Difference between revisions of "User:Tohline/SSC/Structure/Polytropes"

From VistrailsWiki
Jump to navigation Jump to search
(Begin summarizing what analyses exist of isolated polytropes)
Line 1: Line 1:
__FORCETOC__  
__FORCETOC__  
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Polytropic Spheres=
=Radial Oscillations of Polytropic Spheres=
{{LSU_HBook_header}}
{{LSU_HBook_header}}
[[Image:LSU_Structure_still.gif|74px|left]]
==Overview==
Here we will supplement the [[User:Tohline/SphericallySymmetricConfigurations/PGE|simplified set of principal governing equations]] with a polytropic equation of state, as defined in our overview of [[User:Tohline/SR#Time-Independent|Problems supplemental relations for time-independent problems]]. Specifically, we will assume that {{User:Tohline/Math/VAR_Density01}} is related to {{User:Tohline/Math/VAR_Enthalpy01}} through the relation,  
The eigenvector associated with radial oscillations in isolated polytropes has been determined numerically and the results have been presented in a variety of key publications:
* P. LeDoux &amp; Th. Walraven (1958, Handbuch der Physik, 51, 353) &#8212;
* [http://adsabs.harvard.edu/abs/1966ApJ...143..535H M. Hurley, P. H. Roberts, &amp; K. Wright (1966, ApJ, 143, 535)] &#8212; ''The Oscillations of Gas Spheres''
* [http://adsabs.harvard.edu/abs/1974RPPh...37..563C J. P. Cox (1974, Reports on Progress in Physics, 37, 563)] &#8212; ''Pulsating Stars''


 
==Tables==
<div align="center">
<table border="1" align="center" cellpadding="5">
{{User:Tohline/Math/EQ_Polytrope03}}
</div>
 
It will be useful to note as well that, for any polytropic gas, the three key state variables are always related to one another through the simple expression,
<div align="center"><font size="+1">
<math> ~(n+1) P = H\rho</math> .
</font></div>
 
 
==Governing Relations==
 
===Lane-Emden Equation===
 
Adopting [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies#Technique_2|solution technique #2]], we need to solve the following second-order ODE relating the two unknown functions, {{User:Tohline/Math/VAR_Density01}} and {{User:Tohline/Math/VAR_Enthalpy01}}:
 
<div align="center">
<math>\frac{1}{r^2} \frac{d}{dr}\biggl( r^2 \frac{dH}{dr} \biggr) =-  4\pi G \rho</math> .
</div>
 
It is customary to replace {{User:Tohline/Math/VAR_Enthalpy01}} and {{User:Tohline/Math/VAR_Density01}} in this equation by a dimensionless polytropic enthalpy, <math>\Theta_H</math>, such that,
<div align="center">
<math>
\Theta_H \equiv \frac{H}{H_c} = \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} ,
</math>
</div>
where the mathematical relationship between {{User:Tohline/Math/VAR_Enthalpy01}}/<math>H_c</math> and {{User:Tohline/Math/VAR_Density01}}/<math>\rho_c</math> comes from the adopted barotropic (polytropic) relation identified above.  To accomplish this, we replace {{User:Tohline/Math/VAR_Enthalpy01}} with <math>H_c \Theta_H</math> on the left-hand-side of the governing differential equation and we replace {{User:Tohline/Math/VAR_Density01}} with <math>\rho_c \Theta_H^n</math> on the right-hand-side, then gather the constant coefficients together on the left.  The resulting ODE is,
 
<div align="center">
<math>\biggl[ \frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr) \biggr] \frac{1}{r^2} \frac{d}{dr}\biggl( r^2 \frac{d\Theta_H}{dr} \biggr) = - \Theta_H^n</math> .
</div>
 
The term inside the square brackets on the left-hand-side has dimensions of length-squared, so it is also customary to define a dimensionless radius,
<div align="center">
<math>
\xi \equiv \frac{r}{a_\mathrm{n}} ,
</math>
</div>
where,
<div align="center">
<math>~
a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}
= \biggl[\frac{(n+1)K_n}{4\pi G} \cdot \rho_c^{(1-n)/n} \biggr]^{1/2} \, ,
</math>
</div>
in which case our governing ODE becomes what is referred to in the astronomical literature as the,
<div align="center">
<span id="LaneEmdenEquation"><font color="#770000">'''Lane-Emden Equation'''</font></span>
<br />
{{User:Tohline/Math/EQ_SSLaneEmden01}}
</div>
Our task is to solve this ODE to determine the behavior of the function <math>~\Theta_H(\xi)</math> &#8212; and, from it in turn, determine the radial distribution of various dimensional physical variables &#8212; for various values of the polytropic index, {{User:Tohline/Math/MP_PolytropicIndex}}.
 
===Boundary Conditions===
 
Given that it is a <math>2^\mathrm{nd}</math>-order ODE, a solution of the Lane-Emden equation will require specification of two boundary conditions.  Based on our definition of the variable <math>\Theta_H</math>, one obvious boundary condition is to demand that <math>~\Theta_H = 1</math> at the center (<math>~\xi=0</math>) of the configuration.  In astrophysically interesting structures, we also expect the first derivative of many physical variables to go smoothly to zero at the center of the configuration &#8212; see, for example, the radial behavior that was derived for {{User:Tohline/Math/VAR_Pressure01}}, {{User:Tohline/Math/VAR_Enthalpy01}}, and {{User:Tohline/Math/VAR_NewtonianPotential01}} in a [[User:Tohline/SSC/Structure/UniformDensity#Summary|uniform-density sphere]].  Hence, we will seek solutions to the Lane-Emden equation where <math>~d\Theta_H /d\xi = 0</math> at <math>~\xi=0</math> as well.
 
==Known Analytic Solutions==
While the Lane-Emden equation has been studied for over 100 years, to date, analytic solutions to the equation (subject to the above specified boundary conditions) have been found only for three values of the polytropic index, {{User:Tohline/Math/MP_PolytropicIndex}}.  We will review these three solutions here.
 
==={{User:Tohline/Math/MP_PolytropicIndex}} = 0 Polytrope===
When the polytropic index, {{User:Tohline/Math/MP_PolytropicIndex}}, is set equal to zero, the right-hand-side of the Lane-Emden equation becomes a constant (<math>-1</math>), so the equation can be straightforwardly integrated, twice, to obtain the desired solution for <math>\Theta_H(\xi)</math>.  Specifically, the first integration along with enforcement of the boundary condition on <math>d\Theta_H/d\xi</math> at the center gives,
 
<div align="center">
<math>
\xi^2 \frac{d\Theta_H}{d\xi} = - \frac{1}{3}\xi^3 .
</math>
</div>
 
Then the second integration along with enforcement of the boundary condition on <math>\Theta_H</math> at the center gives,
 
<div align="center">
<math>
\Theta_H = 1 - \frac{1}{6}\xi^2 .
</math>
</div>
This function varies smoothly from unity at <math>\xi = 0</math> (as required by one of the boundary conditions) to zero at <math>\xi = \xi_1 = \sqrt{6}</math> (by tradition, the subscript "1" is used to indicate that it is the "first" zero of the Lane-Emden function), then becomes negative for values of <math>\xi > \xi_1</math>. 
 
The astrophysically interesting surface of this spherical configuration is identified with the first zero of the function, that is, where the dimensionless enthalpy first goes to zero.  In other words, the dimensionless radius <math>\xi_1</math> should correspond with the dimensional radius of the configuration, <math>R</math>.  From the definition of <math>\xi</math>, we therefore conclude that,
 
<div align="center">
<math>
a_{n=0} = \frac{R}{\xi_1} = \frac{R}{\sqrt{6}} ,
</math>
</div>
and
 
<div align="center">
<math>
\xi = \sqrt{6} \biggl(\frac{r}{R} \biggr) ,
</math>
</div>
Hence, the Lane-Emden function solution can also be written as,
 
<div align="center">
<math>
\Theta_H = \frac{H}{H_c} = 1 - \biggl(\frac{r}{R}\biggr)^2 .
</math>
</div>
Since,
<div align="center">
<math>
a_{n=0}^2 = \frac{1}{4\pi G} \biggl(\frac{H_c}{\rho_c}\biggr) = \frac{R^2}{6} ,
</math>
</div>
 
we also conclude that,
<div align="center">
<math>
H_c = \frac{2\pi G}{3} \rho_c R^2 .
</math>
</div>
This, combined with the Lane-Emden function solution, tells us that the run of enthalpy through the configuration is,
<div align="center">
<math>
H(r) = \frac{2\pi G}{3} \rho_c R^2 \biggl[ 1 - \biggl(\frac{r}{R}\biggr)^2 \biggr].
</math>
</div>
 
Now, it is always true for polytropic structures &#8212; see, for example, expressions at the top of this page of discussion &#8212; that {{User:Tohline/Math/VAR_Density01}} can be related to {{User:Tohline/Math/VAR_Enthalpy01}} through the expression,
<div align="center">
<math>
\biggl( \frac{\rho}{\rho_c} \biggr) = \biggl( \frac{H}{H_c} \biggr)^n = \Theta_H^n .
</math>
</div>
Hence, for the specific case of an {{User:Tohline/Math/MP_PolytropicIndex}} = 0 polytrope, we deduce that
<div align="center">
<math>
\frac{\rho}{\rho_c} = 1 .
</math>
</div>
This means that an {{User:Tohline/Math/MP_PolytropicIndex}} = 0 polytropic sphere is also a uniform-density sphere.  It should come as no surprise to discover, therefore, that the functional behavior of {{User:Tohline/Math/VAR_Enthalpy01}}<math>(r)</math> we have derived for the {{User:Tohline/Math/MP_PolytropicIndex}} = 0 polytrope is identical to the {{User:Tohline/Math/VAR_Enthalpy01}}<math>(r)</math> function that we have [[User:Tohline/SSC/Structure/UniformDensity|derived elsewhere for uniform-density spheres]].  All of the other [[User:Tohline/SSC/Structure/UniformDensity#Summary|summarized properties of uniform-density spheres]] can therefore also be assigned as properties of {{User:Tohline/Math/MP_PolytropicIndex}} = 0 polytropes.
 
==={{User:Tohline/Math/MP_PolytropicIndex}} = 1 Polytrope===
When the polytropic index, {{User:Tohline/Math/MP_PolytropicIndex}}, is set equal to unity, the Lane-Emden equation takes the form of an inhomogeneous, <math>2^\mathrm{nd}</math>-order ODE that is linear in the unknown function, <math>\Theta_H</math>.  Specifically, to derive the radial distribution of the Lane-Emden function <math>\Theta_H(r)</math> for an {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope, we must solve,
<div align="center">
<math>\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - \Theta_H</math> ,
</div>
subject to the above-specified [[User:Tohline/SSC/Structure/Polytropes#Boundary_Conditions|boundary conditions]].  If we multiply this equation through by <math>\xi^2</math> and move all the terms to the left-hand-side, we see that the governing ODE takes the form,
<div align="center">
<math>\xi^2 \frac{d^2\Theta_H}{d\xi^2} + 2\xi \frac{d\Theta_H}{d\xi}  + \xi^2 \Theta_H</math> = 0 ,
</div>
which is a relatively familiar <math>2^\mathrm{nd}</math>-order ODE (the [http://mathworld.wolfram.com/SphericalBesselFunction.html ''spherical Bessel differential equation'']) whose general solution involves a linear combination of the [http://en.wikipedia.org/wiki/Bessel_function order zero spherical Bessel functions] of the first and second kind, respectively,
<div align="center">
<math>
j_0(\xi) = \frac{\sin\xi}{\xi} ,
</math>
</div>
and,
<div align="center">
<math>
y_0(\xi) = - \frac{\cos\xi}{\xi} .
</math>
</div>
Given the boundary conditions that have been imposed on our astrophysical problem, we can rule out any contribution from the <math>y_0</math> function.  The desired solution is,
<div align="center">
<math>
\Theta_H(\xi) = j_0(\xi) = \frac{\sin\xi}{\xi} .
</math>
</div>
This function is also referred to as the (unnormalized) [http://en.wikipedia.org/wiki/Sinc_function sinc function].
 
 
Because, by definition, <math>H/H_c = \Theta_H</math>, and for an {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope <math>\rho/\rho_c = H/H_c</math>, we can immediately conclude from this Lane-Emden function solution that,
<div align="center">
<math>
\frac{\rho(\xi)}{\rho_c} = \frac{H(\xi)}{H_c} = \frac{\sin\xi}{\xi} .
</math>
</div>
Furthermore, because the relation ({{User:Tohline/Math/MP_PolytropicIndex}} + 1){{User:Tohline/Math/VAR_Pressure01}} = {{User:Tohline/Math/VAR_Enthalpy01}}{{User:Tohline/Math/VAR_Density01}} holds for all polytropic gases, we conclude that the pressure distribution inside an {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope is,
<div align="center">
<math>
\frac{P(\xi)}{P_c} = \biggl( \frac{\sin\xi}{\xi} \biggr)^2 .
</math>
</div>
The functions {{User:Tohline/Math/VAR_Pressure01}}<math>(\xi)</math>, {{User:Tohline/Math/VAR_Enthalpy01}}<math>(\xi)</math>, and {{User:Tohline/Math/VAR_Density01}}<math>(\xi)</math> all first drop to zero when <math>\xi = \pi</math>.  Hence, for an {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope, <math>\xi_1 = \pi</math> and, in terms of the configuration's radius <math>R</math>, the polytropic scale length is,
<div align="center">
<math>
a_{n=1} = \frac{R}{\xi_1} = \frac{R}{\pi} .
</math>
</div>
So, throughout the configuration, we can relate <math>\xi</math> to the dimensional spherical coordinate <math>r</math> through the relation,
<div align="center">
<math>
\xi = \pi \biggl(\frac{r}{R}\biggr) ;
</math>
</div>
and, from the general definition of <math>a_n</math>, the central value of {{User:Tohline/Math/VAR_Enthalpy01}} can be expressed in terms of <math>R</math> and <math>\rho_c</math> via the relation,
<div align="center">
<math>
H_c = \frac{4G}{\pi}\rho_c R^2 .
</math>
</div>
Again because the relation ({{User:Tohline/Math/MP_PolytropicIndex}} + 1){{User:Tohline/Math/VAR_Pressure01}} = {{User:Tohline/Math/VAR_Enthalpy01}}{{User:Tohline/Math/VAR_Density01}} must hold everywhere inside a polytrope, this means that the central pressure is given by the expression,
<div align="center">
<math>
P_c = \frac{2G}{\pi}\rho_c^2 R^2 .
</math>
</div>
 
Given the radial distribution of {{User:Tohline/Math/VAR_Density01}}, we can determine the functional behavior of the integrated mass.  Specifically,
<div align="center">
<table align="center" border="0" cellpadding="5">
<tr>
  <td align="right">
<math>
M_r(\xi)
</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\int_0^r 4\pi r^2 \rho~ dr 
</math>
  </td>  <td rowspan="3">
[[Image:WolframN1polytropeMass.jpg|border|240px|right]]
  </td>
</tr>
<tr>
<tr>
   <td align="right">
   <th align="center">
&nbsp;
Quantitative Information Regarding Eigenvectors of Oscillating Polytropes
  </td> 
   </th>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
4\pi \rho_c \biggl(\frac{R}{\pi}\biggr)^3 \int_0^\xi \xi\sin\xi ~d\xi
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td> 
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\frac{4}{\pi^2} \rho_c R^3 [ \sin\xi - \xi\cos\xi  ]  \, .
</math>
   </td>
</tr>
</tr>
</table>
</table>
</div>
Because <math>\xi = \pi</math> at the surface of this spherical configuration &#8212; in which case the term inside the square brackets is <math>\pi</math> &#8212; we conclude as well that the total mass of the configuration is,
<div align="center">
<math>
M = \frac{4}{\pi}\rho_c R^3 .
</math>
</div>


<font color="darkblue">
====Summary====
</font>
From the above derivations, we can describe the properties of a spherical {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytrope as follows:
* <font color="red">Mass</font>: 
: Given the density, <math>\rho_c</math>, and the radius, <math>R</math>, of the configuration, the total mass is,
<div align="center">
<math>M = \frac{4}{\pi} \rho_c R^3 </math> ;
</div>
: and, expressed as a function of <math>M</math>, the mass that lies interior to radius <math>r</math> is,
<div align="center">
<math>\frac{M_r}{M} = \frac{1}{\pi} \biggl[ \sin\biggl(\frac{\pi r}{R} \biggr) - \biggl(\frac{\pi r}{R} \biggr)\cos\biggl(\frac{\pi r}{R} \biggr) \biggr]</math> .
</div>
* <font color="red">Pressure</font>:
: Given values for the pair of model parameters <math>( \rho_c , R )</math>, or <math>( M , R )</math>, or <math>( \rho_c , M )</math>, the central pressure of the configuration is,
<div align="center">
<math>P_c = \frac{2 G}{\pi} \rho_c^2 R^2 = \frac{\pi G}{8}\biggl( \frac{M^2}{R^4} \biggr) = \biggl[ \frac{1}{2\pi} G^3 \rho_c^4 M^2 \biggr]^{1/3}</math> ;
</div>
: and, expressed in terms of the central pressure <math>P_c</math>, the variation with radius of the pressure is,
<div align="center">
<math>P(r)= P_c \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr]^2</math> .
</div>
* <font color="red">Enthalpy</font>:
: Throughout the configuration, the enthalpy is given by the relation,
<div align="center">
<math>H(r) = \frac{2 P(r)}{ \rho(r)} = \frac{GM}{R} \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr]</math> .
</div>
* <font color="red">Gravitational potential</font>:
: Throughout the configuration &#8212; that is, for all <math>r \leq R</math> &#8212; the gravitational potential is given by the relation,
<div align="center">
<math>\Phi_\mathrm{surf} - \Phi(r) = H(r) = \frac{GM}{R} \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr] </math> .
</div>
: Outside of this spherical configuration&#8212; that is, for all <math>r \geq R</math> &#8212;  the potential should behave like a point mass potential, that is,
<div align="center">
<math>\Phi(r) = - \frac{GM}{r} </math> .
</div>
: Matching these two expressions at the surface of the configuration, that is, setting <math>\Phi_\mathrm{surf} = - GM/R</math>, we have what is generally considered the properly normalized prescription for the gravitational potential inside a spherically symmetric, {{User:Tohline/Math/MP_PolytropicIndex}} = 1 polytropic configuration:
<div align="center">
<math>\Phi(r) = - \frac{G M}{R} \biggl\{ 1 + \biggl[\frac{R}{\pi r} \sin\biggl(\frac{\pi r}{R}\biggr)  \biggr] \biggr\} </math> .
</div>
* <font color="red">Mass-Radius relationship</font>:
: We see that, for a given value of <math>\rho_c</math>, the relationship between the configuration's total mass and radius is,
<div align="center">
<math>M \propto R^3  ~~~~~\mathrm{or}~~~~~R \propto M^{1/3} </math> .
</div>
* <font color="red">Central- to Mean-Density Ratio</font>:
: The ratio of the configuration's central density to its mean density is,
<div align="center">
<math>\frac{\rho_c}{\bar{\rho}} = \biggl(\frac{\pi M}{4 R^3}  \biggr)\biggl(\frac{3 M}{4 \pi R^3}  \biggr) = \frac{\pi^2}{3} </math> .
</div>
==={{User:Tohline/Math/MP_PolytropicIndex}} = 5 Polytrope===
To derive the radial distribution of the Lane-Emden function <math>\Theta_H(r)</math> for an {{User:Tohline/Math/MP_PolytropicIndex}} = 5 polytrope, we must solve,
<div align="center">
<math>\frac{1}{\xi^2} \frac{d}{d\xi}\biggl( \xi^2 \frac{d\Theta_H}{d\xi} \biggr) = - (\Theta_H)^5</math> ,
</div>
subject to the above-specified [[User:Tohline/SSC/Structure/Polytropes#Boundary_Conditions|boundary conditions]].  Following Emden (1907), [http://www.vistrails.org/index.php/User:Tohline/Appendix/References#C67  C67] (pp. 93-94) shows that by making the substitutions,
<div align="center">
<math>
\xi = \frac{1}{x} = e^{-t} \, ; ~~~~~\Theta_H = \biggl(\frac{x}{2}\biggr)^{1/2} z = \biggl(\frac{1}{2}e^t\biggr)^{1/2}z \, ,
</math>
</div>
the differential equation can be rewritten as,
<div align="center">
<math>
\frac{d^2 z}{dt^2} = \frac{1}{4}z (1 - z^4) \, .
</math>
</div>
This equation has the solution,
<div align="center">
<math>
z = \pm \biggl[ \frac{12 C e^{-2t}}{(1 + C e^{-2t})^2} \biggr]^{1/4} \, ,
</math>
</div>
that is,
<div align="center">
<math>
\Theta_H = \biggl[ \frac{3 C }{(1 + C \xi^2)^2} \biggr]^{1/4} \, .
</math>
</div>
where <math>C</math> is an integration constant.  Because <math>\Theta_H</math> must go to unity when <math>\xi = 0</math>, we see that <math>C=1/3</math>.  Hence,
<div align="center">
<math>
\Theta_H = \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-1/2} \, .
</math>
</div>
From this Lane-Emden function solution, we obtain,
<div align="center">
<math>
\frac{\rho}{\rho_c} = \Theta_H^5 = \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-5/2} \, ,
</math>
</div>
and,
<div align="center">
<math>
\frac{P}{P_c} = \biggr(\frac{\rho}{\rho_c}\biggr)^{6/5} = \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-3} \, .
</math>
</div>
Notice that, for this polytropic structure, the density and pressure don't go to zero until <math>\xi \rightarrow \infty</math>.  Hence, <math>\xi_1 = \infty</math>. However, the radial scale length,
<div align="center">
<math>
a_5 = \biggr[ \frac{1}{4\pi G} \biggl( \frac{H_c}{\rho_c} \biggr) \biggr]^{1/2} =
\biggr[ \frac{(n+1)K}{4\pi G} \rho_c^{(1/n - 1)} \biggr]^{1/2} =
\biggr[ \frac{3K}{2\pi G} \biggr]^{1/2}  \rho_c^{-2/5}  \, .
</math>
</div>
Hence,
<div align="center">
<table align="center" border="0" cellpadding="5">
<tr>
  <td align="right">
<math>
M_r(\xi)
</math>
  </td>
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
4\pi \rho_c a_5^3 \int_0^\xi \xi^2 \biggl[ 1 + \frac{1}{3}\xi^2 \biggr]^{-5/2} d\xi 
</math>
  </td>  <td rowspan="3">
[[Image:WolframN5polytropeMass.jpg|border|240px|right]]
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td> 
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
4\pi \biggr[ \frac{3K}{2\pi G} \biggr]^{3/2}  \rho_c^{-1/5} ~\biggl\{ \frac{\sqrt{3} \xi^3}{(3 + \xi^2)^{3/2}} \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td> 
  <td align="center">
<math>=</math>
  </td>
  <td align="left">
<math>
\biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2}  \rho_c^{-1/5} ~\{ \xi^3 ( 3 + \xi^2 )^{-3/2} \} \, .
</math>
  </td>
</tr>
</table>
</div>
The function of <math>\xi</math> inside the curly brackets of this last expression goes to unity as <math>\xi \rightarrow \infty</math>, so the integrated mass is finite even though the configuration extends to infinity.  Specifically, the total mass is,
<div align="center">
<math>M = \biggr[ \frac{2\cdot 3^4 K^3}{\pi G^3} \biggr]^{1/2}  \rho_c^{-1/5}  \, .</math>
</div>


We can invert this formula to obtain an expression for <math>K</math> in terms of <math>M</math> and <math>\rho_c</math>, namely,
=Related Discussions=
<div align="center">
<math>
K = \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3}  \rho_c^{2/15}  \, .
</math>
</div>
This, in turn, means that the central pressure,
<div align="center">
<math>
P_c = K\rho_c^{6/5} = \biggr[ \frac{\pi M^2 G^3}{2\cdot 3^4} \biggr]^{1/3}  \rho_c^{4/3}  \, ,
</math>
</div>
and,
<div align="center">
<math>
H_c = \frac{6P_c}{\rho_c} = \biggr[ \frac{2^2 \pi M^2 G^3}{3} \biggr]^{1/3}  \rho_c^{1/3}  \, .
</math>
</div>


=Related Wikipedia Discussions=
* [http://en.wikipedia.org/wiki/Lane-Emden_equation Lane-Emden equation]
* [http://en.wikipedia.org/wiki/Polytrope Polytrope]


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 23:30, 30 March 2015

Radial Oscillations of Polytropic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Overview

The eigenvector associated with radial oscillations in isolated polytropes has been determined numerically and the results have been presented in a variety of key publications:

Tables

Quantitative Information Regarding Eigenvectors of Oscillating Polytropes


Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation