Difference between revisions of "User:Tohline/Apps/HomologousCollapse"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Homologous Solution: Finished detailing homology solution)
Line 366: Line 366:




Because everything on the lefthand side of Goldreich &amp; Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same (dimensionless) constant.  [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 12) call this constant, <math>~\lambda/6</math>.  From the terms on the lefthand side, they conclude (see their equation 13) that the dimensionless gravitational potential is,
Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same (dimensionless) constant.  We will follow the lead of Goldreich &amp; Weber (1980) and call this constant, <math>~\lambda/6</math>.  From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 377: Line 377:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{2} \lambda ~\mathfrak{x}^2 - 3f \, .</math>
<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
From the terms on the righthand side they conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 389: Line 389:
   <td align="right">
   <td align="right">
<math>~
<math>~
a^2 \ddot{a}  
a^{(n+1)/(n-1)} \ddot{a}  
</math>
</math>
   </td>
   </td>
Line 396: Line 396:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math>
<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>
   </td>
   </td>
</tr>
</tr>

Revision as of 02:31, 10 November 2014

Homologously Collapsing Polytropic Spheres

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

In an accompanying discussion, we have reviewed the self-similar, dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores that obey an equation of state having an adiabatic index, <math>~\gamma=4/3</math> — and polytropic index, <math>~n=3</math>. Here we examine whether or not this self-similar collapse model can be extended to configurations with arbitrary polytropic index.

Governing Equations

We begin with the set of principal governing equations that are already written in terms of a stream function and a time-varying radial coordinate, <math>~\vec\mathfrak{x} \equiv \vec{r}/a(t)</math>, as developed in the accompanying discussion of Goldreich & Weber's (1980) work. The continuity equation, the Euler equation, and the Poisson equation are, respectively,

<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ;</math>

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2} a^{-2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math>

<math>~a^{-2}\nabla_\mathfrak{x}^2 \Phi </math>

<math>~=</math>

<math>~4\pi G \rho \, .</math>

Following Goldreich & Weber (1980), the normalization length scale, <math>~a</math>, that appears in this set of equations is the same length scale that is used in deriving the Lane-Emden equation, namely,

<math> a \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = (n+1) \kappa \rho^{1/n} \, .</math>

But, unlike Goldreich & Weber, we will leave the polytropic index unspecified. Inserting this equation of state expression into the definition of the normalization length scale leads to,

<math> a = \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \rho_c^{-(n-1)/(2n)} \, . </math>

Following Goldreich & Weber, we allow the normalizing scale length to vary with time and adopt an accelerating coordinate system with a time-dependent dimensionless radial coordinate,

<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>

(The spatial operators in the above set of principal governing equations exhibit a subscript, <math>~\mathfrak{x}</math>, indicating the adoption of this accelerating coordinate system.) This, in turn, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2n/(n-1)} \, . </math>

Next, we normalize the density by the central density, defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, ,</math>

which is in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

And we normalize both the gravitational potential and the enthalpy to the square of the central sound speed,

<math>~c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{H_c}{n}</math>

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \rho_c^{1/n}</math>

 

<math>~=</math>

<math>~\biggl( \frac{n+1}{n} \biggr) \kappa \biggl\{ \biggl[\frac{(n+1)\kappa}{4\pi G}\biggr]^{1/2} \frac{1}{a(t)} \biggr\}^{2/(n-1)}</math>

 

<math>~=</math>

<math>~\frac{1}{n} \biggl\{ \biggl[\frac{(n+1)^n \kappa^n}{4\pi G}\biggr] \frac{1}{a^2(t)} \biggr\}^{1/(n-1)} \, ,</math>

giving,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\frac{\Phi}{c_s^2} = n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \Phi \, ,</math>

and,

<math>~\frac{H}{c_s^2} </math>

<math>~=</math>

<math>~n \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} = nf \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\frac{d\ln f^n}{dt} </math>

<math>~=</math>

<math>~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math>

the Euler equation becomes,

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math>

<math>~=</math>

<math>~ - n f - \sigma \, ;</math>

and the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \sigma = n f^n \, .</math>

Homologous Solution

Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,

<math>~\psi</math>

<math>~=</math>

<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>

which, when acted upon by the various relevant operators, gives,

<math>~\nabla_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~a \dot{a} \mathfrak{x} \, ,</math>

<math>~\nabla^2_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math>

<math>~\frac{d\psi}{dt}</math>

<math>~=</math>

<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>

This stream-function appears to be a reasonable choice, as well, in the more general case that we are considering, in which case the radial velocity profile is, as in the Goldreich & Weber derivation,

<math>~v_r = a^{-1}\nabla_\mathfrak{x} \psi</math>

<math>~=</math>

<math>~\dot{a}\mathfrak{x} \, ; </math>

But in our more general case, the continuity equation gives,

<math>~\frac{d\ln f^n}{dt} + \frac{d\ln a^3}{dt} </math>

<math>~=</math>

<math>~0 </math>

<math>\Rightarrow~~~~f^n a^3</math>

<math>~=</math>

constant,

independent of time; and the Euler equation becomes,

<math>~ - n f - \sigma </math>

<math>~=</math>

<math>~ n \biggl\{ \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr] a^2(t) \biggr\}^{1/(n-1)} \biggl\{ \mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] - \frac{1}{2} ( \dot{a} \mathfrak{x} )^2 \biggr\} </math>

 

<math>~=</math>

<math>~ \frac{n}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \mathfrak{x}^2 \ddot{a} </math>

<math>~\Rightarrow~~~~ \frac{(f + \sigma/n)}{\mathfrak{x}^2} </math>

<math>~=</math>

<math>~ -~\frac{1}{2} \biggl[\frac{4\pi G}{(n+1)^n \kappa^n}\biggr]^{1/(n-1)} a^{(n+1)/(n-1)} \ddot{a} \, . </math>


Because everything on the lefthand side of this scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~\mathfrak{x}</math>, while everything on the righthand side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same (dimensionless) constant. We will follow the lead of Goldreich & Weber (1980) and call this constant, <math>~\lambda/6</math>. From the terms on the lefthand side, we conclude that the dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~=</math>

<math>~\frac{n}{6} \lambda ~\mathfrak{x}^2 - nf \, .</math>

From the terms on the righthand side we conclude, furthermore, that the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,

<math>~ a^{(n+1)/(n-1)} \ddot{a} </math>

<math>~=</math>

<math>~-~\frac{\lambda}{3} \biggl[ \frac{(n+1)^n \kappa^n}{4\pi G} \biggr]^{1/(n-1)} \, .</math>



Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation