Difference between revisions of "User:Tohline/Apps/HomologousCollapse"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Homologously Collapsing Polytropic Spheres: Work through some details of generalized homologous collapse)
(→‎Homologous Solution: Correct continuity equation)
 
(6 intermediate revisions by the same user not shown)
Line 2: Line 2:
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Review of Goldreich and Weber (1980)==
==Review of Goldreich and Weber (1980)==
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we review the dynamical model that Peter Goldreich &amp; Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> &#8212; and polytropic index, <math>~n=3</math>.  Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we have reviewed the self-similar, dynamical model that Peter Goldreich &amp; Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> &#8212; and polytropic index, <math>~n=3</math>.  Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.


==Governing Equations==
==Governing Equations==
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations already written in terms of a stream function]], as developed in the accompanying discussion of Goldreich &amp; Weber's (1980) work.  Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations]] that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich &amp; Weber's (1980) work.  The continuity equation, the Euler equation, and the Poisson equation are, respectively,


<div align="center" id="GoverningWithStreamFunction">
<div align="center" id="GoverningWithStreamFunction">
Line 69: Line 69:
</math>
</math>
</div>
</div>
Again, following Goldreich &amp; Weber, we allow the normalizing scale length to vary with time an adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
Following Goldreich &amp; Weber, we allow the normalizing scale length to vary with time and adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
<div align="center">
<div align="center">
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
Line 90: Line 90:


And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
<div align="center">
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n} = \biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}
=  \biggl( \frac{n+1}{n} \biggr) \kappa
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2}  \frac{1}{a(t)} \biggr\}^{2/(n-1)}
=  \, .</math>
</div>
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 177: Line 170:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{d\ln f^n}{dt}  </math>
<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt}  </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 183: Line 176:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ,</math>
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ;</math>
   </td>
   </td>
</tr>
</tr>
Line 214: Line 207:
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
</div>
</div>
==Homologous Solution==
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>
  </td>
</tr>
</table>
</div>
which, when acted upon by the various relevant operators, gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\nabla_\mathfrak{x}\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~a \dot{a} \mathfrak{x} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\nabla^2_\mathfrak{x}\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}}  \mathfrak{x}^2 \biggr]
= 3 a \dot{a} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\frac{d\psi}{dt}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>
  </td>
</tr>
</table>
</div>
This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich &amp; Weber derivation,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{a}\mathfrak{x} \, .
</math>
  </td>
</tr>
</table>
</div>
Also, in our more general case, the continuity equation gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{d\ln \rho_c}{dt}  + \frac{d\ln a^3}{dt} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\Rightarrow~~~ a^3\rho_c</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
constant,
  </td>
</tr>
</table>
</div>
independent of time.  But the Euler equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~ - n f - \sigma </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)} 
\biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr]  -
\frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)}  a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a}
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)}  a^{(n+1)/(n-1)} \ddot{a} \, .
</math>
  </td>
</tr>
</table>
</div>
Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same (dimensionless) constant.  We will follow the lead of Goldreich &amp; Weber (1980) and call this constant, <math>~\lambda/6</math>.  From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\sigma</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>
  </td>
</tr>
</table>
</div>
Inserting this expression into the Poisson equation gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf  \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~nf^n </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}}
\biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-f^n </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}}
\biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\lambda - f^n \, ,</math>
  </td>
</tr>
</table>
</div>
which becomes the familiar Lane-Emden equation ''for arbitrary n'' when <math>~\lambda = 0 \, .</math>
From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
a^{(n+1)/(n-1)} \ddot{a}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>
  </td>
</tr>
</table>
</div>






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 23:26, 25 November 2014

Homologously Collapsing Polytropic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

In an accompanying discussion, we have reviewed the self-similar, dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.

Governing Equations

We begin with the set of principal governing equations that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. The continuity equation, the Euler equation, and the Poisson equation are, respectively,

<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math>

<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>

<math>~=</math>

<math>~4\pi G \rho \, .</math>

Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,

<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>

But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,

<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>

Following Goldreich & Weber, we allow the normalizing scale length to vary with time and adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,

<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>

(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>

Next, we normalize the density by the central density, defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>

which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,

<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>

 

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>

 

<math>~=</math>

<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>

giving,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>

and,

<math>~\frac{H}{c_s^2} </math>

<math>~=</math>

<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

the Euler equation becomes,

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math>

<math>~=</math>

<math>~ - n f - \sigma \, ;</math>

and the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>

Homologous Solution

Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,

<math>~\psi</math>

<math>~=</math>

<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>

which, when acted upon by the various relevant operators, gives,

<math>~\nabla_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~a \dot{a} \mathfrak{x} \, ,</math>

<math>~\nabla^2_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math>

<math>~\frac{d\psi}{dt}</math>

<math>~=</math>

<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>

This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich & Weber derivation,

<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math>

<math>~=</math>

<math>~\dot{a}\mathfrak{x} \, . </math>

Also, in our more general case, the continuity equation gives,

<math>~\frac{d\ln \rho_c}{dt} + \frac{d\ln a^3}{dt} </math>

<math>~=</math>

<math>~0 </math>

<math>\Rightarrow~~~ a^3\rho_c</math>

<math>~=</math>

constant,

independent of time. But the Euler equation becomes,

<math>~ - n f - \sigma </math>

<math>~=</math>

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] - \frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a} </math>

<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math>

<math>~=</math>

<math>~ -~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \ddot{a} \, . </math>


Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same (dimensionless) constant. We will follow the lead of Goldreich & Weber (1980) and call this constant, <math>~\lambda/6</math>. From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~=</math>

<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>

Inserting this expression into the Poisson equation gives,

<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \biggr)</math>

<math>~=</math>

<math>~nf^n </math>

<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math>

<math>~=</math>

<math>~-f^n </math>

<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}} \biggr] </math>

<math>~=</math>

<math>~\lambda - f^n \, ,</math>

which becomes the familiar Lane-Emden equation for arbitrary n when <math>~\lambda = 0 \, .</math>

From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,

<math>~ a^{(n+1)/(n-1)} \ddot{a} </math>

<math>~=</math>

<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation