Difference between revisions of "User:Tohline/Apps/GoldreichWeber80"

From VistrailsWiki
Jump to navigation Jump to search
(More development of derivation)
(Continue derivation, but it has gotten confusing, so take a break)
Line 184: Line 184:


===Dimensionless and ''Time-Dependent'' Normalization===
===Dimensionless and ''Time-Dependent'' Normalization===
====Length====


In their investigation, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] chose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is,
In their investigation, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] chose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is,
Line 264: Line 265:
</div>
</div>


====Mass-Density and Speed====


 
Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
{{LSU_WorkInProgress}}
 
 
 
<!-- END OF PK07 ASIDE
 
 
<div align="center">
<div align="center">
<table border="1" width="90%" cellpadding="8">
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
<tr><td align="left">
</div>
<font color="red">'''ASIDE:'''</font> It wasn't immediately obvious to me how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system.  I did not understand the transformed set of equations presented by Goldreich &amp; Weber as equations (7) and (8), for example.  I turned to [http://www.sciencedirect.com/science/article/pii/S0021999106002555 Poludnenko &amp; Khokhlov (2007, Journal of Computational Physics, 220, 678)] &#8212; hereafter, PK07 &#8212; for guidance.  PK07 develop a set of governing equations that allows for coordinate rotation as well as expansion or contraction; here we will ignore any modifications due to rotation.
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,  
 
We note, first, that PK07 (see their equation 4) adopt an accelerated radial coordinate of the same form as Goldreich &amp; Weber,
<div align="center">
<div align="center">
<math>~\tilde{r} \equiv \biggl[ \frac{1}{a(t)} \biggr] \vec{r} \, ,</math>
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
</div>
</div>
but the PK07 time-dependent scale factor is dimensionless, whereas the scale factor adopted by Goldreich &amp; Weber &#8212; denoted here as <math>~a_{GW}(t)</math> &#8212; has units of length.  To transform from the KP07 notation, we ultimately will set,
 
Also, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
<div align="center">
<div align="center">
<math>~\mathfrak{x} = \frac{1}{a_0} \tilde{r} ~~~~~\Rightarrow ~~~~~ a_{GW}(t) = a_0 a(t) \, ,</math>
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3}  
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
</div>
</div>
where, <math>~a_0</math> is understood to be the Goldreich &amp; Weber scale length at the onset of collapse, that is, at <math>~t = 0</math>.  According to PK07, this leads to a new "accelerated" time (see, again, their equation 4 with the exponent, <math>~\beta = 0</math>)
Specifically, their dimensionless gravitational potential is,
<div align="center">
<div align="center">
<math>~\tau \equiv \int_0^t \frac{dt}{a(t)} \, .</math>
</div>
According to equation (7) of PK07 &#8212; again, setting their exponent <math>~\beta=0</math> &#8212; the relationship between the fluid velocity in the inertial frame, <math>~\vec{v}</math>, to the fluid velocity measured in the accelerated frame, <math>~\tilde{v}</math>, is
<div align="center">
<math>~\vec{v} = \tilde{v} + \biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde{r} \, .</math>
</div>
We note that, according to equation (8) of PK07, the first derivative of <math>~a(t)</math> with respect to ''physical'' time is,
<div align="center">
<math>~\dot{a} = \frac{d\ln a}{d\tau} \, ,</math>
</div>
so the transformation between velocities may equally well be written as,
<div align="center">
<math>~\vec{v} = \tilde{v} + \dot{a} \tilde{r} \, ;</math>
</div>
and we note that (see equation 9 of PK07),
<div align="center">
<math>~\ddot{a} = \frac{1}{a} \biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \, .</math>
</div>
Next, we note that Goldreich &amp; Weber introduce a variable to track the dimensionless density,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~f^3</math>
<math>~\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl( \frac{\rho}{\rho_c} \biggr) = \biggl( \frac{\pi G}{\kappa} \biggr)^{3/2} [a_{GW}(t)]^3 \rho \, .</math>
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Comparing this to equation (10) of PK07, which introduces a density field, <math>~\tilde\rho</math>, as viewed in the accelerated frame of reference of the form,
<div align="center">
<math>~\tilde\rho = [a(t)]^\alpha \rho \, ,</math>
</div>
</div>
we see that, by setting the exponent <math>~\alpha = 3</math>, the Goldreich &amp; Weber dimensionless density can be retrieved from the PK07 work by setting,
 
<div align="center">
With these additional scalings, the continuity equation becomes,
<math>~f^3= \frac{\tilde\rho}{\rho_0} \, ,</math>
 
</div>
where,
<div align="center">
<math>~\rho_0 \equiv \biggl( \frac{\kappa}{\pi G a_0^2} \biggr)^{3/2} \, .</math>
</div>
PK07 then claim that, in the accelerating reference frame, the continuity equation and Euler equation become, respectively,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde{\nabla}\cdot(\tilde\rho \tilde{v})</math>
<math>~\frac{d\ln f}{dt} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 347: Line 310:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \, ,</math>
<math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi  \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
the Euler equation becomes,


<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v}) </math>
<math>~
\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] 
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr]
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 359: Line 331:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(2-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} -  
<math>~ - 3 f - \sigma  \, ;</math>
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
where PK07 have introduced <math>~\nu</math> as a "dimensionality parameter of the problem."  In an effort to rewrite the left-hand-side of PK07's Euler equation in a form that matches Goldreich &amp; Weber's Euler equation, we note that,
 
and the Poisson equation becomes,
<div align="center">
<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math>
</div>
 
 
With these additional scalings, the continuity equation becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\nabla\cdot [(\tilde\rho \tilde{v}) \tilde{v}]</math>
<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 376: Line 354:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v} + \tilde{v}[\tilde\nabla \cdot (\tilde\rho \tilde{v})] \, ,</math>
<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3)
- a^{-2} \nabla_x^2\psi \, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
and, with the help of the PK07 continuity equation,
the Euler equation becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 387: Line 366:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial (\tilde\rho \tilde{v})}{\partial\tau}</math>
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 393: Line 372:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \frac{\partial \tilde\rho}{\partial\tau} </math>
<math>~  
- a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma)
\, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
and the Poisson equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 405: Line 391:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \biggl[
<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math>
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho
- \tilde{\nabla}\cdot(\tilde\rho \tilde{v})
\biggr] \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Hence, the Euler equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \tilde\rho \frac{\partial \tilde{v}}{\partial\tau} 
<math>~\Rightarrow~~~~\nabla_x^2\sigma</math>
+ \tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 427: Line 403:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} -
<math>~3 f^3 \, .</math>
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} </math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


===Homologous Solution===
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau}  + (\tilde{v}\cdot \tilde\nabla) \tilde{v}
<math>~\psi</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 441: Line 421:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\dot{a} \tilde{v} -
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
which, when acted upon by the various relevant operators, gives,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau}  + \frac{1}{2} \tilde\nabla({\tilde{v}} \cdot \tilde{v} ) + \tilde{\zeta}\times \tilde{v} 
<math>~\nabla_\mathfrak{x}\psi</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 455: Line 438:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\dot{a} \tilde{v} -
<math>~a \dot{a} \mathfrak{x} \, ,</math>
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
where the vector identity that has been used to obtain this last expression has been drawn from our [[User:Tohline/PGE/Euler#in_terms_of_the_vorticity:|separate presentation of the Euler equation written in terms of the fluid vorticity]], <math>~\tilde\zeta \equiv \tilde\nabla \times \tilde{v}</math>. 


----
Now, let's shift to ''physical'' parameters &#8212; or example,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\tilde{v}</math>
<math>~\nabla^2_\mathfrak{x}\psi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~~~\rightarrow~~~</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} = \vec{v} - \dot{a} \tilde{r} ~~ \, ;</math>
<math>~
\biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}\mathfrak{x}^2 \biggr]
= 3 a \dot{a} \, ,
</math>
   </td>
   </td>
</tr>
</tr>
Line 481: Line 459:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial}{\partial\tau}</math>
<math>~\frac{d\psi}{dt}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~~~\rightarrow~~~</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} </math>
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
&#8212; and, following Goldreich & Weber, set the vorticity to zero.  The Euler equation becomes,
Hence, the continuity equation gives,
 
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial }{\partial t}  \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
<math>~\frac{d\ln f}{dt}  </math>
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \cdot \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \biggr]  
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 506: Line 482:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \dot{a} \tilde{r} \biggr)  -
<math>~- \frac{2\dot{a}}{a} ~-~ \frac{3\dot{a}}{a} \, ,</math>
\ddot{a} \tilde{r} - a^{-1}\tilde{\nabla}\tilde{H} </math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


which generates a radial velocity profile,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~
<math>~\vec{v} = a^{-1}\nabla_x \psi</math>
\frac{\partial \vec{v} }{\partial t}  - \biggl[ \biggl(\frac{\dot{a}}{a} \biggr)\frac{\partial\vec{r}}{\partial t} + \frac{\ddot{a}}{a} \vec{r} - \biggl( \frac{\dot{a}}{a}\biggr)^2 \vec{r} \biggr]
   </td>
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] 
</math>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \frac{\dot{a}}{a} \vec{r} \biggr) -
<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, .
\frac{\ddot{a}}{a} \vec{r} - a^{-1}\tilde{\nabla}\tilde{H} </math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Recognizing, as well, that,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~
<math>~a^{-2} \nabla_x^2 \psi </math>
\frac{\partial \vec{v} }{\partial t} 
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] 
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 538: Line 519:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr)  - a^{-1}\tilde{\nabla}\tilde{H}</math>
<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math>
   </td>
   </td>
</tr>
</tr>
Line 544: Line 525:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~
&nbsp;
\frac{\partial \vec{v} }{\partial t} 
+ a^{-1} \tilde\nabla \biggl[ \frac{1}{2}(\vec{v} \cdot \vec{v}) - \dot{a} \vec{v} \tilde{r} + \tilde{H} \biggr]  + \biggl( \frac{\dot{a}}{a} \biggr)^2 \vec{r}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 553: Line 531:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr)  \, .</math>
<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2}
\frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
the continuity equation becomes,
<div align="center">


Now, let's tackle the continuity equation:
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde\rho \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \tilde\nabla \tilde\rho  </math>
<math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 571: Line 549:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho </math>
<math>~- \frac{d \ln a^3}{dt} </math>
   </td>
   </td>
</tr>
</tr>
Line 577: Line 555:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t} + \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho}  </math>
<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 583: Line 561:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu) \dot{a} </math>
<math>~0 \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
that is, the dimensionless density profile, <math>~f</math>, is independent of time.  With the adopted stream function, the Euler equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~
<math>~  
\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t}  
- a^{-1} \biggl[ 4\biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] \biggl(f + \frac{\sigma}{3} \biggr)
+ (\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho} 
+ \tilde{\nabla}\cdot (\vec{v} - \dot{a}\tilde{r})  
</math>
</math>
   </td>
   </td>
Line 599: Line 581:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu) \dot{a} </math>
<math>~\frac{\partial }{\partial t} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr) - \dot{a}^2 x^2
+ \dot{a}^2 x^2</math>
   </td>
   </td>
</tr>
</tr>
Line 605: Line 588:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~
&nbsp;
\frac{1}{a^3\rho}\frac{\partial (a^3\rho)}{\partial t}
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho} 
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 615: Line 594:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu) \frac{\dot{a}}{a} + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r})  
<math>~\frac{x^2}{2} \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>
</math>
   </td>
   </td>
</tr>
</tr>
Line 623: Line 601:
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~
<math>~\Rightarrow~~~~
\frac{1}{\rho}\frac{\partial \rho}{\partial t}
\frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr)
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho}
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
</math>
</math>
   </td>
   </td>
Line 632: Line 608:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(3-\nu) \frac{\dot{a}}{a} + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r}) -3 \frac{\dot{a}}{a}
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>
</math>
   </td>
   </td>
</tr>
</tr>
Line 645: Line 620:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\dot{a}}{a} (\tilde{\nabla}\cdot \tilde{r}-\nu) 
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a ( \dot{a}^2 + a \ddot{a}) \, .</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
If we set <math>~\nu = 3</math>, this last expression appears to match equation (7) of Goldreich &amp; Weber.


<table border="1" cellpadding="5" align="center" width="75%">
<tr><td align="center" colspan="1">
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber's (1980)] Euler Equation after all Scaling (yet to be demonstrated)
</td></tr>


<tr><td align="left">


----
With the aid of the continuity equation, the left-hand-side of the Euler equation can be rewritten as,
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v}) </math>
<math>~
\frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr)  
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 670: Line 646:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a^2 \ddot{a} </math>
\biggl[ \tilde\rho \frac{\partial \tilde{v} }{\partial \tau} + \tilde{v} \frac{\partial \tilde\rho }{\partial \tau} \biggr] +
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>


</table>
Note that the right-hand-side of this expression differs from ours, so we need to identify and correct the discrepency.
</td></tr>
</table>
Because everything on the left-hand-side of Goldreich &amp; Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~x</math>, while everything on the right-hand-side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same constant.  [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 12) call this constant, <math>~\lambda/6</math>.  They conclude, therefore, (see their equation 13) that the dimensionless gravitational potential is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\sigma</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 685: Line 666:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~\frac{\lambda x^2}{2} - 3f \, .</math>
\tilde\rho \frac{\partial \tilde{v} }{\partial \tau} +
\biggl[(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho \tilde{v}  - (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} \biggr] +
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Also, the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~
a^2 \ddot{a}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 701: Line 685:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math>
\tilde\rho \biggl[ \frac{\partial \tilde{v} }{\partial \tau} +
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v}  +
(\tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
Hence, the Euler equation becomes,
 
<div align="center">
<table border="1" cellpadding="8" align="center" width="75%">
<table border="0" cellpadding="5" align="center">
<tr><td align="left">
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] point out, this nonlinear differential equation can be integrated twice to produce an algebraic relationship between <math>~a</math> and time, <math>~t</math>.  First, rewrite the equation as,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>~
\frac{\partial \tilde{v} }{\partial \tau}
\frac{d \dot{a} }{dt}
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}
+ \biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v} 
+ \biggl( \frac{d^2\ln a}{d\tau^2} \biggr) \tilde{r}
</math>
</math>
   </td>
   </td>
Line 727: Line 706:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ - \frac{\tilde{\nabla}\tilde{P}}{\tilde\rho} \, .</math>
<math>~-\frac{B}{2a^2} \, , </math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
where,
<div align="center">
<math>
~B \equiv \frac{8\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .
</math>
</div>
</div>
Then, multiply both sides by <math>~2\dot{a} = 2da/dt</math> to obtain,
<table border="0" cellpadding="5" align="center">


----
Now, let's shift to ''physical'' parameters.  For example,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\tilde{v}</math>
<math>~
2\dot{a} \frac{d\dot{a}}{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~~~\rightarrow~~~</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \, ;</math>
<math>~-B \biggl( a^{-2} \frac{da}{dt} \biggr) </math>
   </td>
   </td>
</tr>
</tr>
Line 751: Line 736:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial}{\partial\tau}</math>
<math>~\Rightarrow~~~~
\frac{d\dot{a}^2}{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~~~\rightarrow~~~</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} \, .</math>
<math>~B \frac{d}{dt} \biggl( \frac{1}{a} \biggr) </math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
which integrates once to give,
<div align="center">
<math>
~\dot{a}^2 = \frac{B}{a} + C \, ,
</math>
</div>
</div>
 
or,
Hence, the Euler equation becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<math>
~dt = \biggl( \frac{B}{a} + C \biggr)^{-1/2} da  \, .
</math>
</div>


For the case, <math>~C = 0</math>, this differential equation can be integrated straightforwardly to give (see Goldreich &amp; Weber's equation 15),
For the cases when <math>~C \ne 0</math>, [http://integrals.wolfram.com/index.jsp Wolfram Mathematica's online integrator] can be called upon to integrate this equation and provide the following closed-form solution,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~ - \tilde{\nabla}\tilde{H} </math>
<math>~t</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 776: Line 778:
   <td align="left">
   <td align="left">
<math>
<math>
a\frac{\partial}{\partial t} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
\frac{a}{C} \biggl( \frac{B}{a} + C \biggr)^{1/2}
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}  
- \frac{B}{2C^{3/2}} \ln \biggl[2aC^{1/2} \biggl( \frac{B}{a} + C \biggr)^{1/2} + B + 2aC \biggr] \, .
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \ddot{a} \vec{r}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


<tr>
 
   <td align="right">
</td></tr>
&nbsp;
</table>
 
=Related Discussions=
 
 
 
{{LSU_WorkInProgress}}
 
 
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] point out, because all terms in this equation are inside the gradient operator, the sum of the terms inside the square brackets must equal a constant &#8212; that is, the sum must be independent of spatial position throughout the spherically symmetric configuration.  If, following Goldreich &amp; Weber's lead, we simply fold this integration constant into the potential, the Euler equation becomes (see their equation 8),
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
<math>~\frac{\partial \psi}{\partial t}  - \biggl( \frac{\dot{a}}{a} \biggr)\psi +
H + \Phi + \frac{1}{2}\biggl(\frac{1}{a} \nabla_x\psi  \biggr)^2 </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 792: Line 810:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>a\frac{\partial \vec{v} }{\partial t} -
<math>~0 \, .</math>
a \biggl[ \biggl(\frac{\ddot{a}}{a} \biggr) \vec{r} - \biggl(\frac{\dot{a}}{a} \biggr)^2 \vec{r} + \biggl(\frac{\dot{a}}{a} \biggr) \frac{\partial \vec{r} }{\partial t} \biggr]
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] 
+ \ddot{a} \vec{r}
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
<div align="center">
<table border="0" cellpadding="5">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \rho}{\partial t} + \rho \nabla_r \cdot \vec{v} + \vec{v}\cdot \nabla_r \rho</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left" width="25%">
<math>a\frac{\partial \vec{v} }{\partial t} + (\tilde{v} \cdot \tilde{\nabla})\tilde{v}
<math>~0</math>
+ \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
</math>
   </td>
   </td>
</tr>
</tr>
Line 817: Line 833:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla_r \cdot \vec{v} + \vec{v}\cdot \frac{\nabla_r \rho}{\rho}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left" width="25%">
<math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
<math>~0</math>
+ \biggl\{\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggr\} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 831: Line 845:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1} \nabla_x \cdot \biggl[  a^{-1} \nabla_x \psi \biggr]
+ a^{-1} \nabla_x \psi  \cdot \frac{a^{-1}\nabla_x \rho}{\rho}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left" width="25%">
<math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
<math>~0</math>
+ (\vec{v} \cdot \tilde\nabla)\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla}
\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 847: Line 858:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}
+ a^{-2} \nabla_x^2\psi </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left" width="25%">
<math>
<math>~0</math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
+ (\vec{v} \cdot \tilde\nabla)\vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
- (\vec{v} \cdot \tilde\nabla)\biggl[ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \biggl[\biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


<tr>
<table border="1" cellpadding="5" align="center" width="75%">
   <td align="right">
<tr><td align="center" colspan="1">
&nbsp;
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber's (1980)] Governing Equations After Initial ''Length'' Scaling (yet to be demonstrated)
</td></tr>
 
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}
+ a^{-2} \nabla_x^2\psi </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left" width="25%">
<math>
<math>~0</math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
+ (\vec{v} \cdot \tilde\nabla)\vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\dot{a} \tilde{r}  \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 882: Line 894:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2
+ H + \Phi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 888: Line 901:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~0</math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t}  + (\vec{v} \cdot \tilde\nabla)\vec{v}
   </td>
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
</tr>
+ \dot{a} \biggl\{ \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr]
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\tilde{r}  \biggr] \biggr\}
</math>
   </td>
</tr>
</table>
</div>
 
And the continuity equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~(3-\nu) \dot{a} </math>
<math>~
a^{-2} \nabla_x^2\Phi - 4\pi G \rho
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 911: Line 915:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t}
<math>~0</math>
+ \tilde{\nabla}\cdot \biggl[  \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho}
</math>
   </td>
   </td>
</tr>
</tr>


<tr>
<tr><td align="left" colspan="3">
  <td align="right">
where,
&nbsp;
<div align="center">
  </td>
<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>
  <td align="center">
</div>
<math>~=</math>
and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>.
  </td>
</td></tr>
  <td align="left">
 
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t}
</table>
+ \tilde{\nabla}\cdot \vec{v}
- \tilde{\nabla}\cdot \biggl[  \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl[ \vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho}
</math>
  </td>
</tr>


<tr>
</td></tr>
  <td align="right">
</table>
<math>~\Rightarrow ~~~ (3-\nu) \dot{a}
 
+ \tilde{\nabla}\cdot \biggl[  \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
<!-- BEGIN PK07 ASIDE
</math>
 
  </td>
 
  <td align="center">
<div align="center">
<math>~=</math>
<table border="1" width="90%" cellpadding="8">
  </td>
<tr><td align="left">
  <td align="left">
<font color="red">'''ASIDE:'''</font> It wasn't immediately obvious to me how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system.  I did not understand the transformed set of equations presented by Goldreich &amp; Weber as equations (7) and (8), for example.  I turned to [http://www.sciencedirect.com/science/article/pii/S0021999106002555 Poludnenko &amp; Khokhlov (2007, Journal of Computational Physics, 220, 678)] &#8212; hereafter, PK07 &#8212; for guidance.  PK07 develop a set of governing equations that allows for coordinate rotation as well as expansion or contraction; here we will ignore any modifications due to rotation.
<math>~\frac{1}{a^2 \rho} \frac{\partial (a^3\rho)}{\partial t}
+ \tilde{\nabla}\cdot \vec{v}
+ \biggl[ \vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</math>
  </td>
</tr>


<tr>
We note, first, that PK07 (see their equation 4) adopt an accelerated radial coordinate of the same form as Goldreich &amp; Weber,
  <td align="right">
<div align="center">
&nbsp;
<math>~\tilde{r} \equiv \biggl[ \frac{1}{a(t)} \biggr] \vec{r} \, ,</math>
  </td>
</div>
  <td align="center">
but the PK07 time-dependent scale factor is dimensionless, whereas the scale factor adopted by Goldreich &amp; Weber &#8212; denoted here as <math>~a_{GW}(t)</math> &#8212; has units of length.  To transform from the KP07 notation, we ultimately will set,
<math>~=</math>
<div align="center">
  </td>
<math>~\mathfrak{x} = \frac{1}{a_0} \tilde{r} ~~~~~\Rightarrow ~~~~~ a_{GW}(t) = a_0 a(t) \, ,</math>
  <td align="left">
</div>
<math>~\frac{a}{\rho} \frac{\partial \rho}{\partial t} + 3\dot{a}  
where, <math>~a_0</math> is understood to be the Goldreich &amp; Weber scale length at the onset of collapse, that is, at <math>~t = 0</math>.  According to PK07, this leads to a new "accelerated" time (see, again, their equation 4 with the exponent, <math>~\beta = 0</math>)
+ \tilde{\nabla}\cdot \vec{v}
<div align="center">
+ \biggl[ \vec{v}  
<math>~\tau \equiv \int_0^t \frac{dt}{a(t)} \, .</math>
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</div>
</math>
According to equation (7) of PK07 &#8212; again, setting their exponent <math>~\beta=0</math> &#8212; the relationship between the fluid velocity in the inertial frame, <math>~\vec{v}</math>, to the fluid velocity measured in the accelerated frame, <math>~\tilde{v}</math>, is
  </td>
<div align="center">
</tr>
<math>~\vec{v} = \tilde{v} + \biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde{r} \, .</math>
 
</div>
<tr>
We note that, according to equation (8) of PK07, the first derivative of <math>~a(t)</math> with respect to ''physical'' time is,
  <td align="right">
<div align="center">
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t}  
<math>~\dot{a} = \frac{d\ln a}{d\tau} \, ,</math>
+ a^{-1}\tilde{\nabla}\cdot \vec{v}  
</div>
+ \biggl[ \vec{v}  
so the transformation between velocities may equally well be written as,
- \dot{a} \biggl( \frac{\vec{r}}{a}\biggr) \biggr] \cdot \frac{a^{-1}\tilde{\nabla} \rho}{\rho}
<div align="center">
</math>
<math>~\vec{v} = \tilde{v} + \dot{a} \tilde{r} \, ;</math>
  </td>
</div>
  <td align="center">
and we note that (see equation 9 of PK07),
<math>~=</math>
<div align="center">
  </td>
<math>~\ddot{a} = \frac{1}{a} \biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \, .</math>
  <td align="left">
</div>
<math>  
 
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \biggl( \frac{\vec{r}}{a} \biggr) -\nu \biggr]
Next, we note that Goldreich &amp; Weber introduce a variable to track the dimensionless density,
</math>
 
  </td>
<table border="0" cellpadding="5" align="center">
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t}
<math>~f^3</math>
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
+ a^{-1} \biggl[ \vec{v}
- \dot{a} \vec{\mathfrak{x}} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 999: Line 981:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>  
<math>~\biggl( \frac{\rho}{\rho_c} \biggr) = \biggl( \frac{\pi G}{\kappa} \biggr)^{3/2} [a_{GW}(t)]^3 \rho \, .</math>
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \vec{\mathfrak{x}} -\nu \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Comparing this to equation (10) of PK07, which introduces a density field, <math>~\tilde\rho</math>, as viewed in the accelerated frame of reference of the form,
<div align="center">
<math>~\tilde\rho = [a(t)]^\alpha \rho \, ,</math>
</div>
</div>
 
we see that, by setting the exponent <math>~\alpha = 3</math>, the Goldreich &amp; Weber dimensionless density can be retrieved from the PK07 work by setting,
</td></tr>
<div align="center">
</table>
<math>~f^3= \frac{\tilde\rho}{\rho_0} \, ,</math>
</div>
</div>
 
where,
 
<div align="center">
-->
<math>~\rho_0 \equiv \biggl( \frac{\kappa}{\pi G a_0^2} \biggr)^{3/2} \, .</math>
 
</div>
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] point out, because all terms in this equation are inside the gradient operator, the sum of the terms inside the square brackets must equal a constant &#8212; that is, the sum must be independent of spatial position throughout the spherically symmetric configuration.  If, following Goldreich &amp; Weber's lead, we simply fold this integration constant into the potential, the Euler equation becomes (see their equation 8),
PK07 then claim that, in the accelerating reference frame, the continuity equation and Euler equation become, respectively,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 1,020: Line 1,003:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \psi}{\partial t} - \biggl( \frac{\dot{a}}{a} \biggr)\psi +
<math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde{\nabla}\cdot(\tilde\rho \tilde{v})</math>
H + \Phi + \frac{1}{2}\biggl(\frac{1}{a} \nabla_x\psi  \biggr)^2 </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,027: Line 1,009:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0 \, .</math>
<math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
<div align="center">
<table border="0" cellpadding="5">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \rho}{\partial t} + \rho \nabla_r \cdot \vec{v} + \vec{v}\cdot \nabla_r \rho</math>
<math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left" width="25%">
   <td align="left">
<math>~0</math>
<math>~(2-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} -
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} \, ,</math>
   </td>
   </td>
</tr>
</tr>
 
</table>
</div>
where PK07 have introduced <math>~\nu</math> as a "dimensionality parameter of the problem."  In an effort to rewrite the left-hand-side of PK07's Euler equation in a form that matches Goldreich &amp; Weber's Euler equation, we note that,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla_r \cdot \vec{v} + \vec{v}\cdot \frac{\nabla_r \rho}{\rho}</math>
<math>~\nabla\cdot [(\tilde\rho \tilde{v}) \tilde{v}]</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left" width="25%">
   <td align="left">
<math>~0</math>
<math>~\tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v} + \tilde{v}[\tilde\nabla \cdot (\tilde\rho \tilde{v})] \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
and, with the help of the PK07 continuity equation,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1} \nabla_x \cdot \biggl[  a^{-1} \nabla_x \psi \biggr]
<math>~\frac{\partial (\tilde\rho \tilde{v})}{\partial\tau}</math>
+ a^{-1} \nabla_x \psi  \cdot \frac{a^{-1}\nabla_x \rho}{\rho}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left" width="25%">
   <td align="left">
<math>~0</math>
<math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \frac{\partial \tilde\rho}{\partial\tau} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,075: Line 1,061:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}
&nbsp;
+ a^{-2} \nabla_x^2\psi </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left" width="25%">
   <td align="left">
<math>~0</math>
<math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \biggl[
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho
- \tilde{\nabla}\cdot(\tilde\rho \tilde{v})
\biggr] \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
 
Hence, the Euler equation becomes,
<table border="1" cellpadding="5" align="center" width="75%">
<div align="center">
<tr><td align="center" colspan="1">
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber's (1980)] Governing Equations After Initial ''Length'' Scaling (yet to be demonstrated)
</td></tr>
 
<tr><td align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}
<math>~ \tilde\rho \frac{\partial \tilde{v}}{\partial\tau}
+ a^{-2} \nabla_x^2\psi </math>
+ \tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v}  
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~=</math>
   </td>
   </td>
   <td align="left" width="25%">
   <td align="left">
<math>~0</math>
<math>~-~\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} -
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,111: Line 1,096:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2
<math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau} + (\tilde{v}\cdot \tilde\nabla) \tilde{v}  
+ H + \Phi</math>
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,118: Line 1,103:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0</math>
<math>~-~\dot{a} \tilde{v} -
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 1,124: Line 1,110:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau}  + \frac{1}{2} \tilde\nabla({\tilde{v}} \cdot \tilde{v} ) + \tilde{\zeta}\times \tilde{v} 
a^{-2} \nabla_x^2\Phi - 4\pi G \rho
</math>
</math>
   </td>
   </td>
Line 1,132: Line 1,117:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0</math>
<math>~-~\dot{a} \tilde{v} -
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
where the vector identity that has been used to obtain this last expression has been drawn from our [[User:Tohline/PGE/Euler#in_terms_of_the_vorticity:|separate presentation of the Euler equation written in terms of the fluid vorticity]], <math>~\tilde\zeta \equiv \tilde\nabla \times \tilde{v}</math>. 


<tr><td align="left" colspan="3">
----
where,  
Now, let's shift to ''physical'' parameters &#8212; or example,
<div align="center">
<div align="center">
<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>
<table border="0" cellpadding="5" align="center">
</div>
and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>.
</td></tr>
 
</table>
 
</td></tr>
</table>
 
 
Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
<div align="center">
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
</div>
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy,
<div align="center">
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
</div>
 
Finally, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
<div align="center">
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3}
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1}  \, .</math>
</div>
Specifically, their dimensionless gravitational potential is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sigma</math>
<math>~\tilde{v}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~~~\rightarrow~~~</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math>
<math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} = \vec{v} - \dot{a} \tilde{r} ~~ \, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


With these additional scalings, the continuity equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math>
<math>~\frac{\partial}{\partial\tau}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~~~\rightarrow~~~</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3)
<math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} </math>
- a^{-2} \nabla_x^2\psi \, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
the Euler equation becomes,
&#8212; and, following Goldreich & Weber, set the vorticity to zero.  The Euler equation becomes,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 1,204: Line 1,160:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math>
<math>~\frac{\partial }{\partial t}  \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \cdot \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \biggr] 
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,210: Line 1,168:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~  
<math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) -
- a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma)
\ddot{a} \tilde{r} - a^{-1}\tilde{\nabla}\tilde{H} </math>
\, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
and the Poisson equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math>
<math>~\Rightarrow ~~~~
\frac{\partial \vec{v} }{\partial t} - \biggl[ \biggl(\frac{\dot{a}}{a} \biggr)\frac{\partial\vec{r}}{\partial t} + \frac{\ddot{a}}{a} \vec{r} - \biggl( \frac{\dot{a}}{a}\biggr)^2 \vec{r} \biggr]
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] 
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,229: Line 1,184:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math>
<math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \frac{\dot{a}}{a} \vec{r} \biggr) -
\frac{\ddot{a}}{a} \vec{r} - a^{-1}\tilde{\nabla}\tilde{H} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,235: Line 1,191:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~\nabla_x^2\sigma</math>
<math>~\Rightarrow ~~~~
\frac{\partial \vec{v} }{\partial t} 
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] 
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,241: Line 1,200:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~3 f^3 \, .</math>
<math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr)  - a^{-1}\tilde{\nabla}\tilde{H}</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


===Homologous Solution===
<tr>
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
   <td align="right">
<div align="center">
<math>~\Rightarrow ~~~~
<table border="0" cellpadding="5" align="center">
\frac{\partial \vec{v} }{\partial t} 
<tr>
+ a^{-1} \tilde\nabla \biggl[ \frac{1}{2}(\vec{v} \cdot \vec{v}) - \dot{a} \vec{v} \tilde{r} + \tilde{H} \biggr]  + \biggl( \frac{\dot{a}}{a} \biggr)^2 \vec{r}
   <td align="right">
</math>
<math>~\psi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,259: Line 1,215:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{2}a \dot{a} x^2 \, ,</math>
<math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr)  \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
which generates a radial velocity profile,
 
Now, let's tackle the continuity equation:
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\vec{v} = a^{-1}\nabla_x \psi</math>
<math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde\rho \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \tilde\nabla \tilde\rho  </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,275: Line 1,233:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, .
<math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho </math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Recognizing, as well, that,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~a^{-2} \nabla_x^2 \psi </math>
<math>~\Rightarrow~~~~\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t} + \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho}  </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,293: Line 1,245:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math>
<math>~(3-\nu) \dot{a} </math>
   </td>
   </td>
</tr>
</tr>
Line 1,299: Line 1,251:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow~~~~
\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t}
+ (\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho} 
+ \tilde{\nabla}\cdot (\vec{v} - \dot{a}\tilde{r})
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,305: Line 1,261:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2}
<math>~(3-\nu) \dot{a} </math>
\frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
the continuity equation becomes,
<div align="center">


<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math>
<math>~\Rightarrow~~~~
\frac{1}{a^3\rho}\frac{\partial (a^3\rho)}{\partial t}  
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho} 
+ a^{-1}\tilde{\nabla}\cdot \vec{v}  
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,323: Line 1,277:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \frac{d \ln a^3}{dt} </math>
<math>~(3-\nu) \frac{\dot{a}}{a}  + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r})
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,329: Line 1,284:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math>
<math>~\Rightarrow~~~~
\frac{1}{\rho}\frac{\partial \rho}{\partial t}  
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho} 
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,335: Line 1,294:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0 \, ,</math>
<math>~(3-\nu) \frac{\dot{a}}{a}  + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r}) -3 \frac{\dot{a}}{a}
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
that is, the dimensionless density profile, <math>~f</math>, is independent of time.  With the adopted stream function, the Euler equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
&nbsp;
- a^{-1} \biggl[ 4\biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] \biggl(f + \frac{\sigma}{3} \biggr)
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,355: Line 1,307:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\partial }{\partial t} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr) - \dot{a}^2 x^2
<math>~\frac{\dot{a}}{a} (\tilde{\nabla}\cdot \tilde{r}-\nu)
+ \dot{a}^2 x^2</math>
</math>
   </td>
   </td>
</tr>
</tr>


<tr>
</table>
</div>
If we set <math>~\nu = 3</math>, this last expression appears to match equation (7) of Goldreich &amp; Weber.
 
 
 
 
----
With the aid of the continuity equation, the left-hand-side of the Euler equation can be rewritten as,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v})  </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,368: Line 1,332:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{x^2}{2} \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>
<math>
\biggl[ \tilde\rho \frac{\partial \tilde{v} }{\partial \tau} + \tilde{v} \frac{\partial \tilde\rho }{\partial \tau} \biggr] +
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,374: Line 1,341:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~
&nbsp;
\frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr)
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,382: Line 1,347:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>
<math>
   </td>
\tilde\rho \frac{\partial \tilde{v} }{\partial \tau} +
\biggl[(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho \tilde{v}  - (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} \biggr] +
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr]
</math>
   </td>
</tr>
</tr>


Line 1,394: Line 1,363:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a ( \dot{a}^2 + a \ddot{a}) \, .</math>
<math>
\tilde\rho \biggl[ \frac{\partial \tilde{v} }{\partial \tau} +
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v} +
(\tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
 
Hence, the Euler equation becomes,
<table border="1" cellpadding="5" align="center" width="75%">
<div align="center">
<tr><td align="center" colspan="1">
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber's (1980)] Euler Equation after all Scaling (yet to be demonstrated)
</td></tr>
 
<tr><td align="left">
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>
\frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr)  
\frac{\partial \tilde{v} }{\partial \tau}
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}  
+ \biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v} 
+ \biggl( \frac{d^2\ln a}{d\tau^2} \biggr) \tilde{r}
</math>
</math>
   </td>
   </td>
Line 1,420: Line 1,389:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a^2 \ddot{a} </math>
<math>~ - \frac{\tilde{\nabla}\tilde{P}}{\tilde\rho} \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>


Note that the right-hand-side of this expression differs from ours, so we need to identify and correct the discrepency.
----
</td></tr>
Now, let's shift to ''physical'' parametersFor example,
</table>
Because everything on the left-hand-side of Goldreich &amp; Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~x</math>, while everything on the right-hand-side depends only on time &#8212; via the parameter, <math>~a(t)</math> &#8212; both expressions must equal the same constant[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] (see their equation 12) call this constant, <math>~\lambda/6</math>.  They conclude, therefore, (see their equation 13) that the dimensionless gravitational potential is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sigma</math>
<math>~\tilde{v}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~~~\rightarrow~~~</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\lambda x^2}{2} - 3f \, .</math>
<math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \, ;</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
Also, the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>~\frac{\partial}{\partial\tau}</math>
a^2 \ddot{a}  
   </td>
</math>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~~~\rightarrow~~~</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math>
<math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} \, .</math>
   </td>
   </td>
</tr>
</tr>
Line 1,465: Line 1,425:
</div>
</div>


<table border="1" cellpadding="8" align="center" width="75%">
Hence, the Euler equation becomes,
<tr><td align="left">
<div align="center">
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich &amp; Weber (1980)] point out, this nonlinear differential equation can be integrated twice to produce an algebraic relationship between <math>~a</math> and time, <math>~t</math>.  First, rewrite the equation as,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~
<math>~ - \tilde{\nabla}\tilde{H} </math>
\frac{d \dot{a} }{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,480: Line 1,437:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-\frac{B}{2a^2} \, , </math>
<math>
a\frac{\partial}{\partial t} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] 
+ \ddot{a} \vec{r}
</math>
   </td>
   </td>
</tr>
</tr>


</table>
<tr>
where,
   <td align="right">
<div align="center">
&nbsp;
<math>
~B \equiv \frac{8\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .
</math>
</div>
Then, multiply both sides by <math>~2\dot{a} = 2da/dt</math> to obtain,
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
<math>~
2\dot{a} \frac{d\dot{a}}{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,504: Line 1,454:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-B \biggl( a^{-2} \frac{da}{dt} \biggr) </math>
<math>a\frac{\partial \vec{v} }{\partial t} -  
a \biggl[ \biggl(\frac{\ddot{a}}{a} \biggr) \vec{r} - \biggl(\frac{\dot{a}}{a} \biggr)^2 \vec{r} + \biggl(\frac{\dot{a}}{a} \biggr) \frac{\partial \vec{r} }{\partial t} \biggr]
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v}
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] 
+ \ddot{a} \vec{r}
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,510: Line 1,465:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow~~~~
&nbsp;
\frac{d\dot{a}^2}{dt}
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,518: Line 1,471:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~B \frac{d}{dt} \biggl( \frac{1}{a} \biggr) </math>
<math>a\frac{\partial \vec{v} }{\partial t} + (\tilde{v} \cdot \tilde{\nabla})\tilde{v}  
+ \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr
</math>
   </td>
   </td>
</tr>
</tr>


</table>
which integrates once to give,
<div align="center">
<math>
~\dot{a}^2 = \frac{B}{a} + C \, ,
</math>
</div>
or,
<div align="center">
<math>
~dt = \biggl( \frac{B}{a} + C \biggr)^{-1/2} da  \, .
</math>
</div>
For the case, <math>~C = 0</math>, this differential equation can be integrated straightforwardly to give (see Goldreich &amp; Weber's equation 15),
For the cases when <math>~C \ne 0</math>, [http://integrals.wolfram.com/index.jsp Wolfram Mathematica's online integrator] can be called upon to integrate this equation and provide the following closed-form solution,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~t</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,551: Line 1,485:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
\frac{a}{C} \biggl( \frac{B}{a} + C \biggr)^{1/2}
+ \biggl\{\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggr\} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]  
- \frac{B}{2C^{3/2}} \ln \biggl[2aC^{1/2} \biggl( \frac{B}{a} + C \biggr)^{1/2} + B + 2aC \biggr] \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>


<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
+ (\vec{v} \cdot \tilde\nabla)\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla}
\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
  </td>
</tr>


</td></tr>
<tr>
</table>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
+ (\vec{v} \cdot \tilde\nabla)\vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
- (\vec{v} \cdot \tilde\nabla)\biggl[ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \biggl[\biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
  </td>
</tr>


=Related Discussions=
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] 
+ (\vec{v} \cdot \tilde\nabla)\vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\dot{a} \tilde{r}  \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl\{ a\frac{\partial \vec{v} }{\partial t}  + (\vec{v} \cdot \tilde\nabla)\vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r}  \cdot \tilde{\nabla} \vec{v} \biggr\}
+ \dot{a} \biggl\{ \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr]
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\tilde{r}  \biggr] \biggr\}
</math>
  </td>
</tr>
</table>
</div>
 
And the continuity equation becomes,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~(3-\nu) \dot{a} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t}
+ \tilde{\nabla}\cdot \biggl[  \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t}
+ \tilde{\nabla}\cdot \vec{v}
- \tilde{\nabla}\cdot \biggl[  \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
+ \biggl[ \vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ (3-\nu) \dot{a}
+ \tilde{\nabla}\cdot \biggl[  \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr]
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{a^2 \rho} \frac{\partial (a^3\rho)}{\partial t}
+ \tilde{\nabla}\cdot \vec{v}
+ \biggl[ \vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{a}{\rho} \frac{\partial \rho}{\partial t} + 3\dot{a}
+ \tilde{\nabla}\cdot \vec{v}
+ \biggl[ \vec{v}
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t}
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
+ \biggl[ \vec{v}
- \dot{a} \biggl( \frac{\vec{r}}{a}\biggr) \biggr] \cdot \frac{a^{-1}\tilde{\nabla} \rho}{\rho}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \biggl( \frac{\vec{r}}{a} \biggr) -\nu \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t}
+ a^{-1}\tilde{\nabla}\cdot \vec{v}
+ a^{-1} \biggl[ \vec{v}
- \dot{a} \vec{\mathfrak{x}} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho}
</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \vec{\mathfrak{x}} -\nu \biggr]
</math>
  </td>
</tr>
</table>
</div>
 
</td></tr>
</table>
</div>
 
 
-->




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 21:48, 2 November 2014

Homologously Collapsing Stellar Cores

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Review of Goldreich and Weber (1980)

This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores. As we began to study the Goldreich & Weber paper, it wasn't immediately obvious how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system. I did not understand the transformed set of equations presented by Goldreich & Weber as equations (7) and (8), for example. At first, I turned to Poludnenko & Khokhlov (2007, Journal of Computational Physics, 220, 678) — hereafter, PK07 — for guidance. PK07 develop a very general set of governing equations that allows for coordinate rotation as well as expansion or contraction. Ultimately, the most helpful additional reference proved to be §19.11 (pp. 187 - 190) of Kippenhahn & Weigert [ KW94 ].

Governing Equations

Goldreich & Weber begin with the identical set of principal governing equations that serves as the foundation for all of the discussions throughout this H_Book. In particular, as is documented by their equation (1), their adopted equation of state is adiabatic/polytropic,

<math>~P = \kappa \rho^\gamma \, ,</math>

— where both <math>~\kappa</math> and <math>~\gamma</math> are constants — and therefore satisfies what we have referred to as the

Adiabatic Form of the
First Law of Thermodynamics

(Specific Entropy Conservation)

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math> .

their equation (3) is what we have referred to as the

Euler Equation
in terms of the Vorticity,

<math>~\frac{\partial\vec{v}}{\partial t} + \vec\zeta \times \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v^2 \biggr] </math>

where, <math>~\vec\zeta \equiv \nabla\times \vec{v}</math> is the fluid vorticity; their equation (4) is the

Poisson Equation

LSU Key.png

<math>\nabla^2 \Phi = 4\pi G \rho</math>

and their equation (2) is what we have referred to as the

Eulerian Representation
or
Conservative Form
of the Continuity Equation,

<math>~\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0</math>

although, for the derivation, below, we prefer to start with what we have referred to as the

Standard Lagrangian Representation
of the Continuity Equation,

LSU Key.png

<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>

Tweaking the set of principal governing equations, as we have written them, to even more precisely match equations (1) - (4) in Goldreich & Weber (1980), we should replace the state variable <math>~P</math> (pressure) with <math>~H</math> (enthalpy), keeping in mind that, <math>~\gamma = 1 + 1/n</math>, and, as presented in our introductory discussion of barotropic supplemental relations,

<math>~H = \biggl( \frac{\gamma}{\gamma-1} \biggr) \kappa \rho^{\gamma-1} \, ,</math>

and,

<math>~\nabla H = \frac{\nabla P}{\rho} \, .</math>

Imposed Constraints

Goldreich & Weber (1980) specifically choose to examine the spherically symmetric collapse of a <math>~\gamma = 4/3</math> fluid. With this choice of adiabatic index, the equation of state becomes,

<math>~H = 4 \kappa \rho^{1/3} \, .</math>

And because a strictly radial flow-field exhibits no vorticity (i.e., <math>\vec\zeta = 0</math>), the Euler equation can be rewritten as,

<math>~\frac{\partial v_r}{\partial t} </math>

<math>~=</math>

<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}v^2 \biggr] \, .</math>

Goldreich & Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\psi</math>, via the relation,

<math>~\vec{v} = \nabla\psi ~~~~~\Rightarrow~~~~~v_r = \nabla_r\psi \, .</math>

Hence, the Euler equation becomes,

<math>~\frac{\partial }{\partial t} \biggl[ \nabla_r \psi \biggr]</math>

<math>~=</math>

<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}(\nabla_r \psi)^2 \biggr] \, .</math>

Since we are, up to this point in the discussion, still referencing the inertial-frame radial coordinate, the <math>~\nabla_r</math> operator can be moved outside of the partial time-derivative on the lefthand side of this equation to give,

<math>~\nabla_r \biggl[ \frac{\partial \psi}{\partial t} + H + \Phi + \frac{1}{2}(\nabla_r \psi)^2 \biggr]</math>

<math>~=</math>

<math>~0 \, .</math>

This means that the terms inside the square brackets must sum to a constant that is independent of spatial position. Following the lead of Goldreich & Weber, this "integration constant" will be incorporated into the potential, in which case we have,

<math>~\frac{\partial \psi}{\partial t} </math>

<math>~=</math>

<math>~-~ \biggl[ H + \Phi + \frac{1}{2} ( \nabla_r \psi )^2 \biggr] \, ,</math>

which matches equation (5) of Goldreich & Weber (1980).

Now, because it is more readily integrable, we ultimately would like to work with a differential equation that contains the total, rather than partial, time derivative of <math>~\psi</math>. So we will take this opportunity to shift from an Eulerian representation of the Euler equation to a Lagrangian representation, invoking the same (familiar to fluid dynamicists) operator transformation as we have used in our general discussion of the Euler equation, namely,

<math>~\frac{\partial\psi}{\partial t} ~~ \rightarrow ~~ \frac{d\psi}{dt} - \vec{v}\cdot \nabla\psi \, .</math>

In the context of Goldreich & Weber's model, we are dealing with a one-dimension (spherically symmetric), radial flow, so,

<math>\vec{v}\cdot \nabla\psi = v_r \nabla_r \psi \, .</math>

But, given that we have adopted a stream-function representation of the flow in which <math>~v_r = \nabla_r\psi</math>, we appreciate that this term can either be written as <math>~v_r^2</math> or <math>~(\nabla_r\psi)^2</math>. We choose the latter representation, so the Euler equation becomes,

<math>~\frac{d\psi}{dt} - (\nabla_r\psi)^2</math>

<math>~=</math>

<math>~-~ \biggl[ H + \Phi + \frac{1}{2} ( \nabla_r \psi )^2 \biggr] \, ,</math>

or, combining like terms on the left and right,

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2} ( \nabla_r \psi )^2 - H - \Phi \, .</math>


Dimensionless and Time-Dependent Normalization

Length

In their investigation, Goldreich & Weber (1980) chose the same length scale for normalization that is used in deriving the Lane-Emden equation, which governs the hydrostatic structure of a polytrope of index <math>~n</math>, that is,

<math> a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>

where the subscript, "c", denotes central values. In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,

<math> a = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, . </math>

Most significantly, Goldreich & Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution. In doing this, they effectively adopted an accelerating coordinate system with a time-dependent dimensionless radial coordinate,

<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>

This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or both. In practice, Goldreich & Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,

<math> \rho_c = \biggl(\frac{\kappa}{\pi G}\biggr)^{3/2} [a(t)]^{-3} \, . </math>

Given the newly adopted dimensionless radial coordinate, the following replacements for the spatial operators should be made, as appropriate, throughout the set of governing equations:

<math>~\nabla_r ~\rightarrow~ a^{-1} \nabla_\mathfrak{x}</math>        and        <math>~\nabla_r^2 ~\rightarrow~ a^{-2} \nabla_\mathfrak{x}^2 \, .</math>

Specifically, the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \Phi = 4\pi G a^2 \rho \, ;</math>

the Euler equation becomes,

<math>~\frac{d\psi}{dt} </math>

<math>~=</math>

<math>~\frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math>

and, realizing that for this spherically symmetric model,

<math>\nabla\cdot \vec{v} = \frac{1}{r^2} \nabla_r (r^2 v_r) ~~\rightarrow ~~ \biggl( \frac{1}{a \mathfrak{x}} \biggr)^2 a^{-1} \nabla_\mathfrak{x} \biggl[(a\mathfrak{x})^2 a^{-1} \nabla_\mathfrak{x} \psi \biggr] = \biggl( \frac{1}{a^2 \mathfrak{x}^2} \biggr) \nabla_\mathfrak{x} \biggl[\mathfrak{x}^2 \nabla_\mathfrak{x} \psi \biggr] = \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~+~ a^{-2} \nabla_\mathfrak{x}^2 \psi

</math>

the continuity equation becomes,

<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math>

<math>~=</math>

<math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, .</math>

Mass-Density and Speed

Next, Goldreich & Weber (1980) (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,

<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>

Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,

<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>

Also, Goldreich & Weber (1980) (see their equation 11) normalize the gravitational potential to the square of the central sound speed,

<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3} = \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1} \, .</math>

Specifically, their dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math>

With these additional scalings, the continuity equation becomes,

<math>~\frac{d\ln f}{dt} </math>

<math>~=</math>

<math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math>

the Euler equation becomes,

<math>~ \biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math>

<math>~=</math>

<math>~ - 3 f - \sigma \, ;</math>

and the Poisson equation becomes,

<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math>


With these additional scalings, the continuity equation becomes,

<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math>

<math>~=</math>

<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3)

- a^{-2} \nabla_x^2\psi \, ;</math>

the Euler equation becomes,

<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math>

<math>~=</math>

<math>~ - a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) \, ;</math>

and the Poisson equation becomes,

<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math>

<math>~=</math>

<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math>

<math>~\Rightarrow~~~~\nabla_x^2\sigma</math>

<math>~=</math>

<math>~3 f^3 \, .</math>

Homologous Solution

Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,

<math>~\psi</math>

<math>~=</math>

<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math>

which, when acted upon by the various relevant operators, gives,

<math>~\nabla_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~a \dot{a} \mathfrak{x} \, ,</math>

<math>~\nabla^2_\mathfrak{x}\psi</math>

<math>~=</math>

<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math>

<math>~\frac{d\psi}{dt}</math>

<math>~=</math>

<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math>

Hence, the continuity equation gives,

<math>~\frac{d\ln f}{dt} </math>

<math>~=</math>

<math>~- \frac{2\dot{a}}{a} ~-~ \frac{3\dot{a}}{a} \, ,</math>


which generates a radial velocity profile,

<math>~\vec{v} = a^{-1}\nabla_x \psi</math>

<math>~=</math>

<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, . </math>

Recognizing, as well, that,

<math>~a^{-2} \nabla_x^2 \psi </math>

<math>~=</math>

<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math>

 

<math>~=</math>

<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2} \frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math>

the continuity equation becomes,

<math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math>

<math>~=</math>

<math>~- \frac{d \ln a^3}{dt} </math>

<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math>

<math>~=</math>

<math>~0 \, ,</math>

that is, the dimensionless density profile, <math>~f</math>, is independent of time. With the adopted stream function, the Euler equation becomes,

<math>~ - a^{-1} \biggl[ 4\biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] \biggl(f + \frac{\sigma}{3} \biggr) </math>

<math>~=</math>

<math>~\frac{\partial }{\partial t} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr) - \dot{a}^2 x^2 + \dot{a}^2 x^2</math>

 

<math>~=</math>

<math>~\frac{x^2}{2} \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>

<math>~\Rightarrow~~~~ \frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr) </math>

<math>~=</math>

<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a \frac{d }{dt} \biggl( a \dot{a} \biggr) </math>

 

<math>~=</math>

<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a ( \dot{a}^2 + a \ddot{a}) \, .</math>

Goldreich & Weber's (1980) Euler Equation after all Scaling (yet to be demonstrated)

<math>~ \frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr) </math>

<math>~=</math>

<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a^2 \ddot{a} </math>

Note that the right-hand-side of this expression differs from ours, so we need to identify and correct the discrepency.

Because everything on the left-hand-side of Goldreich & Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~x</math>, while everything on the right-hand-side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same constant. Goldreich & Weber (1980) (see their equation 12) call this constant, <math>~\lambda/6</math>. They conclude, therefore, (see their equation 13) that the dimensionless gravitational potential is,

<math>~\sigma</math>

<math>~=</math>

<math>~\frac{\lambda x^2}{2} - 3f \, .</math>

Also, the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,

<math>~ a^2 \ddot{a} </math>

<math>~=</math>

<math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math>

As Goldreich & Weber (1980) point out, this nonlinear differential equation can be integrated twice to produce an algebraic relationship between <math>~a</math> and time, <math>~t</math>. First, rewrite the equation as,

<math>~ \frac{d \dot{a} }{dt} </math>

<math>~=</math>

<math>~-\frac{B}{2a^2} \, , </math>

where,

<math> ~B \equiv \frac{8\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, . </math>

Then, multiply both sides by <math>~2\dot{a} = 2da/dt</math> to obtain,

<math>~ 2\dot{a} \frac{d\dot{a}}{dt} </math>

<math>~=</math>

<math>~-B \biggl( a^{-2} \frac{da}{dt} \biggr) </math>

<math>~\Rightarrow~~~~ \frac{d\dot{a}^2}{dt} </math>

<math>~=</math>

<math>~B \frac{d}{dt} \biggl( \frac{1}{a} \biggr) </math>

which integrates once to give,

<math> ~\dot{a}^2 = \frac{B}{a} + C \, , </math>

or,

<math> ~dt = \biggl( \frac{B}{a} + C \biggr)^{-1/2} da \, . </math>

For the case, <math>~C = 0</math>, this differential equation can be integrated straightforwardly to give (see Goldreich & Weber's equation 15),


For the cases when <math>~C \ne 0</math>, Wolfram Mathematica's online integrator can be called upon to integrate this equation and provide the following closed-form solution,

<math>~t</math>

<math>~=</math>

<math> \frac{a}{C} \biggl( \frac{B}{a} + C \biggr)^{1/2} - \frac{B}{2C^{3/2}} \ln \biggl[2aC^{1/2} \biggl( \frac{B}{a} + C \biggr)^{1/2} + B + 2aC \biggr] \, . </math>


Related Discussions


Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |



As Goldreich & Weber (1980) point out, because all terms in this equation are inside the gradient operator, the sum of the terms inside the square brackets must equal a constant — that is, the sum must be independent of spatial position throughout the spherically symmetric configuration. If, following Goldreich & Weber's lead, we simply fold this integration constant into the potential, the Euler equation becomes (see their equation 8),

<math>~\frac{\partial \psi}{\partial t} - \biggl( \frac{\dot{a}}{a} \biggr)\psi + H + \Phi + \frac{1}{2}\biggl(\frac{1}{a} \nabla_x\psi \biggr)^2 </math>

<math>~=</math>

<math>~0 \, .</math>

<math>~\frac{\partial \rho}{\partial t} + \rho \nabla_r \cdot \vec{v} + \vec{v}\cdot \nabla_r \rho</math>

<math>~=</math>

<math>~0</math>

<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla_r \cdot \vec{v} + \vec{v}\cdot \frac{\nabla_r \rho}{\rho}</math>

<math>~=</math>

<math>~0</math>

<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1} \nabla_x \cdot \biggl[ a^{-1} \nabla_x \psi \biggr] + a^{-1} \nabla_x \psi \cdot \frac{a^{-1}\nabla_x \rho}{\rho}</math>

<math>~=</math>

<math>~0</math>

<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}

+ a^{-2} \nabla_x^2\psi </math>

<math>~=</math>

<math>~0</math>

Goldreich & Weber's (1980) Governing Equations After Initial Length Scaling (yet to be demonstrated)

<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho}

+ a^{-2} \nabla_x^2\psi </math>

<math>~=</math>

<math>~0</math>

<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2 + H + \Phi</math>

<math>~=</math>

<math>~0</math>

<math>~ a^{-2} \nabla_x^2\Phi - 4\pi G \rho </math>

<math>~=</math>

<math>~0</math>

where,

<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math>

and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>.


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation