Difference between revisions of "User:Tohline/SSC/Virial/FormFactors"

From VistrailsWiki
Jump to navigation Jump to search
(Create new chapter showing "one detailed example" of the calculation of structural form factors)
 
(→‎Structural Form Factors: Insert table containig chosen normalizations)
Line 4: Line 4:
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==One Detailed Example==
==One Detailed Example==
Here we derive detailed expressions for a selected subset of the above structural form factors and corresponding energy terms in the case of spherically symmetric configurations that obey an <math>~n=5</math> polytropic equation of state.  The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable.  This should help debug numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically.  The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of ''isolated'' polytropes, but to [[User:Tohline/SSC/Virial/PolytropesSummary#Further_Evaluation_of_n_.3D_5_Polytropic_Structures|''pressure-truncated'' polytropes]] that are embedded in a hot, tenuous external medium and to the [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Free_Energy|cores of bipolytropes]].
===Key Foundations===
We use the following normalizations, as drawn from [[User:Tohline/SphericallySymmetricConfigurations/Virial#Normalizations|our more general introductory discussion]], but specified here for the case of <math>~n=5</math> and, hence, <math>~\gamma = 6/5</math>.
<div align="center">
<table border="1" align="center" cellpadding="5">
<tr><th align="center" colspan="2">
Adopted Normalizations <math>~(n=5; ~\gamma=6/5)</math>
</th></tr>
<tr><td align="center" colspan="2">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~R_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{G}{K} \biggr)^{5/2} M_\mathrm{tot}^{2} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~P_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{K^{10}}{G^{9} M_\mathrm{tot}^{6}} \biggr)  </math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">
----
  </td>
</tr>
<tr>
  <td align="right">
<math>~E_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 =
\biggl( \frac{K^5}{G^3} \biggr)^{1/2} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\rho_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3}
= \frac{3}{4\pi} \biggl( \frac{K}{G} \biggr)^{15/2} M_\mathrm{tot}^{-5} </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~c^2_\mathrm{norm}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}}
= \frac{4\pi}{3} \biggl( \frac{K^5}{G^3} \biggr)^{1/2} M_\mathrm{tot}^{-1}  </math>
  </td>
</tr>
</table>
</td>
</tr>
<tr><th align="left" colspan="2">
Note that the following relations also hold:
<div align="center">
<math>~E_\mathrm{norm} = P_\mathrm{norm} R_\mathrm{norm}^3 = \frac{G M_\mathrm{tot}^2}{ R_\mathrm{norm}}
= \biggl( \frac{3}{4\pi} \biggr) M_\mathrm{tot} c_\mathrm{norm}^2</math>
</div>
</th></tr>
</table>
</div>





Revision as of 00:02, 3 January 2015


Structural Form Factors

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

One Detailed Example

Here we derive detailed expressions for a selected subset of the above structural form factors and corresponding energy terms in the case of spherically symmetric configurations that obey an <math>~n=5</math> polytropic equation of state. The hope is that this will illustrate, in a clear and helpful manner, how the task of calculating form factors is to be carried out, in practice; and, in particular, to provide one nontrivial example for which analytic expressions are derivable. This should help debug numerical algorithms that are designed to calculate structural form factors for more general cases that cannot be derived analytically. The limits of integration will be specified in a general enough fashion that the resulting expressions can be applied, not only to the structures of isolated polytropes, but to pressure-truncated polytropes that are embedded in a hot, tenuous external medium and to the cores of bipolytropes.

Key Foundations

We use the following normalizations, as drawn from our more general introductory discussion, but specified here for the case of <math>~n=5</math> and, hence, <math>~\gamma = 6/5</math>.

Adopted Normalizations <math>~(n=5; ~\gamma=6/5)</math>

<math>~R_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl( \frac{G}{K} \biggr)^{5/2} M_\mathrm{tot}^{2} </math>

<math>~P_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\biggl( \frac{K^{10}}{G^{9} M_\mathrm{tot}^{6}} \biggr) </math>


<math>~E_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~ P_\mathrm{norm} R_\mathrm{norm}^3 = \biggl( \frac{K^5}{G^3} \biggr)^{1/2} </math>

<math>~\rho_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{3M_\mathrm{tot}}{4\pi R_\mathrm{norm}^3} = \frac{3}{4\pi} \biggl( \frac{K}{G} \biggr)^{15/2} M_\mathrm{tot}^{-5} </math>

<math>~c^2_\mathrm{norm}</math>

<math>~\equiv</math>

<math>~\frac{P_\mathrm{norm}}{\rho_\mathrm{norm}} = \frac{4\pi}{3} \biggl( \frac{K^5}{G^3} \biggr)^{1/2} M_\mathrm{tot}^{-1} </math>

Note that the following relations also hold:

<math>~E_\mathrm{norm} = P_\mathrm{norm} R_\mathrm{norm}^3 = \frac{G M_\mathrm{tot}^2}{ R_\mathrm{norm}} = \biggl( \frac{3}{4\pi} \biggr) M_\mathrm{tot} c_\mathrm{norm}^2</math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation