Difference between revisions of "User:Tohline/PGE/RotatingFrame"
(Move references to wikipedia) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
</b></font> | </b></font> | ||
I have move the earlier contents of this page to a new Wiki location called | I have move the earlier contents of this page to a new Wiki location called | ||
[ | [[User:Tohline/Apps/RiemannEllipsoids_Compressible|Compressible Riemann Ellipsoids]]. | ||
=Rotating Reference Frame= | =Rotating Reference Frame= | ||
Line 124: | Line 124: | ||
==Nonlinear Velocity Cross-Product== | ==Nonlinear Velocity Cross-Product== | ||
In some contexts —for example, our discussion of [ | In some contexts — for example, our discussion of [[User:Tohline/Apps/RiemannEllipsoids_Compressible|Riemann ellipsoids]] or the analysis by [[User:Tohline/Apps/Korycansky_Papaloizou_1996|Korycansky & Papaloizou (1996)]] of nonaxisymmetric disk structures — it proves useful to isolate and analyze the term in the "vorticity formulation" of the Euler equation that involves a nonlinear cross-product of the rotating-frame velocity vector, namely, | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
Line 210: | Line 210: | ||
</math> | </math> | ||
</div> | </div> | ||
=Related Discussions= | =Related Discussions= |
Latest revision as of 17:02, 11 July 2015
NOTE to Eric Hirschmann & David Neilsen... I have move the earlier contents of this page to a new Wiki location called Compressible Riemann Ellipsoids.
Rotating Reference Frame
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
At times, it can be useful to view the motion of a fluid from a frame of reference that is rotating with a uniform (i.e., time-independent) angular velocity <math>~\Omega_f</math>. In order to transform any one of the principal governing equations from the inertial reference frame to such a rotating reference frame, we must specify the orientation as well as the magnitude of the angular velocity vector about which the frame is spinning, <math>{\vec\Omega}_f</math>; and the <math>~d/dt</math> operator, which denotes Lagrangian time-differentiation in the inertial frame, must everywhere be replaced as follows:
<math> \biggl[\frac{d}{dt} \biggr]_{inertial} \rightarrow \biggl[\frac{d}{dt} \biggr]_{rot} + {\vec{\Omega}}_f \times . </math>
Performing this transformation implies, for example, that
<math> \vec{v}_{inertial} = \vec{v}_{rot} + {\vec{\Omega}}_f \times \vec{x} , </math>
and,
<math> \biggl[ \frac{d\vec{v}}{dt}\biggr]_{inertial} = \biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} + 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} + {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) </math>
<math> = \biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} + 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} - \frac{1}{2} \nabla \biggl[ |{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] </math>
(If we were to allow <math>{\vec\Omega}_f</math> to be a function of time, an additional term involving the time-derivative of <math>{\vec\Omega}_f</math> also would appear on the right-hand-side of these last expressions; see, for example, Eq.~1D-42 in BT87.) Note as well that the relationship between the fluid vorticity in the two frames is,
<math> [\vec\zeta]_{inertial} = [\vec\zeta]_{rot} + 2{\vec\Omega}_f . </math>
Continuity Equation (rotating frame)
Applying these transformations to the standard, inertial-frame representations of the continuity equation presented elsewhere, we obtain the:
Lagrangian Representation
of the Continuity Equation
as viewed from a Rotating Reference Frame
<math>\biggl[ \frac{d\rho}{dt} \biggr]_{rot} + \rho \nabla \cdot {\vec{v}}_{rot} = 0</math> ;
Eulerian Representation
of the Continuity Equation
as viewed from a Rotating Reference Frame
<math>\biggl[ \frac{\partial\rho}{\partial t} \biggr]_{rot} + \nabla \cdot (\rho {\vec{v}}_{rot}) = 0</math> .
Euler Equation (rotating frame)
Applying these transformations to the standard, inertial-frame representations of the Euler equation presented elsewhere, we obtain the:
Lagrangian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame
<math>\biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} = - \frac{1}{\rho} \nabla P - \nabla \Phi - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} - {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x})</math> ;
Eulerian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame
<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} </math> ;
Euler Equation
written in terms of the Vorticity and
as viewed from a Rotating Reference Frame
<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{\zeta}}_{rot}+2{\vec\Omega}_f) \times {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v_{rot}^2 - \frac{1}{2}|{\vec{\Omega}}_f \times \vec{x}|^2 \biggr]</math> .
Centrifugal and Coriolis Accelerations
Following along the lines of the discussion presented in Appendix 1.D, §3 of BT87, in a rotating reference frame the Lagrangian representation of the Euler equation may be written in the form,
<math>\biggl[ \frac{d\vec{v}}{dt}\biggr]_{rot} = - \frac{1}{\rho} \nabla P - \nabla \Phi + {\vec{a}}_{fict} </math>,
where,
<math> {\vec{a}}_{fict} \equiv - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} - {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) . </math>
So, as viewed from a rotating frame of reference, material moves as if it were subject to two fictitious accelerations which traditionally are referred to as the,
Coriolis Acceleration
<math> {\vec{a}}_{Coriolis} \equiv - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} , </math>
(see the related Wikipedia discussion) and the
Centrifugal Acceleration
<math> {\vec{a}}_{Centrifugal} \equiv - {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) = \frac{1}{2} \nabla\biggl[ |{\vec{\Omega}}_f \times \vec{x}|^2 \biggr] </math>
(see the related Wikipedia discussion).
Nonlinear Velocity Cross-Product
In some contexts — for example, our discussion of Riemann ellipsoids or the analysis by Korycansky & Papaloizou (1996) of nonaxisymmetric disk structures — it proves useful to isolate and analyze the term in the "vorticity formulation" of the Euler equation that involves a nonlinear cross-product of the rotating-frame velocity vector, namely,
<math> \vec{A} \equiv ({\vec{\zeta}}_{rot}+2{\vec\Omega}_f) \times {\vec{v}}_{rot} . </math>
NOTE: To simplify notation, for most of the remainder of this subsection we will drop the subscript "rot" on both the velocity and vorticity vectors.
Align <math>{\vec\Omega}_f</math> with z-axis
Without loss of generality we can set <math>{\vec\Omega}_f = \hat{k}\Omega_f</math>, that is, we can align the frame rotation axis with the z-axis of a Cartesian coordinate system. The Cartesian components of <math>{\vec{A}}</math> are then,
<math>
\hat{i}: ~~~~~~ A_x = \zeta_y v_z - (\zeta_z + 2\Omega) v_y ,
</math>
<math>
\hat{j}: ~~~~~~ A_y = (\zeta_z + 2\Omega) v_x - \zeta_x v_z ,
</math>
<math> \hat{k}: ~~~~~~ A_z = \zeta_x v_y - \zeta_y v_x , </math>
where it is understood that the three Cartesian components of the vorticity vector are,
<math> \zeta_x = \biggl[\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \biggr] ,
~~~~~~ \zeta_y = \biggl[ \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \biggr] , ~~~~~~ \zeta_z = \biggl[ \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \biggr] .
</math>
In turn, the curl of <math>\vec{A}</math> has the following three Cartesian components:
<math>
\hat{i}: ~~~~~~ [\nabla\times\vec{A}]_x = \frac{\partial}{\partial y}\biggl[ \zeta_x v_y - \zeta_y v_x \biggr] - \frac{\partial}{\partial z}\biggl[ (\zeta_z + 2\Omega) v_x - \zeta_x v_z \biggr],
</math>
<math>
\hat{j}: ~~~~~~ [\nabla\times\vec{A}]_y = \frac{\partial}{\partial z}\biggl[ \zeta_y v_z - (\zeta_z + 2\Omega) v_y \biggr] - \frac{\partial}{\partial x}\biggl[ \zeta_x v_y - \zeta_y v_x \biggr] ,
</math>
<math> \hat{k}: ~~~~~~ [\nabla\times\vec{A}]_z = \frac{\partial}{\partial x}\biggl[ (\zeta_z + 2\Omega) v_x - \zeta_x v_z \biggr] - \frac{\partial}{\partial y}\biggl[ \zeta_y v_z - (\zeta_z + 2\Omega) v_y \biggr] . </math>
When <math>v_z = 0</math>
If we restrict our discussion to configurations that exhibit only planar flows — that is, systems in which <math>v_z = 0</math> — then the Cartesian components of <math>{\vec{A}}</math> and <math>\nabla\times\vec{A}</math> simplify somewhat to give, respectively,
<math>
\hat{i}: ~~~~~~ A_x = - (\zeta_z + 2\Omega) v_y ,
</math>
<math>
\hat{j}: ~~~~~~ A_y = (\zeta_z + 2\Omega) v_x ,
</math>
<math> \hat{k}: ~~~~~~ A_z = \zeta_x v_y - \zeta_y v_x , </math>
and,
<math>
\hat{i}: ~~~~~~ [\nabla\times\vec{A}]_x = \frac{\partial}{\partial y}\biggl[ \zeta_x v_y - \zeta_y v_x \biggr] - \frac{\partial}{\partial z}\biggl[ (\zeta_z + 2\Omega) v_x \biggr],
</math>
<math>
\hat{j}: ~~~~~~ [\nabla\times\vec{A}]_y = - \frac{\partial}{\partial z}\biggl[(\zeta_z + 2\Omega) v_y \biggr] - \frac{\partial}{\partial x}\biggl[ \zeta_x v_y - \zeta_y v_x \biggr] ,
</math>
<math> \hat{k}: ~~~~~~ [\nabla\times\vec{A}]_z = \frac{\partial}{\partial x}\biggl[ (\zeta_z + 2\Omega) v_x \biggr] + \frac{\partial}{\partial y}\biggl[ (\zeta_z + 2\Omega) v_y \biggr] , </math>
where, in this case, the three Cartesian components of the vorticity vector are,
<math> \zeta_x = - \frac{\partial v_y}{\partial z} ,
~~~~~~ \zeta_y = \frac{\partial v_x}{\partial z} , ~~~~~~ \zeta_z = \biggl[ \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \biggr] .
</math>
Related Discussions
- Wikipedia discussion of vorticity.
- Wikipedia discussion of Coriolis Effect.
- Wikipedia discussion of Centrifugal acceleration.
© 2014 - 2021 by Joel E. Tohline |