] (\Delta) f_3^' \biggr\} \biggl[ -\frac{3}{2} \biggr] </math> |
|
|
<math>~ + \frac{1}{24}\biggl\{ \biggl[-\frac{1}{3^2} \biggr]f_0 + \biggl[\frac{1}{2} \biggr] f_1 - f_2 + \biggl[ \frac{11}{2\cdot 3^2} \biggr] f_3 + \biggl[- \frac{2}{3}\biggr] (\Delta) f_3^' \biggr\} \biggl[ -2^2\cdot 3 \biggr] </math> |
|
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[ \frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{2^2}\biggr] f_1 +\biggl[ 3 \biggr] f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{5}{2}\biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{2\cdot 3} \biggr] f_0 + \biggl[-1 \biggr] f_1 + \biggl[ \frac{5}{2} \biggr] f_2 + \biggl[- \frac{5}{3}\biggr] f_3 + \biggl[\frac{11}{2\cdot 3}\biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{2\cdot 3^2} \biggr]f_0 + \biggl[- \frac{1}{2^2} \biggr] f_1 + \biggl[ \frac{1}{2} \biggr] f_2 + \biggl[ -\frac{11}{2^2 \cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{3}\biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{1}{3^2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3^2} \biggr] f_0 + \biggl[- \frac{3}{2^2} - 1 - \frac{1}{2^2} \biggr] f_1 +\biggl[ 3 + \frac{5}{2} + \frac{1}{2} \biggr] f_2 + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[1 - \frac{5\cdot 17}{2^2\cdot 3^2} - \frac{5}{3} - \frac{11}{2^2 \cdot 3^2} \biggr] f_3 + \biggl[1 + \frac{5}{2} + \frac{11}{2\cdot 3} + \frac{1}{3} \biggr] (\Delta) f_3^' </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{1}{3} \biggr] f_0 + \biggl[- 2\biggr] f_1 +\biggl[ 6 \biggr] f_2 + \biggl[- \frac{10}{3} \biggr] f_3 + \biggl[\frac{17}{3} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
Result:
Definitely WRONG! |
|||
---|---|---|---|
|
When I used an Excel spreadsheet to test this out against a parabola, the integration quickly became wildly unstable, strongly suggesting that there is an error in the derivation. My first attempt to uncover this error produced a new coefficient on the <math>~(\Delta) f_3^'</math>, namely,
Somewhat Improved |
|||
---|---|---|---|
|
Although it showed improvement, this expression still blows up. So I have not bothered to revise the original (definitely WRONG!) derivation. Instead, let's start all over and approach it with a more gradual derivation.
Second Try
We will work from the following foundation expression in which <math>~f_4</math> is the variable that we desire to evaluate, and the "known" quantities are: <math>~f_3</math>, <math>~f_3^'</math>, <math>~f_2</math>, <math>~f_1</math>, and <math>~f_0</math>.
<math>~f_4</math> |
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{}_3 + \frac{1}{6} (\Delta)^3 f_3^{'} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
Let's use similar Taylor-series expansions for <math>~f_2</math>, <math>~f_3</math>, etc. in order to eliminate the <math>~f_3^{}</math> term, the <math>~f_3^{'}</math> term, etc.
<math>~f_2</math> |
<math>~=</math> |
<math>~ f_3 + (- \Delta) f_3^' + \frac{1}{2} (- \Delta)^2 f^{}_3 + \frac{1}{6} (- \Delta)^3 f_3^{'} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~f_1</math> |
<math>~=</math> |
<math>~ f_3 + (- 2\Delta) f_3^' + \frac{1}{2} (- 2\Delta)^2 f^{}_3 + \frac{1}{6} (- 2\Delta)^3 f_3^{'} + \frac{1}{24}(- 2\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~f_0</math> |
<math>~=</math> |
<math>~ f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
First:
<math>~-\frac{1}{2} (- \Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ f_3 + (- \Delta) f_3^' - f_2+ \frac{1}{6} (- \Delta)^3 f_3^{} + \frac{1}{24}(- \Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ \frac{1}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ - f_3 + (\Delta) f_3^' + f_2+ \frac{1}{6} (\Delta)^3 f_3^{} - \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ f_4 </math> |
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' - f_3 + (\Delta) f_3^' + f_2 + \mathcal{O}(\Delta^3) </math> |
|
<math>~=</math> |
<math>~ f_2 + 2(\Delta) f_3^' + \mathcal{O}(\Delta^3) </math> |
<math>~\mathcal{O}(\Delta^3)</math> | |||
|
This expression works very well for a parabola.
Second:
<math>~f_1</math> |
<math>~=</math> |
<math>~ f_3 + (- 2) \Delta f_3^' + 2 (\Delta)^2 f^{}_3 + \biggl[- \frac{2^3}{6}\biggr] \Delta^3 f_3^{'} + \biggl[ \frac{2^4}{2^3\cdot 3} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + (- 2) \Delta f_3^' + \biggl[- \frac{2^3}{6}\biggr] \Delta^3 f_3^{} + \biggl[ \frac{2^4}{2^3\cdot 3} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + 2 \biggl\{ - f_3 + (\Delta) f_3^' + f_2+ \frac{1}{2\cdot 3} (\Delta)^3 f_3^{} - \frac{1}{2^3\cdot 3}(\Delta)^4 f_3^{iv} \biggr\} \biggl[ 2 \biggr] </math> |
|
<math>~=</math> |
<math>~ f_3\biggl[ 1 - 2^2\biggr] + (2^2 - 2) \Delta f_3^' + 2^2f_2 + \biggl[\frac{2}{3} - \frac{2^3}{6}\biggr] \Delta^3 f_3^{} + \biggl[ \frac{2^4}{2^3\cdot 3} - \frac{1}{2\cdot 3}\biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3\biggl[ -3\biggr] + (2) \Delta f_3^' + 2^2f_2 + \biggl[- \frac{2}{3}\biggr] \Delta^3 f_3^{} + \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow~~~ \biggl[\frac{2}{3}\biggr] \Delta^3 f_3^{} </math> |
<math>~=</math> |
<math>~ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' + \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
This also allows us to improve the expression for the <math>~f_3^{}</math> term, as initially derived in the "First" subsection, above. Namely,
<math>~ \frac{1}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ f_2 - f_3 + (\Delta) f_3^' - \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \frac{1}{6} \biggl\{ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' + \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} \biggr\} \biggl[ \frac{3}{2} \biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' + \biggl[\frac{1}{2^2\cdot 3} \biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
Hence, an improved expression for <math>~f_4</math> is,
<math>~f_4</math> |
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^4) </math> |
|
|
<math>~ + \biggl\{ - \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \frac{1}{6} \biggl\{ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' \biggr\} \biggl[ \frac{3}{2} \biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{2} f_1 + 3f_2 - \frac{3}{2} f_3 + 3(\Delta) f_3^' + \mathcal{O}(\Delta^4) </math> |
<math>~\mathcal{O}(\Delta^4)</math> | |||
|
Third:
<math>~f_0</math> |
<math>~=</math> |
<math>~ f_3 + (- 3\Delta) f_3^' + \frac{1}{2} (- 3\Delta)^2 f^{}_3 + \frac{1}{6} (- 3\Delta)^3 f_3^{'} + \frac{1}{24}(- 3\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ - 3 \biggr] (\Delta) f_3^' + \biggl[ \frac{3^3}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + 3^2 \biggl\{ - \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' + \biggl[\frac{1}{2^2\cdot 3} \biggr](\Delta)^4 f_3^{iv} \biggr\} </math> |
|
|
<math>~ + \biggl[-\frac{3^3}{2^2} \biggr] \biggl\{ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' + \biggl[ \frac{1}{2} \biggr] \Delta^4 f_3^{iv} \biggr\} </math> |
|
<math>~=</math> |
<math>~ f_3 + \biggl[ - 3 \biggr] (\Delta) f_3^' + \biggl[ \frac{3^3}{2^3} \biggr] (\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[- \frac{3^2 }{4} \biggr] f_1 + \biggl[ 2\cdot 3^2 \biggr]f_2 + \biggl[ - \frac{3^2 \cdot 7}{4} \biggr] f_3 + \biggl[ \frac{3^3}{2} \biggr] (\Delta) f_3^' + \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} \biggr\} </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{3^3}{2^2} \biggr] f_1 + \biggl[-3^3 \biggr] f_2 + \biggl[\frac{3^4}{2^2} \biggr]f_3 + \biggl[- \frac{3^3}{2} \biggr] \Delta f_3^' + \biggl[- \frac{3^3}{2^3} \biggr] \Delta^4 f_3^{iv} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{3^3}{2^2} - \frac{3^2 }{4} \biggr] f_1 + \biggl[ 2\cdot 3^2 -3^3\biggr]f_2 + \biggl[ 1+ \frac{3^4}{2^2} - \frac{3^2 \cdot 7}{4} \biggr] f_3 + \biggl[ \frac{3^3}{2} - \frac{3^3}{2} -3\biggr] (\Delta) f_3^' + \biggl[\frac{3^3}{2^3} + \frac{3}{2^2} - \frac{3^3}{2^3}\biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 + \biggl[ -3\biggr] (\Delta) f_3^' + \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
<math>~\Rightarrow ~~~ - \biggl[\frac{3}{2^2} \biggr](\Delta)^4 f_3^{iv} </math> |
<math>~=</math> |
<math>~ - f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 + \biggl[ -3\biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
Hence,
<math>~ \frac{1}{2} (\Delta)^2 f^{}_3 </math> |
<math>~=</math> |
<math>~ - \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[\frac{1}{2^2\cdot 3} \biggr]\biggl\{ - f_0 + \biggl[\frac{3^2}{2}\biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 + \biggl[ -3\biggr] (\Delta) f_3^' \biggr\} \biggl[ - \frac{2^2}{3} \biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{4} f_1 + 2f_2 + \biggl[ - \frac{7}{4} \biggr] f_3 + \biggl[ \frac{3}{2} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{1}{2} \biggr] f_1 + f_2 + \biggl[- \frac{11}{2 \cdot 3^2} \biggr] f_3 + \biggl[\frac{1}{3} \biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{1}{2} - \frac{1}{4} \biggr] f_1 + 3 f_2 + \biggl[- \frac{11}{2 \cdot 3^2} - \frac{7}{4} \biggr] f_3 + \biggl[\frac{1}{3} + \frac{3}{2} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 + 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
And,
<math>~ \biggl[\frac{2}{3}\biggr] \Delta^3 f_3^{} </math> |
<math>~=</math> |
<math>~ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl[ \frac{1}{2} \biggr] \biggl\{ - f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 + \biggl[ -3\biggr] (\Delta) f_3^' \biggr\} \biggl[ - \frac{2^2}{3} \biggr] </math> |
|
<math>~=</math> |
<math>~ - f_1 + 2^2f_2 -3 f_3 + 2 \Delta f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 3 \biggr] f_1 + \biggl[ 2\cdot 3 \biggr] f_2 + \biggl[- \frac{11}{3} \biggr] f_3 + \biggl[ 2 \biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 + \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 + \biggl[ 4 \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
Finally, then:
<math>~f_4</math> |
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \frac{1}{2} ( \Delta)^2 f^{}_3 + \frac{1}{6} (\Delta)^3 f_3^{'} + \frac{1}{24}(\Delta)^4 f_3^{iv} + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \frac{1}{2} \biggl\{ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 + 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' \biggr\}\biggl[ 2 \biggr] </math> |
|
|
<math>~ + \frac{1}{2\cdot 3} \biggl\{ \biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 + \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 + \biggl[ 4 \biggr] (\Delta) f_3^' \biggr\}\biggl[ \frac{3}{2} \biggr] </math> |
|
|
<math>~ + \frac{1}{2^3\cdot 3} \biggl\{ - f_0 + \biggl[\frac{3^2}{2} \biggr] f_1 + \biggl[ - 3^2 \biggr]f_2 + \biggl[ \frac{11}{2} \biggr] f_3 + \biggl[ -3\biggr] (\Delta) f_3^' \biggr\}\biggl[- \frac{2^2}{3} \biggr] </math> |
|
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 + 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \frac{1}{2^2} \biggl\{ \biggl[ \frac{2}{3} \biggr] f_0 + \biggl[- 4 \biggr] f_1 + \biggl[ 2\cdot 5 \biggr] f_2 + \biggl[- \frac{2^2 \cdot 5}{3} \biggr] f_3 + \biggl[ 4 \biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \frac{1}{2\cdot 3^2} \biggl\{ f_0 + \biggl[ - \frac{3^2}{2} \biggr] f_1 + \biggl[ 3^2 \biggr]f_2 + \biggl[- \frac{11}{2} \biggr] f_3 + \biggl[ 3\biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ f_3 + (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
|
<math>~ + \biggl\{ \biggl[\frac{1}{3^2} \biggr] f_0 + \biggl[- \frac{3}{4} \biggr] f_1 + 3 f_2 + \biggl[- \frac{5\cdot 17}{2^2\cdot 3^2} \biggr] f_3 + \biggl[\frac{11}{2\cdot 3} \biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ + \biggl\{ \biggl[ \frac{1}{2\cdot 3} \biggr] f_0 + \biggl[- 1 \biggr] f_1 + \biggl[ \frac{5}{2} \biggr] f_2 + \biggl[- \frac{5}{3} \biggr] f_3 + \biggl[ 1 \biggr] (\Delta) f_3^' \biggr\} </math> |
|
|
<math>~ \biggl\{ \biggl[ \frac{1}{2\cdot 3^2} \biggr] f_0 + \biggl[ - \frac{1}{2^2} \biggr] f_1 + \biggl[ \frac{1}{2} \biggr]f_2 + \biggl[- \frac{11}{2^2\cdot 3^2} \biggr] f_3 + \biggl[ \frac{1}{2\cdot 3} \biggr] (\Delta) f_3^' \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{1}{3^2} + \frac{1}{2\cdot 3} + \frac{1}{2\cdot 3^2} \biggr] f_0 + \biggl[- 1 - \frac{3}{4} - \frac{1}{2^2} \biggr] f_1 + \biggl[ 3 + \frac{5}{2} + \frac{1}{2} \biggr] f_2 + \biggl[1 - \frac{5\cdot 17}{2^2\cdot 3^2} - \frac{5}{3} - \frac{11}{2^2\cdot 3^2} \biggr] f_3 + \biggl[2 + \frac{11}{2\cdot 3} + \frac{1}{2\cdot 3} \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{1}{3} \biggr] f_0 + \biggl[- 2\biggr] f_1 + \biggl[ 6 \biggr] f_2 + \biggl[- \frac{2\cdot 5}{3} \biggr] f_3 + \biggl[4 \biggr] (\Delta) f_3^' + \mathcal{O}(\Delta^5) </math> |
<math>~\mathcal{O}(\Delta^5)</math> | |||
|
© 2014 - 2021 by Joel E. Tohline |