Difference between revisions of "User:Tohline/Apps/HomologousCollapse"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Governing Equations: Working on raw generalization to arbitrary polytropic index)
(→‎Homologous Solution: Correct continuity equation)
 
(7 intermediate revisions by the same user not shown)
Line 2: Line 2:
{{LSU_HBook_header}}
{{LSU_HBook_header}}
==Review of Goldreich and Weber (1980)==
==Review of Goldreich and Weber (1980)==
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores.  As we began to study the Goldreich & Weber paper, it wasn't immediately obvious how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system.  I did not understand the transformed set of equations presented by Goldreich & Weber as equations (7) and (8), for example.  At first, I turned to [http://www.sciencedirect.com/science/article/pii/S0021999106002555 Poludnenko & Khokhlov (2007, Journal of Computational Physics, 220, 678)] — hereafter, PK07 — for guidancePK07 develop a very general set of governing equations that allows for coordinate rotation as well as expansion or contraction.  Ultimately, the most helpful additional reference proved to be §19.11 (pp. 187 - 190) of Kippenhahn & Weigert [ [[User:Tohline/Appendix/References#KW94|KW94]] ].
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we have reviewed the self-similar, dynamical model that Peter Goldreich &amp; Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> &#8212; and polytropic index, <math>~n=3</math>Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.


==Governing Equations==
==Governing Equations==
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations]] that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich &amp; Weber's (1980) work.  The continuity equation, the Euler equation, and the Poisson equation are, respectively,


===Length===
<div align="center" id="GoverningWithStreamFunction">
<table border="1" align="center" cellpadding="10" width="55%">
<tr><td align="center">
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{d\psi}{dt} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi  \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4\pi G \rho \, .</math>
  </td>
</tr>
</table>


Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)], we choose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is,
</td></tr>
</table>
</div>
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)], the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], namely,
<div align="center">
<div align="center">
<math>
<math>
a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}  \, ,
a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2}  \, ,
</math>
</math>
</div>
</div>
Line 18: Line 63:
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
</div>
</div>
Substitution of this equation of state expression leads to,
But, unlike Goldreich &amp; Weber, we will leave the polytropic index unspecified.  Inserting this equation of state expression into the definition of the normalization length scale leads to,
<div align="center">
<div align="center">
<math>
<math>
Line 24: Line 69:
</math>
</math>
</div>
</div>
''Most significantly'', Goldreich &amp; Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution.  In doing this, they effectively adopted an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
Following Goldreich &amp; Weber, we allow the normalizing scale length to vary with time and adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate,
<div align="center">
<div align="center">
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
</div>
</div>
 
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,
This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or bothIn practice, Goldreich &amp; Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,
<div align="center">
<div align="center">
<math>
<math>
Line 36: Line 80:
</div>
</div>


Given the newly adopted dimensionless radial coordinate, the following replacements for the spatial operators should be made, as appropriate, throughout the set of governing equations:
Next, we normalize the density by the central density, defining a dimensionless function,
<div align="center">
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>
</div>
which is in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,
<div align="center">
<div align="center">
<math>~\nabla_r ~\rightarrow~ a^{-1} \nabla_\mathfrak{x}</math>&nbsp; &nbsp; &nbsp; &nbsp;
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
and
&nbsp; &nbsp; &nbsp; &nbsp;<math>~\nabla_r^2 ~\rightarrow~ a^{-2} \nabla_\mathfrak{x}^2 \, .</math>
</div>
</div>


Specifically, the continuity equation, the Euler equation, and the Poisson equation become, respectively,
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
 
<div align="center">
<div align="center">
<table border="1" align="center" cellpadding="10" width="55%">
<table border="0" cellpadding="5" align="center">
<tr><td align="center">


<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>
<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 58: Line 101:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ;</math>
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>
   </td>
   </td>
</tr>
</tr>
Line 64: Line 107:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{d\psi}{dt} </math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 70: Line 113:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi  \, ;</math>
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>
   </td>
   </td>
</tr>
</tr>
Line 76: Line 120:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr]  \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>
  </td>
</tr>
</table>
</div>
giving,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\sigma</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>
  </td>
</tr>
</table>
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{H}{c_s^2} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 82: Line 158:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~4\pi G \rho \, .</math>
<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n}  = nf \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
With these additional scalings, the continuity equation becomes,


</td></tr>
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt}  </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ;</math>
  </td>
</tr>
</table>
</table>
</div>
</div>


the Euler equation becomes,


===Mass-Density and Speed===
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)} 
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ - n f - \sigma  \, ;</math>
  </td>
</tr>
</table>
</div>


Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
and the Poisson equation becomes,
<div align="center">
<div align="center">
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
</div>
</div>
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,  
 
==Homologous Solution==
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<div align="center">
<div align="center">
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>
  </td>
</tr>
</table>
</div>
</div>
which, when acted upon by the various relevant operators, gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\nabla_\mathfrak{x}\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~a \dot{a} \mathfrak{x} \, ,</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\nabla^2_\mathfrak{x}\psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}}  \mathfrak{x}^2 \biggr]
= 3 a \dot{a} \, ,
</math>
  </td>
</tr>


Also, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
<tr>
  <td align="right">
<math>~\frac{d\psi}{dt}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>
  </td>
</tr>
</table>
</div>
This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich &amp; Weber derivation,
<div align="center">
<div align="center">
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3}
<table border="0" cellpadding="5" align="center">
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
<tr>
  <td align="right">
<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\dot{a}\mathfrak{x} \, .
</math>
  </td>
</tr>
</table>
</div>
</div>
Specifically, their dimensionless gravitational potential is,
Also, in our more general case, the continuity equation gives,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sigma</math>
<math>~\frac{d\ln \rho_c}{dt}  + \frac{d\ln a^3}{dt} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0 </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>\Rightarrow~~~ a^3\rho_c</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\Phi}{c_s^2} = \biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, ,</math>
constant,
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
and the similarly normalized enthalpy may be written as,
independent of time.  But the Euler equation becomes,
 
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{H}{c_s^2} </math>
<math>~ - n f - \sigma </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 135: Line 326:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] 4\kappa \rho^{1/3} </math>
<math>~
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]  a^2(t) \biggr\}^{1/(n-1)} 
\biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] -
\frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 147: Line 342:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3 \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} </math>
<math>~
\frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)}  a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a}  
</math>
   </td>
   </td>
</tr>
</tr>
Line 153: Line 350:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 159: Line 356:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3f \, .</math>
<math>~
-~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)}  a^{(n+1)/(n-1)} \ddot{a} \, .
</math>
   </td>
   </td>
</tr>
</tr>
Line 165: Line 364:
</table>
</table>
</div>
</div>
With these additional scalings, the continuity equation becomes,


Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same (dimensionless) constant.  We will follow the lead of Goldreich &amp; Weber (1980) and call this constant, <math>~\lambda/6</math>.  From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{d\ln f^3}{dt}  </math>
<math>~\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 177: Line 377:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ,</math>
<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>
  </td>
</tr>
</table>
</div>
Inserting this expression into the Poisson equation gives,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf  \biggr)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~nf^n </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}}
\biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-f^n </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}}
\biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\lambda - f^n \, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 183: Line 425:
</div>
</div>


the Euler equation becomes,
which becomes the familiar Lane-Emden equation ''for arbitrary n'' when <math>~\lambda = 0 \, .</math>


From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>~
\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] 
a^{(n+1)/(n-1)} \ddot{a}  
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr]
</math>
</math>
   </td>
   </td>
Line 198: Line 441:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ - 3 f - \sigma  \, ;</math>
<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 204: Line 447:
</div>
</div>


and the Poisson equation becomes,
 
<div align="center">
<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math>
</div>






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 23:26, 25 November 2014

Homologously Collapsing Polytropic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

In an accompanying discussion, we have reviewed the self-similar, dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.

Governing Equations

We begin with the set of principal governing equations that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. The continuity equation, the Euler equation, and the Poisson equation are, respectively,

<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math>

<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>

<math>~=</math>

<math>~4\pi G \rho \, .</math>

Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,

<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>

But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,

<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>

Following Goldreich & Weber, we allow the normalizing scale length to vary with time and adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,

<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>

(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>

Next, we normalize the density by the central density, defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>

which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,

<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>

 

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>

 

<math>~=</math>

<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>

giving,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>

and,

<math>~\frac{H}{c_s^2} </math>

<math>~=</math>

<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

the Euler equation becomes,

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math>

<math>~=</math>

<math>~ - n f - \sigma \, ;</math>

and the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>

Homologous Solution

Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,

<math>~\psi</math>

<math>~=</math>

<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>

which, when acted upon by the various relevant operators, gives,

<math>~\nabla_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~a \dot{a} \mathfrak{x} \, ,</math>

<math>~\nabla^2_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math>

<math>~\frac{d\psi}{dt}</math>

<math>~=</math>

<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>

This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich & Weber derivation,

<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math>

<math>~=</math>

<math>~\dot{a}\mathfrak{x} \, . </math>

Also, in our more general case, the continuity equation gives,

<math>~\frac{d\ln \rho_c}{dt} + \frac{d\ln a^3}{dt} </math>

<math>~=</math>

<math>~0 </math>

<math>\Rightarrow~~~ a^3\rho_c</math>

<math>~=</math>

constant,

independent of time. But the Euler equation becomes,

<math>~ - n f - \sigma </math>

<math>~=</math>

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] - \frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a} </math>

<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math>

<math>~=</math>

<math>~ -~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \ddot{a} \, . </math>


Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same (dimensionless) constant. We will follow the lead of Goldreich & Weber (1980) and call this constant, <math>~\lambda/6</math>. From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~=</math>

<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>

Inserting this expression into the Poisson equation gives,

<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \biggr)</math>

<math>~=</math>

<math>~nf^n </math>

<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math>

<math>~=</math>

<math>~-f^n </math>

<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}} \biggr] </math>

<math>~=</math>

<math>~\lambda - f^n \, ,</math>

which becomes the familiar Lane-Emden equation for arbitrary n when <math>~\lambda = 0 \, .</math>

From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,

<math>~ a^{(n+1)/(n-1)} \ddot{a} </math>

<math>~=</math>

<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation