Difference between revisions of "User:Tohline/Apps/HomologousCollapse"
(→Governing Equations: Working on raw generalization to arbitrary polytropic index) |
(→Homologous Solution: Correct continuity equation) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Review of Goldreich and Weber (1980)== | ==Review of Goldreich and Weber (1980)== | ||
In an [[User:Tohline/Apps/GoldreichWeber80#Homologously_Collapsing_Stellar_Cores|accompanying discussion]], we have reviewed the self-similar, dynamical model that Peter Goldreich & Stephen Weber [http://adsabs.harvard.edu/abs/1980ApJ...238..991G (1980, ApJ, 238, 991)] developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index. | |||
==Governing Equations== | ==Governing Equations== | ||
We begin with the set of [[User:Tohline/Apps/GoldreichWeber80#GoverningWithStreamFunction|principal governing equations]] that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. The continuity equation, the Euler equation, and the Poisson equation are, respectively, | |||
=== | <div align="center" id="GoverningWithStreamFunction"> | ||
<table border="1" align="center" cellpadding="10" width="55%"> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\psi}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi G \rho \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)], | </td></tr> | ||
</table> | |||
</div> | |||
Following [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)], the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], namely, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , | |||
</math> | </math> | ||
</div> | </div> | ||
Line 18: | Line 63: | ||
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math> | <math>~H = (n+1) \kappa \rho^{1/n} \, .</math> | ||
</div> | </div> | ||
But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
Line 24: | Line 69: | ||
</math> | </math> | ||
</div> | </div> | ||
Following Goldreich & Weber, we allow the normalizing scale length to vary with time and adopt an ''accelerating'' coordinate system with a time-dependent dimensionless radial coordinate, | |||
<div align="center"> | <div align="center"> | ||
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math> | <math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math> | ||
</div> | </div> | ||
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
Line 36: | Line 80: | ||
</div> | </div> | ||
Next, we normalize the density by the central density, defining a dimensionless function, | |||
<div align="center"> | |||
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math> | |||
</div> | |||
which is in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math> | ||
</div> | </div> | ||
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed, | |||
<div align="center"> | <div align="center"> | ||
<table border=" | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 58: | Line 101: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 64: | Line 107: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 70: | Line 113: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{1}{ | <math>~\biggl( \frac{n+1}{n} \biggr) \kappa | ||
\biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 76: | Line 120: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~a^{-2}\ | | ||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
giving, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\sigma</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{H}{c_s^2} </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 82: | Line 158: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | |||
With these additional scalings, the continuity equation becomes, | |||
</td></tr> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math> | |||
</td> | |||
</tr> | |||
</table> | </table> | ||
</div> | </div> | ||
the Euler equation becomes, | |||
=== | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} | |||
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ - n f - \sigma \, ;</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
and the Poisson equation becomes, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math> | ||
</div> | </div> | ||
==Homologous Solution== | |||
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form, | |||
<div align="center"> | <div align="center"> | ||
<math>\ | <table border="0" cellpadding="5" align="center"> | ||
<tr> | |||
<td align="right"> | |||
<math>~\psi</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
which, when acted upon by the various relevant operators, gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\nabla_\mathfrak{x}\psi</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~a \dot{a} \mathfrak{x} \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\nabla^2_\mathfrak{x}\psi</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] | |||
= 3 a \dot{a} \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\psi}{dt}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich & Weber derivation, | |||
<div align="center"> | <div align="center"> | ||
<math> | <table border="0" cellpadding="5" align="center"> | ||
= \ | <tr> | ||
<td align="right"> | |||
<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\dot{a}\mathfrak{x} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
Also, in our more general case, the continuity equation gives, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\frac{d\ln \rho_c}{dt} + \frac{d\ln a^3}{dt} </math> | ||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0 </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>\Rightarrow~~~ a^3\rho_c</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
constant, | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
independent of time. But the Euler equation becomes, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~ - n f - \sigma </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 135: | Line 326: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\biggl | <math>~ | ||
n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} | |||
\biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] - | |||
\frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 147: | Line 342: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 153: | Line 350: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 159: | Line 356: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \ddot{a} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 165: | Line 364: | ||
</table> | </table> | ||
</div> | </div> | ||
Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same (dimensionless) constant. We will follow the lead of Goldreich & Weber (1980) and call this constant, <math>~\lambda/6</math>. From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\sigma</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 177: | Line 377: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~-~ | <math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math> | ||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
Inserting this expression into the Poisson equation gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \biggr)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~nf^n </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}} | |||
\biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~-f^n </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}} | |||
\biggr] </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\lambda - f^n \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 183: | Line 425: | ||
</div> | </div> | ||
the | which becomes the familiar Lane-Emden equation ''for arbitrary n'' when <math>~\lambda = 0 \, .</math> | ||
From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~ | ||
a^{(n+1)/(n-1)} \ddot{a} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 198: | Line 441: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ - 3 | <math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 204: | Line 447: | ||
</div> | </div> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 23:26, 25 November 2014
Homologously Collapsing Polytropic Spheres
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review of Goldreich and Weber (1980)
In an accompanying discussion, we have reviewed the self-similar, dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.
Governing Equations
We begin with the set of principal governing equations that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. The continuity equation, the Euler equation, and the Poisson equation are, respectively,
|
Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,
<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>
where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,
<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>
But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,
<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>
Following Goldreich & Weber, we allow the normalizing scale length to vary with time and adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,
<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>
Next, we normalize the density by the central density, defining a dimensionless function,
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>
which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,
<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math> |
<math>~=</math> |
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math> |
|
<math>~=</math> |
<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math> |
|
<math>~=</math> |
<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math> |
giving,
<math>~\sigma</math> |
<math>~\equiv</math> |
<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math> |
and,
<math>~\frac{H}{c_s^2} </math> |
<math>~=</math> |
<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math> |
With these additional scalings, the continuity equation becomes,
<math>~\cancelto{0}{\frac{d\ln f^n}{dt}} + \frac{d\ln \rho_c}{dt} </math> |
<math>~=</math> |
<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math> |
the Euler equation becomes,
<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math> |
<math>~=</math> |
<math>~ - n f - \sigma \, ;</math> |
and the Poisson equation becomes,
<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>
Homologous Solution
Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<math>~\psi</math> |
<math>~=</math> |
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math> |
which, when acted upon by the various relevant operators, gives,
<math>~\nabla_\mathfrak{x}\psi</math> |
<math>~=</math> |
<math>~a \dot{a} \mathfrak{x} \, ,</math> |
<math>~\nabla^2_\mathfrak{x}\psi</math> |
<math>~=</math> |
<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math> |
<math>~\frac{d\psi}{dt}</math> |
<math>~=</math> |
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math> |
This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich & Weber derivation,
<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math> |
<math>~=</math> |
<math>~\dot{a}\mathfrak{x} \, . </math> |
Also, in our more general case, the continuity equation gives,
<math>~\frac{d\ln \rho_c}{dt} + \frac{d\ln a^3}{dt} </math> |
<math>~=</math> |
<math>~0 </math> |
<math>\Rightarrow~~~ a^3\rho_c</math> |
<math>~=</math> |
constant, |
independent of time. But the Euler equation becomes,
<math>~ - n f - \sigma </math> |
<math>~=</math> |
<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] - \frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a} </math> |
<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math> |
<math>~=</math> |
<math>~ -~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \ddot{a} \, . </math> |
Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same (dimensionless) constant. We will follow the lead of Goldreich & Weber (1980) and call this constant, <math>~\lambda/6</math>. From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,
<math>~\sigma</math> |
<math>~=</math> |
<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math> |
Inserting this expression into the Poisson equation gives,
<math>~\nabla^2_\mathfrak{x} \biggl( \frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \biggr)</math> |
<math>~=</math> |
<math>~nf^n </math> |
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \biggl(f - \frac{\lambda}{6} ~\mathfrak{x}^2 \biggr)\biggr]</math> |
<math>~=</math> |
<math>~-f^n </math> |
<math>~\Rightarrow~~~\frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[ \mathfrak{x}^2 \frac{df}{d\mathfrak{x}} \biggr] </math> |
<math>~=</math> |
<math>~\lambda - f^n \, ,</math> |
which becomes the familiar Lane-Emden equation for arbitrary n when <math>~\lambda = 0 \, .</math>
From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<math>~ a^{(n+1)/(n-1)} \ddot{a} </math> |
<math>~=</math> |
<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math> |
© 2014 - 2021 by Joel E. Tohline |