Difference between revisions of "User:Tohline/Apps/GoldreichWeber80"
(More development of derivation) |
(Continue derivation, but it has gotten confusing, so take a break) |
||
Line 184: | Line 184: | ||
===Dimensionless and ''Time-Dependent'' Normalization=== | ===Dimensionless and ''Time-Dependent'' Normalization=== | ||
====Length==== | |||
In their investigation, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] chose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is, | In their investigation, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] chose the same length scale for normalization that is used in deriving the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], which governs the hydrostatic structure of a polytrope of index {{ User:Tohline/Math/MP_PolytropicIndex }}, that is, | ||
Line 264: | Line 265: | ||
</div> | </div> | ||
====Mass-Density and Speed==== | |||
Next, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function, | |||
<div align="center"> | <div align="center"> | ||
< | <math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math> | ||
< | </div> | ||
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the [[User:Tohline/SSC/Structure/Polytropes#Lane-Emden_equation|Lane-Emden equation]], where the primary ''dependent'' structural variable is the dimensionless polytropic enthalpy, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math> | ||
</div> | </div> | ||
Also, [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] (see their equation 11) normalize the gravitational potential to the square of the central sound speed, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3} | ||
= \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1} \, .</math> | |||
</div> | </div> | ||
Specifically, their dimensionless gravitational potential is, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\sigma</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\biggl | <math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
With these additional scalings, the continuity equation becomes, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\ | <math>~\frac{d\ln f}{dt} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 347: | Line 310: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
the Euler equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\ | <math>~ | ||
\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] | |||
\biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 359: | Line 331: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ - 3 f - \sigma \, ;</math> | ||
\ | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
and the Poisson equation becomes, | |||
<div align="center"> | |||
<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math> | |||
</div> | |||
With these additional scalings, the continuity equation becomes, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 376: | Line 354: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3) | ||
- a^{-2} \nabla_x^2\psi \, ;</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
the Euler equation becomes, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 387: | Line 366: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial | <math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 393: | Line 372: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
- a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) | |||
\, ;</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
and the Poisson equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 405: | Line 391: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ \ | <math>~\Rightarrow~~~~\nabla_x^2\sigma</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 427: | Line 403: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~3 f^3 \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
===Homologous Solution=== | |||
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ \ | <math>~\psi</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 441: | Line 421: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math> | ||
a \ | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
which, when acted upon by the various relevant operators, gives, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ \ | <math>~\nabla_\mathfrak{x}\psi</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 455: | Line 438: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~a \dot{a} \mathfrak{x} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\nabla^2_\mathfrak{x}\psi</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] | |||
= 3 a \dot{a} \, , | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 481: | Line 459: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\ | <math>~\frac{d\psi}{dt}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Hence, the continuity equation gives, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\ | <math>~\frac{d\ln f}{dt} </math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 506: | Line 482: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~- \frac{2\dot{a}}{a} ~-~ \frac{3\dot{a}}{a} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
which generates a radial velocity profile, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\vec{v} = a^{-1}\nabla_x \psi</math> | ||
</td> | |||
</math> | |||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, . | ||
\ | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Recognizing, as well, that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~a^{-2} \nabla_x^2 \psi </math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 538: | Line 519: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\frac{\ | <math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 544: | Line 525: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 553: | Line 531: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\frac{\dot{a}}{a} \ | <math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2} | ||
\frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
the continuity equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \ | <math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 571: | Line 549: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~- \frac{d \ln a^3}{dt} </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 577: | Line 555: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow | <math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 583: | Line 561: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0 \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
that is, the dimensionless density profile, <math>~f</math>, is independent of time. With the adopted stream function, the Euler equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
- a^{-1} \biggl[ 4\biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] \biggl(f + \frac{\sigma}{3} \biggr) | |||
+ \ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 599: | Line 581: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~( | <math>~\frac{\partial }{\partial t} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr) - \dot{a}^2 x^2 | ||
+ \dot{a}^2 x^2</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 605: | Line 588: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 615: | Line 594: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{x^2}{2} \frac{d }{dt} \biggl( a \dot{a} \biggr) </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 623: | Line 601: | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~~ | <math>~\Rightarrow~~~~ | ||
\frac{1}{ | \frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr) | ||
+ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 632: | Line 608: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a \frac{d }{dt} \biggl( a \dot{a} \biggr) </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 645: | Line 620: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{\ | <math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a ( \dot{a}^2 + a \ddot{a}) \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
<table border="1" cellpadding="5" align="center" width="75%"> | |||
<tr><td align="center" colspan="1"> | |||
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber's (1980)] Euler Equation after all Scaling (yet to be demonstrated) | |||
</td></tr> | |||
<tr><td align="left"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~ | ||
\frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr) | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 670: | Line 646: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a^2 \ddot{a} </math> | ||
\biggl[ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Note that the right-hand-side of this expression differs from ours, so we need to identify and correct the discrepency. | |||
</td></tr> | |||
</table> | |||
Because everything on the left-hand-side of Goldreich & Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~x</math>, while everything on the right-hand-side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same constant. [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] (see their equation 12) call this constant, <math>~\lambda/6</math>. They conclude, therefore, (see their equation 13) that the dimensionless gravitational potential is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\sigma</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 685: | Line 666: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\frac{\lambda x^2}{2} - 3f \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
Also, the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | |||
a^2 \ddot{a} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 701: | Line 685: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
< | <table border="1" cellpadding="8" align="center" width="75%"> | ||
<table border="0" cellpadding="5" align="center"> | <tr><td align="left"> | ||
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] point out, this nonlinear differential equation can be integrated twice to produce an algebraic relationship between <math>~a</math> and time, <math>~t</math>. First, rewrite the equation as, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~ | ||
\frac | \frac{d \dot{a} }{dt} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 727: | Line 706: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ - \frac{ | <math>~-\frac{B}{2a^2} \, , </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, | |||
<div align="center"> | |||
<math> | |||
~B \equiv \frac{8\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, . | |||
</math> | |||
</div> | </div> | ||
Then, multiply both sides by <math>~2\dot{a} = 2da/dt</math> to obtain, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~ | ||
2\dot{a} \frac{d\dot{a}}{dt} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-B \biggl( a^{-2} \frac{da}{dt} \biggr) </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 751: | Line 736: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\ | <math>~\Rightarrow~~~~ | ||
\frac{d\dot{a}^2}{dt} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~B \frac{d}{dt} \biggl( \frac{1}{a} \biggr) </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
which integrates once to give, | |||
<div align="center"> | |||
<math> | |||
~\dot{a}^2 = \frac{B}{a} + C \, , | |||
</math> | |||
</div> | </div> | ||
or, | |||
<div align="center"> | <div align="center"> | ||
< | <math> | ||
~dt = \biggl( \frac{B}{a} + C \biggr)^{-1/2} da \, . | |||
</math> | |||
</div> | |||
For the case, <math>~C = 0</math>, this differential equation can be integrated straightforwardly to give (see Goldreich & Weber's equation 15), | |||
For the cases when <math>~C \ne 0</math>, [http://integrals.wolfram.com/index.jsp Wolfram Mathematica's online integrator] can be called upon to integrate this equation and provide the following closed-form solution, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~t</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 776: | Line 778: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{a}{C} \biggl( \frac{B}{a} + C \biggr)^{1/2} | |||
- \frac{B}{2C^{3/2}} \ln \biggl[2aC^{1/2} \biggl( \frac{B}{a} + C \biggr)^{1/2} + B + 2aC \biggr] \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
<tr> | |||
<td align="right"> | </td></tr> | ||
</table> | |||
=Related Discussions= | |||
{{LSU_WorkInProgress}} | |||
As [http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber (1980)] point out, because all terms in this equation are inside the gradient operator, the sum of the terms inside the square brackets must equal a constant — that is, the sum must be independent of spatial position throughout the spherically symmetric configuration. If, following Goldreich & Weber's lead, we simply fold this integration constant into the potential, the Euler equation becomes (see their equation 8), | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{\partial \psi}{\partial t} - \biggl( \frac{\dot{a}}{a} \biggr)\psi + | |||
H + \Phi + \frac{1}{2}\biggl(\frac{1}{a} \nabla_x\psi \biggr)^2 </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 792: | Line 810: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~0 \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
<div align="center"> | |||
<table border="0" cellpadding="5"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \rho}{\partial t} + \rho \nabla_r \cdot \vec{v} + \vec{v}\cdot \nabla_r \rho</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" width="25%"> | ||
<math> | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 817: | Line 833: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla_r \cdot \vec{v} + \vec{v}\cdot \frac{\nabla_r \rho}{\rho}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" width="25%"> | ||
<math> | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 831: | Line 845: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1} \nabla_x \cdot \biggl[ a^{-1} \nabla_x \psi \biggr] | |||
+ a^{-1} \nabla_x \psi \cdot \frac{a^{-1}\nabla_x \rho}{\rho}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" width="25%"> | ||
<math> | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 847: | Line 858: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho} | |||
+ a^{-2} \nabla_x^2\psi </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" width="25%"> | ||
<math> | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
<tr> | <table border="1" cellpadding="5" align="center" width="75%"> | ||
<td align="right"> | <tr><td align="center" colspan="1"> | ||
[http://adsabs.harvard.edu/abs/1980ApJ...238..991G Goldreich & Weber's (1980)] Governing Equations After Initial ''Length'' Scaling (yet to be demonstrated) | |||
</td></tr> | |||
<tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho} | |||
+ a^{-2} \nabla_x^2\psi </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" width="25%"> | ||
<math> | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 882: | Line 894: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2 | |||
+ H + \Phi</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 888: | Line 901: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~0</math> | ||
</td> | |||
</tr> | |||
</math> | |||
</td> | |||
</tr | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~ | ||
a^{-2} \nabla_x^2\Phi - 4\pi G \rho | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 911: | Line 915: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr><td align="left" colspan="3"> | ||
where, | |||
<div align="center"> | |||
<math>~\vec{x} \equiv \frac{\vec{r}}{a} \, ,</math> | |||
</div> | |||
and it is understood that derivatives in the <math>~\nabla_x</math> and <math>~\nabla_x^2</math> operators are taken with respect to the dimensionless radial coordinate, <math>~x</math>. | |||
</td></tr> | |||
<math>~\ | </table> | ||
</math> | |||
</ | |||
<tr> | </td></tr> | ||
</table> | |||
< | |||
<!-- BEGIN PK07 ASIDE | |||
<div align="center"> | |||
< | <table border="1" width="90%" cellpadding="8"> | ||
<tr><td align="left"> | |||
<font color="red">'''ASIDE:'''</font> It wasn't immediately obvious to me how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system. I did not understand the transformed set of equations presented by Goldreich & Weber as equations (7) and (8), for example. I turned to [http://www.sciencedirect.com/science/article/pii/S0021999106002555 Poludnenko & Khokhlov (2007, Journal of Computational Physics, 220, 678)] — hereafter, PK07 — for guidance. PK07 develop a set of governing equations that allows for coordinate rotation as well as expansion or contraction; here we will ignore any modifications due to rotation. | |||
< | |||
We note, first, that PK07 (see their equation 4) adopt an accelerated radial coordinate of the same form as Goldreich & Weber, | |||
<div align="center"> | |||
<math>~\tilde{r} \equiv \biggl[ \frac{1}{a(t)} \biggr] \vec{r} \, ,</math> | |||
</div> | |||
but the PK07 time-dependent scale factor is dimensionless, whereas the scale factor adopted by Goldreich & Weber — denoted here as <math>~a_{GW}(t)</math> — has units of length. To transform from the KP07 notation, we ultimately will set, | |||
<math>~ | <div align="center"> | ||
<math>~\mathfrak{x} = \frac{1}{a_0} \tilde{r} ~~~~~\Rightarrow ~~~~~ a_{GW}(t) = a_0 a(t) \, ,</math> | |||
</div> | |||
<math>~\ | where, <math>~a_0</math> is understood to be the Goldreich & Weber scale length at the onset of collapse, that is, at <math>~t = 0</math>. According to PK07, this leads to a new "accelerated" time (see, again, their equation 4 with the exponent, <math>~\beta = 0</math>) | ||
<div align="center"> | |||
<math>~\tau \equiv \int_0^t \frac{dt}{a(t)} \, .</math> | |||
</div> | |||
</math> | According to equation (7) of PK07 — again, setting their exponent <math>~\beta=0</math> — the relationship between the fluid velocity in the inertial frame, <math>~\vec{v}</math>, to the fluid velocity measured in the accelerated frame, <math>~\tilde{v}</math>, is | ||
<div align="center"> | |||
</ | <math>~\vec{v} = \tilde{v} + \biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde{r} \, .</math> | ||
</div> | |||
< | We note that, according to equation (8) of PK07, the first derivative of <math>~a(t)</math> with respect to ''physical'' time is, | ||
<div align="center"> | |||
<math>~\ | <math>~\dot{a} = \frac{d\ln a}{d\tau} \, ,</math> | ||
</div> | |||
so the transformation between velocities may equally well be written as, | |||
<div align="center"> | |||
</math> | <math>~\vec{v} = \tilde{v} + \dot{a} \tilde{r} \, ;</math> | ||
</div> | |||
and we note that (see equation 9 of PK07), | |||
<math>~=</math> | <div align="center"> | ||
<math>~\ddot{a} = \frac{1}{a} \biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \, .</math> | |||
</div> | |||
<math> | |||
\ | Next, we note that Goldreich & Weber introduce a variable to track the dimensionless density, | ||
</math> | |||
<table border="0" cellpadding="5" align="center"> | |||
< | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~f^3</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 999: | Line 981: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\biggl( \frac{\rho}{\rho_c} \biggr) = \biggl( \frac{\pi G}{\kappa} \biggr)^{3/2} [a_{GW}(t)]^3 \rho \, .</math> | ||
\frac{\ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Comparing this to equation (10) of PK07, which introduces a density field, <math>~\tilde\rho</math>, as viewed in the accelerated frame of reference of the form, | |||
<div align="center"> | |||
<math>~\tilde\rho = [a(t)]^\alpha \rho \, ,</math> | |||
</div> | </div> | ||
we see that, by setting the exponent <math>~\alpha = 3</math>, the Goldreich & Weber dimensionless density can be retrieved from the PK07 work by setting, | |||
</ | <div align="center"> | ||
</ | <math>~f^3= \frac{\tilde\rho}{\rho_0} \, ,</math> | ||
</div> | </div> | ||
where, | |||
<div align="center"> | |||
<math>~\rho_0 \equiv \biggl( \frac{\kappa}{\pi G a_0^2} \biggr)^{3/2} \, .</math> | |||
</div> | |||
PK07 then claim that, in the accelerating reference frame, the continuity equation and Euler equation become, respectively, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 1,020: | Line 1,003: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \ | <math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde{\nabla}\cdot(\tilde\rho \tilde{v})</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,027: | Line 1,009: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \rho}{\partial | <math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v}) </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~(2-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} - | ||
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
where PK07 have introduced <math>~\nu</math> as a "dimensionality parameter of the problem." In an effort to rewrite the left-hand-side of PK07's Euler equation in a form that matches Goldreich & Weber's Euler equation, we note that, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\nabla\cdot [(\tilde\rho \tilde{v}) \tilde{v}]</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v} + \tilde{v}[\tilde\nabla \cdot (\tilde\rho \tilde{v})] \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
and, with the help of the PK07 continuity equation, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math>~\frac{\partial (\tilde\rho \tilde{v})}{\partial\tau}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \frac{\partial \tilde\rho}{\partial\tau} </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,075: | Line 1,061: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\tilde\rho \frac{\partial \tilde{v}}{\partial\tau} + \tilde{v} \biggl[ | ||
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho | |||
- \tilde{\nabla}\cdot(\tilde\rho \tilde{v}) | |||
\biggr] \, .</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Hence, the Euler equation becomes, | |||
< | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~ \tilde\rho \frac{\partial \tilde{v}}{\partial\tau} | ||
+ \tilde\rho(\tilde{v}\cdot \tilde\nabla) \tilde{v} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~-~\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho \tilde{v} - | ||
\biggl[ \frac{d^2\ln a}{d\tau^2} \biggr] \tilde\rho \tilde{r} - \tilde{\nabla}\tilde{P} </math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,111: | Line 1,096: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \ | <math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau} + (\tilde{v}\cdot \tilde\nabla) \tilde{v} | ||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,118: | Line 1,103: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\dot{a} \tilde{v} - | ||
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, .</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,124: | Line 1,110: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~ \Rightarrow ~~~ \frac{\partial \tilde{v}}{\partial\tau} + \frac{1}{2} \tilde\nabla({\tilde{v}} \cdot \tilde{v} ) + \tilde{\zeta}\times \tilde{v} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 1,132: | Line 1,117: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\dot{a} \tilde{v} - | ||
a \ddot{a} \tilde{r} - \tilde{\nabla}\tilde{H} \, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</div> | |||
where the vector identity that has been used to obtain this last expression has been drawn from our [[User:Tohline/PGE/Euler#in_terms_of_the_vorticity:|separate presentation of the Euler equation written in terms of the fluid vorticity]], <math>~\tilde\zeta \equiv \tilde\nabla \times \tilde{v}</math>. | |||
---- | |||
Now, let's shift to ''physical'' parameters — or example, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\tilde{v}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~~~\rightarrow~~~</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} = \vec{v} - \dot{a} \tilde{r} ~~ \, ;</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial}{\partial | <math>~\frac{\partial}{\partial\tau}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~~~\rightarrow~~~</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
the Euler equation becomes, | — and, following Goldreich & Weber, set the vorticity to zero. The Euler equation becomes, | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 1,204: | Line 1,160: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial | <math>~\frac{\partial }{\partial t} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | ||
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \cdot \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) \biggr] | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,210: | Line 1,168: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \dot{a} \tilde{r} \biggr) - | ||
- | \ddot{a} \tilde{r} - a^{-1}\tilde{\nabla}\tilde{H} </math> | ||
\ | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{ | <math>~\Rightarrow ~~~~ | ||
\frac{\partial \vec{v} }{\partial t} - \biggl[ \biggl(\frac{\dot{a}}{a} \biggr)\frac{\partial\vec{r}}{\partial t} + \frac{\ddot{a}}{a} \vec{r} - \biggl( \frac{\dot{a}}{a}\biggr)^2 \vec{r} \biggr] | |||
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,229: | Line 1,184: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\frac{\dot{a}}{a} \biggl( \vec{v} - \frac{\dot{a}}{a} \vec{r} \biggr) - | ||
\frac{\ddot{a}}{a} \vec{r} - a^{-1}\tilde{\nabla}\tilde{H} </math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,235: | Line 1,191: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~~\ | <math>~\Rightarrow ~~~~ | ||
\frac{\partial \vec{v} }{\partial t} | |||
+ \frac{1}{2}a^{-1} \tilde\nabla \biggl[ \vec{v} \cdot \vec{v} -2\dot{a} \vec{v} \tilde{r} + (\dot{a} \tilde{r} )^2 \biggr] | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,241: | Line 1,200: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr) - a^{-1}\tilde{\nabla}\tilde{H}</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~~ | |||
\frac{\partial \vec{v} }{\partial t} | |||
<tr> | + a^{-1} \tilde\nabla \biggl[ \frac{1}{2}(\vec{v} \cdot \vec{v}) - \dot{a} \vec{v} \tilde{r} + \tilde{H} \biggr] + \biggl( \frac{\dot{a}}{a} \biggr)^2 \vec{r} | ||
<td align="right"> | </math> | ||
<math>~\ | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,259: | Line 1,215: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>\frac{\dot{a}}{a} \biggl(\frac{\partial\vec{r}}{\partial t} - \vec{v} \biggr) \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Now, let's tackle the continuity equation: | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\frac{\partial \tilde\rho}{\partial \tau} + \tilde\rho \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \tilde\nabla \tilde\rho </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,275: | Line 1,233: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~(3-\nu)\biggl[ \frac{d\ln a}{d\tau} \biggr] \tilde\rho </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~a | <math>~\Rightarrow~~~~\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t} + \tilde{\nabla}\cdot \tilde{v} + \tilde{v} \cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho} </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,293: | Line 1,245: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~(3-\nu) \dot{a} </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,299: | Line 1,251: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~~ | |||
\frac{a}{\tilde\rho}\frac{\partial \tilde\rho}{\partial t} | |||
+ (\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \tilde\rho}{\tilde\rho} | |||
+ \tilde{\nabla}\cdot (\vec{v} - \dot{a}\tilde{r}) | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,305: | Line 1,261: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(3-\nu) \dot{a} </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial | <math>~\Rightarrow~~~~ | ||
\frac{1}{a^3\rho}\frac{\partial (a^3\rho)}{\partial t} | |||
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho} | |||
+ a^{-1}\tilde{\nabla}\cdot \vec{v} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,323: | Line 1,277: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- \frac{ | <math>~(3-\nu) \frac{\dot{a}}{a} + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r}) | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,329: | Line 1,284: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ \frac{\partial \ | <math>~\Rightarrow~~~~ | ||
\frac{1}{\rho}\frac{\partial \rho}{\partial t} | |||
+ a^{-1}(\vec{v} - \dot{a}\tilde{r})\cdot \frac{\tilde\nabla \rho}{\rho} | |||
+ a^{-1}\tilde{\nabla}\cdot \vec{v} | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,335: | Line 1,294: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(3-\nu) \frac{\dot{a}}{a} + a^{-1}\tilde{\nabla}\cdot (\dot{a}\tilde{r}) -3 \frac{\dot{a}}{a} | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,355: | Line 1,307: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{\ | <math>~\frac{\dot{a}}{a} (\tilde{\nabla}\cdot \tilde{r}-\nu) | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | </table> | ||
</div> | |||
If we set <math>~\nu = 3</math>, this last expression appears to match equation (7) of Goldreich & Weber. | |||
---- | |||
With the aid of the continuity equation, the left-hand-side of the Euler equation can be rewritten as, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~\frac{\partial \tilde\rho \tilde{v} }{\partial \tau} + \tilde{\nabla} \cdot(\tilde\rho \tilde{v} \tilde{v}) </math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,368: | Line 1,332: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\biggl[ \tilde\rho \frac{\partial \tilde{v} }{\partial \tau} + \tilde{v} \frac{\partial \tilde\rho }{\partial \tau} \biggr] + | |||
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,374: | Line 1,341: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,382: | Line 1,347: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
</td> | \tilde\rho \frac{\partial \tilde{v} }{\partial \tau} + | ||
\biggl[(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde\rho \tilde{v} - (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} \biggr] + | |||
\biggl[ (\tilde{v} \cdot \tilde{\nabla} ) \tilde\rho \tilde{v} + (\tilde\rho \tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr] | |||
</math> | |||
</td> | |||
</tr> | </tr> | ||
Line 1,394: | Line 1,363: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\tilde\rho \biggl[ \frac{\partial \tilde{v} }{\partial \tau} + | |||
(3-\nu)\biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v} + | |||
(\tilde{v} \cdot \tilde{\nabla})\tilde{v} \biggr] \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | </div> | ||
Hence, the Euler equation becomes, | |||
< | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\frac{ | \frac{\partial \tilde{v} }{\partial \tau} | ||
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v} | |||
+ \biggl( \frac{d\ln a}{d\tau} \biggr) \tilde{v} | |||
+ \biggl( \frac{d^2\ln a}{d\tau^2} \biggr) \tilde{r} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,420: | Line 1,389: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~- | <math>~ - \frac{\tilde{\nabla}\tilde{P}}{\tilde\rho} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
</div> | |||
---- | |||
Now, let's shift to ''physical'' parameters. For example, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\tilde{v}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~~~\rightarrow~~~</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{\ | <math>~\vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \, ;</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\frac{\partial}{\partial\tau}</math> | ||
</td> | |||
</math> | |||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~~~\rightarrow~~~</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\frac{\partial t}{\partial\tau} \frac{\partial}{\partial t} = a \frac{\partial}{\partial t} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,465: | Line 1,425: | ||
</div> | </div> | ||
< | Hence, the Euler equation becomes, | ||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~ - \tilde{\nabla}\tilde{H} </math> | ||
\ | |||
</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,480: | Line 1,437: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
a\frac{\partial}{\partial t} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v} | |||
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ \ddot{a} \vec{r} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
| |||
<tr> | |||
<td align="right"> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,504: | Line 1,454: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>a\frac{\partial \vec{v} }{\partial t} - | ||
a \biggl[ \biggl(\frac{\ddot{a}}{a} \biggr) \vec{r} - \biggl(\frac{\dot{a}}{a} \biggr)^2 \vec{r} + \biggl(\frac{\dot{a}}{a} \biggr) \frac{\partial \vec{r} }{\partial t} \biggr] | |||
+ (\tilde{v} \cdot \tilde{\nabla})\tilde{v} | |||
+ \dot{a} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ \ddot{a} \vec{r} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,510: | Line 1,465: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,518: | Line 1,471: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>a\frac{\partial \vec{v} }{\partial t} + (\tilde{v} \cdot \tilde{\nabla})\tilde{v} | ||
+ \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,551: | Line 1,485: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | ||
\frac{ | + \biggl\{\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggr\} \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | ||
- \frac{ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | |||
+ (\vec{v} \cdot \tilde\nabla)\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \cdot \tilde{\nabla} | |||
\biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</td></ | <tr> | ||
</ | <td align="right"> | ||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | |||
+ (\vec{v} \cdot \tilde\nabla)\vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \cdot \tilde{\nabla} \vec{v} \biggr\} | |||
- (\vec{v} \cdot \tilde\nabla)\biggl[ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \cdot \tilde{\nabla} \biggl[\biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
= | <tr> | ||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + \dot{a} \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | |||
+ (\vec{v} \cdot \tilde\nabla)\vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \cdot \tilde{\nabla} \vec{v} \biggr\} | |||
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\dot{a} \tilde{r} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl\{ a\frac{\partial \vec{v} }{\partial t} + (\vec{v} \cdot \tilde\nabla)\vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \cdot \tilde{\nabla} \vec{v} \biggr\} | |||
+ \dot{a} \biggl\{ \biggl[ \vec{v} - \frac{\partial \vec{r} }{\partial t} \biggr] | |||
- \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \tilde{\nabla} \biggl[\tilde{r} \biggr] \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
And the continuity equation becomes, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~(3-\nu) \dot{a} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t} | |||
+ \tilde{\nabla}\cdot \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ \biggl[ \vec{v} - \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a}{\tilde\rho} \frac{\partial \tilde\rho}{\partial t} | |||
+ \tilde{\nabla}\cdot \vec{v} | |||
- \tilde{\nabla}\cdot \biggl[ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
+ \biggl[ \vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \tilde\rho}{\tilde\rho} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ (3-\nu) \dot{a} | |||
+ \tilde{\nabla}\cdot \biggl[ \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{a^2 \rho} \frac{\partial (a^3\rho)}{\partial t} | |||
+ \tilde{\nabla}\cdot \vec{v} | |||
+ \biggl[ \vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{a}{\rho} \frac{\partial \rho}{\partial t} + 3\dot{a} | |||
+ \tilde{\nabla}\cdot \vec{v} | |||
+ \biggl[ \vec{v} | |||
- \biggl(\frac{\dot{a}}{a} \biggr) \vec{r} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} | |||
+ a^{-1}\tilde{\nabla}\cdot \vec{v} | |||
+ \biggl[ \vec{v} | |||
- \dot{a} \biggl( \frac{\vec{r}}{a}\biggr) \biggr] \cdot \frac{a^{-1}\tilde{\nabla} \rho}{\rho} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \biggl( \frac{\vec{r}}{a} \biggr) -\nu \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} | |||
+ a^{-1}\tilde{\nabla}\cdot \vec{v} | |||
+ a^{-1} \biggl[ \vec{v} | |||
- \dot{a} \vec{\mathfrak{x}} \biggr] \cdot \frac{\tilde{\nabla} \rho}{\rho} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{\dot{a}}{a} \biggl[\tilde{\nabla}\cdot \vec{\mathfrak{x}} -\nu \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
</td></tr> | |||
</table> | |||
</div> | |||
--> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 21:48, 2 November 2014
Homologously Collapsing Stellar Cores
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Review of Goldreich and Weber (1980)
This is principally a review of the dynamical model that Peter Goldreich & Stephen Weber (1980, ApJ, 238, 991) developed to describe the near-homologous collapse of stellar cores. As we began to study the Goldreich & Weber paper, it wasn't immediately obvious how the set of differential governing equations should be modified in order to accommodate a radially contracting (accelerating) coordinate system. I did not understand the transformed set of equations presented by Goldreich & Weber as equations (7) and (8), for example. At first, I turned to Poludnenko & Khokhlov (2007, Journal of Computational Physics, 220, 678) — hereafter, PK07 — for guidance. PK07 develop a very general set of governing equations that allows for coordinate rotation as well as expansion or contraction. Ultimately, the most helpful additional reference proved to be §19.11 (pp. 187 - 190) of Kippenhahn & Weigert [ KW94 ].
Governing Equations
Goldreich & Weber begin with the identical set of principal governing equations that serves as the foundation for all of the discussions throughout this H_Book. In particular, as is documented by their equation (1), their adopted equation of state is adiabatic/polytropic,
<math>~P = \kappa \rho^\gamma \, ,</math>
— where both <math>~\kappa</math> and <math>~\gamma</math> are constants — and therefore satisfies what we have referred to as the
Adiabatic Form of the
First Law of Thermodynamics
(Specific Entropy Conservation)
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math> .
their equation (3) is what we have referred to as the
Euler Equation
in terms of the Vorticity,
<math>~\frac{\partial\vec{v}}{\partial t} + \vec\zeta \times \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \biggl[\Phi + \frac{1}{2}v^2 \biggr] </math>
where, <math>~\vec\zeta \equiv \nabla\times \vec{v}</math> is the fluid vorticity; their equation (4) is the
and their equation (2) is what we have referred to as the
Eulerian Representation
or
Conservative Form
of the Continuity Equation,
<math>~\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0</math>
although, for the derivation, below, we prefer to start with what we have referred to as the
Standard Lagrangian Representation
of the Continuity Equation,
<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math> |
Tweaking the set of principal governing equations, as we have written them, to even more precisely match equations (1) - (4) in Goldreich & Weber (1980), we should replace the state variable <math>~P</math> (pressure) with <math>~H</math> (enthalpy), keeping in mind that, <math>~\gamma = 1 + 1/n</math>, and, as presented in our introductory discussion of barotropic supplemental relations,
<math>~H = \biggl( \frac{\gamma}{\gamma-1} \biggr) \kappa \rho^{\gamma-1} \, ,</math>
and,
<math>~\nabla H = \frac{\nabla P}{\rho} \, .</math>
Imposed Constraints
Goldreich & Weber (1980) specifically choose to examine the spherically symmetric collapse of a <math>~\gamma = 4/3</math> fluid. With this choice of adiabatic index, the equation of state becomes,
<math>~H = 4 \kappa \rho^{1/3} \, .</math>
And because a strictly radial flow-field exhibits no vorticity (i.e., <math>\vec\zeta = 0</math>), the Euler equation can be rewritten as,
<math>~\frac{\partial v_r}{\partial t} </math> |
<math>~=</math> |
<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}v^2 \biggr] \, .</math> |
Goldreich & Weber also realize that, because the flow is vorticity free, the velocity can be obtained from a stream function, <math>~\psi</math>, via the relation,
<math>~\vec{v} = \nabla\psi ~~~~~\Rightarrow~~~~~v_r = \nabla_r\psi \, .</math>
Hence, the Euler equation becomes,
<math>~\frac{\partial }{\partial t} \biggl[ \nabla_r \psi \biggr]</math> |
<math>~=</math> |
<math>~-~ \nabla_r \biggl[ H + \Phi + \frac{1}{2}(\nabla_r \psi)^2 \biggr] \, .</math> |
Since we are, up to this point in the discussion, still referencing the inertial-frame radial coordinate, the <math>~\nabla_r</math> operator can be moved outside of the partial time-derivative on the lefthand side of this equation to give,
<math>~\nabla_r \biggl[ \frac{\partial \psi}{\partial t} + H + \Phi + \frac{1}{2}(\nabla_r \psi)^2 \biggr]</math> |
<math>~=</math> |
<math>~0 \, .</math> |
This means that the terms inside the square brackets must sum to a constant that is independent of spatial position. Following the lead of Goldreich & Weber, this "integration constant" will be incorporated into the potential, in which case we have,
<math>~\frac{\partial \psi}{\partial t} </math> |
<math>~=</math> |
<math>~-~ \biggl[ H + \Phi + \frac{1}{2} ( \nabla_r \psi )^2 \biggr] \, ,</math> |
which matches equation (5) of Goldreich & Weber (1980).
Now, because it is more readily integrable, we ultimately would like to work with a differential equation that contains the total, rather than partial, time derivative of <math>~\psi</math>. So we will take this opportunity to shift from an Eulerian representation of the Euler equation to a Lagrangian representation, invoking the same (familiar to fluid dynamicists) operator transformation as we have used in our general discussion of the Euler equation, namely,
<math>~\frac{\partial\psi}{\partial t} ~~ \rightarrow ~~ \frac{d\psi}{dt} - \vec{v}\cdot \nabla\psi \, .</math>
In the context of Goldreich & Weber's model, we are dealing with a one-dimension (spherically symmetric), radial flow, so,
<math>\vec{v}\cdot \nabla\psi = v_r \nabla_r \psi \, .</math>
But, given that we have adopted a stream-function representation of the flow in which <math>~v_r = \nabla_r\psi</math>, we appreciate that this term can either be written as <math>~v_r^2</math> or <math>~(\nabla_r\psi)^2</math>. We choose the latter representation, so the Euler equation becomes,
<math>~\frac{d\psi}{dt} - (\nabla_r\psi)^2</math> |
<math>~=</math> |
<math>~-~ \biggl[ H + \Phi + \frac{1}{2} ( \nabla_r \psi )^2 \biggr] \, ,</math> |
or, combining like terms on the left and right,
<math>~\frac{d\psi}{dt} </math> |
<math>~=</math> |
<math>~\frac{1}{2} ( \nabla_r \psi )^2 - H - \Phi \, .</math> |
Dimensionless and Time-Dependent Normalization
Length
In their investigation, Goldreich & Weber (1980) chose the same length scale for normalization that is used in deriving the Lane-Emden equation, which governs the hydrostatic structure of a polytrope of index <math>~n</math>, that is,
<math> a_\mathrm{n} \equiv \biggl[\frac{1}{4\pi G}~ \biggl( \frac{H_c}{\rho_c} \biggr)\biggr]^{1/2} \, , </math>
where the subscript, "c", denotes central values. In this case <math>~(n = 3)</math>, substitution of the equation of state expression for <math>~H_c</math> leads to,
<math> a = \rho_c^{-1/3} \biggl(\frac{\kappa}{\pi G}\biggr)^{1/2} \, . </math>
Most significantly, Goldreich & Weber (see their equation 6) allow the normalizing scale length to vary with time in order for the governing equations to accommodate a self-similar dynamical solution. In doing this, they effectively adopted an accelerating coordinate system with a time-dependent dimensionless radial coordinate,
<math>~\vec\mathfrak{x} \equiv \frac{1}{a(t)} \vec{r} \, .</math>
This, in turn, will mean that either the central density varies with time, or the specific entropy of all fluid elements (captured by the value of <math>~\kappa</math>) varies with time, or both. In practice, Goldreich & Weber assume that <math>~\kappa</math> is held fixed, so the time-variation in the scale length, <math>~a</math>, reflects a time-varying central density; specifically,
<math> \rho_c = \biggl(\frac{\kappa}{\pi G}\biggr)^{3/2} [a(t)]^{-3} \, . </math>
Given the newly adopted dimensionless radial coordinate, the following replacements for the spatial operators should be made, as appropriate, throughout the set of governing equations:
<math>~\nabla_r ~\rightarrow~ a^{-1} \nabla_\mathfrak{x}</math> and <math>~\nabla_r^2 ~\rightarrow~ a^{-2} \nabla_\mathfrak{x}^2 \, .</math>
Specifically, the Poisson equation becomes,
<math>\nabla_\mathfrak{x}^2 \Phi = 4\pi G a^2 \rho \, ;</math>
the Euler equation becomes,
<math>~\frac{d\psi}{dt} </math> |
<math>~=</math> |
<math>~\frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 - H - \Phi \, ;</math> |
and, realizing that for this spherically symmetric model,
<math>\nabla\cdot \vec{v} = \frac{1}{r^2} \nabla_r (r^2 v_r) ~~\rightarrow ~~ \biggl( \frac{1}{a \mathfrak{x}} \biggr)^2 a^{-1} \nabla_\mathfrak{x} \biggl[(a\mathfrak{x})^2 a^{-1} \nabla_\mathfrak{x} \psi \biggr] = \biggl( \frac{1}{a^2 \mathfrak{x}^2} \biggr) \nabla_\mathfrak{x} \biggl[\mathfrak{x}^2 \nabla_\mathfrak{x} \psi \biggr] = \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~+~ a^{-2} \nabla_\mathfrak{x}^2 \psi
</math>
the continuity equation becomes,
<math>~\frac{1}{\rho} \frac{d\rho}{dt} </math> |
<math>~=</math> |
<math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, .</math> |
Mass-Density and Speed
Next, Goldreich & Weber (1980) (see their equation 10) choose to normalize the density by the central density, specifically defining a dimensionless function,
<math>f \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/3} \, .</math>
Keeping in mind that <math>~n = 3</math>, this is also in line with the formulation and evaluation of the Lane-Emden equation, where the primary dependent structural variable is the dimensionless polytropic enthalpy,
<math>\Theta_H \equiv \biggl( \frac{\rho}{\rho_c} \biggr)^{1/n} \, .</math>
Also, Goldreich & Weber (1980) (see their equation 11) normalize the gravitational potential to the square of the central sound speed,
<math>c_s^2 = \frac{\gamma P_c}{\rho_c} = \frac{4}{3} \kappa \rho_c^{1/3} = \frac{4}{3}\biggl(\frac{\kappa^3}{\pi G}\biggr)^{1/2} [a(t)]^{-1} \, .</math>
Specifically, their dimensionless gravitational potential is,
<math>~\sigma</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \Phi \, .</math> |
With these additional scalings, the continuity equation becomes,
<math>~\frac{d\ln f}{dt} </math> |
<math>~=</math> |
<math>~- \biggl( \frac{2}{a^2 \mathfrak{x}} \biggr) \nabla_\mathfrak{x} \psi ~-~ a^{-2} \nabla_\mathfrak{x}^2 \psi \, ,</math> |
the Euler equation becomes,
<math>~ \biggl[ \frac{3}{4} \biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} a(t) \biggr] \biggl[ \frac{d\psi}{dt} - \frac{1}{2a^2} ( \nabla_\mathfrak{x} \psi )^2 \biggr] </math> |
<math>~=</math> |
<math>~ - 3 f - \sigma \, ;</math> |
and the Poisson equation becomes,
<math>\nabla_\mathfrak{x}^2 \sigma = 3f^3 \, .</math>
With these additional scalings, the continuity equation becomes,
<math>~\frac{\partial}{\partial t} \biggl[ \ln \biggl(\frac{f}{a} \biggr)^3 \biggr]</math> |
<math>~=</math> |
<math>~-~ a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \nabla_x(\ln f^3) - a^{-2} \nabla_x^2\psi \, ;</math> |
the Euler equation becomes,
<math>~\frac{\partial \psi}{\partial t} - \frac{\dot{a}}{a} \vec{x}\cdot \nabla_x\psi + \frac{1}{2} a^{-2} | \nabla_x\psi|^2</math> |
<math>~=</math> |
<math>~ - a^{-1} \biggl[ \frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] (3f + \sigma) \, ;</math> |
and the Poisson equation becomes,
<math>~\frac{4}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} a^{-3} \nabla_x^2\sigma</math> |
<math>~=</math> |
<math>~4\pi G\biggl( \frac{\kappa}{\pi G} \biggr)^{3/2} a^{-3} f^3 </math> |
<math>~\Rightarrow~~~~\nabla_x^2\sigma</math> |
<math>~=</math> |
<math>~3 f^3 \, .</math> |
Homologous Solution
Goldreich & Weber (1980) discovered that the governing equations admit to an homologous, self-similar solution if they adopted a stream function of the form,
<math>~\psi</math> |
<math>~=</math> |
<math>~\frac{1}{2}a \dot{a} \mathfrak{x}^2 \, ,</math> |
which, when acted upon by the various relevant operators, gives,
<math>~\nabla_\mathfrak{x}\psi</math> |
<math>~=</math> |
<math>~a \dot{a} \mathfrak{x} \, ,</math> |
<math>~\nabla^2_\mathfrak{x}\psi</math> |
<math>~=</math> |
<math>~ \biggl( \frac{1}{2}a \dot{a} \biggr) \frac{1}{\mathfrak{x}^2} \frac{d}{d\mathfrak{x}} \biggl[\mathfrak{x}^2 \frac{d}{d\mathfrak{x}} \mathfrak{x}^2 \biggr] = 3 a \dot{a} \, , </math> |
<math>~\frac{d\psi}{dt}</math> |
<math>~=</math> |
<math>~\mathfrak{x}^2 \biggl[ \frac{1}{2}\dot{a}^2 + \frac{1}{2}a\ddot{a} \biggr] \, .</math> |
Hence, the continuity equation gives,
<math>~\frac{d\ln f}{dt} </math> |
<math>~=</math> |
<math>~- \frac{2\dot{a}}{a} ~-~ \frac{3\dot{a}}{a} \, ,</math> |
which generates a radial velocity profile,
<math>~\vec{v} = a^{-1}\nabla_x \psi</math> |
<math>~=</math> |
<math>~\hat{e}_x a^{-1} \biggl[ \frac{\partial}{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] = \dot{a} \vec{x} \, . </math> |
Recognizing, as well, that,
<math>~a^{-2} \nabla_x^2 \psi </math> |
<math>~=</math> |
<math>~\frac{1}{(ax)^2} \frac{\partial}{\partial x} \biggl[ x^2\frac{\partial }{\partial x} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr)\biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl( \frac{\dot{a}}{a} \biggr) \frac{1}{x^2} \frac{\partial}{\partial x} \biggl[ x^3\biggr] = \frac{3\dot{a}}{a} = \frac{d\ln a^3}{dt} \, ,</math> |
the continuity equation becomes,
<math>~\frac{\partial \ln f^3}{\partial t} - \frac{d \ln a^3}{dt} </math> |
<math>~=</math> |
<math>~- \frac{d \ln a^3}{dt} </math> |
<math>~\Rightarrow ~~~ \frac{\partial \ln f^3}{\partial t} </math> |
<math>~=</math> |
<math>~0 \, ,</math> |
that is, the dimensionless density profile, <math>~f</math>, is independent of time. With the adopted stream function, the Euler equation becomes,
<math>~ - a^{-1} \biggl[ 4\biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \biggr] \biggl(f + \frac{\sigma}{3} \biggr) </math> |
<math>~=</math> |
<math>~\frac{\partial }{\partial t} \biggl( \frac{1}{2}a \dot{a} x^2 \biggr) - \dot{a}^2 x^2 + \dot{a}^2 x^2</math> |
|
<math>~=</math> |
<math>~\frac{x^2}{2} \frac{d }{dt} \biggl( a \dot{a} \biggr) </math> |
<math>~\Rightarrow~~~~ \frac{1}{x^2} \biggl(f + \frac{\sigma}{3} \biggr) </math> |
<math>~=</math> |
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a \frac{d }{dt} \biggl( a \dot{a} \biggr) </math> |
|
<math>~=</math> |
<math>~-~\biggl[ \frac{1}{8}\biggl( \frac{\pi G}{\kappa^3} \biggr)^{1/2} \biggr] a ( \dot{a}^2 + a \ddot{a}) \, .</math> |
Goldreich & Weber's (1980) Euler Equation after all Scaling (yet to be demonstrated) | |||
Note that the right-hand-side of this expression differs from ours, so we need to identify and correct the discrepency. |
Because everything on the left-hand-side of Goldreich & Weber's scaled Euler equation depends only on the dimensionless spatial coordinate, <math>~x</math>, while everything on the right-hand-side depends only on time — via the parameter, <math>~a(t)</math> — both expressions must equal the same constant. Goldreich & Weber (1980) (see their equation 12) call this constant, <math>~\lambda/6</math>. They conclude, therefore, (see their equation 13) that the dimensionless gravitational potential is,
<math>~\sigma</math> |
<math>~=</math> |
<math>~\frac{\lambda x^2}{2} - 3f \, .</math> |
Also, the nonlinear differential equation governing the time-dependent variation of the scale length, <math>~a</math>, is,
<math>~ a^2 \ddot{a} </math> |
<math>~=</math> |
<math>~-~\frac{4\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, .</math> |
As Goldreich & Weber (1980) point out, this nonlinear differential equation can be integrated twice to produce an algebraic relationship between <math>~a</math> and time, <math>~t</math>. First, rewrite the equation as,
where, <math> ~B \equiv \frac{8\lambda}{3} \biggl( \frac{\kappa^3}{\pi G} \biggr)^{1/2} \, . </math> Then, multiply both sides by <math>~2\dot{a} = 2da/dt</math> to obtain,
which integrates once to give, <math> ~\dot{a}^2 = \frac{B}{a} + C \, , </math> or, <math> ~dt = \biggl( \frac{B}{a} + C \biggr)^{-1/2} da \, . </math> For the case, <math>~C = 0</math>, this differential equation can be integrated straightforwardly to give (see Goldreich & Weber's equation 15),
For the cases when <math>~C \ne 0</math>, Wolfram Mathematica's online integrator can be called upon to integrate this equation and provide the following closed-form solution,
|
Related Discussions
Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
| Go Home |
As Goldreich & Weber (1980) point out, because all terms in this equation are inside the gradient operator, the sum of the terms inside the square brackets must equal a constant — that is, the sum must be independent of spatial position throughout the spherically symmetric configuration. If, following Goldreich & Weber's lead, we simply fold this integration constant into the potential, the Euler equation becomes (see their equation 8),
<math>~\frac{\partial \psi}{\partial t} - \biggl( \frac{\dot{a}}{a} \biggr)\psi + H + \Phi + \frac{1}{2}\biggl(\frac{1}{a} \nabla_x\psi \biggr)^2 </math> |
<math>~=</math> |
<math>~0 \, .</math> |
<math>~\frac{\partial \rho}{\partial t} + \rho \nabla_r \cdot \vec{v} + \vec{v}\cdot \nabla_r \rho</math> |
<math>~=</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + \nabla_r \cdot \vec{v} + \vec{v}\cdot \frac{\nabla_r \rho}{\rho}</math> |
<math>~=</math> |
<math>~0</math> |
<math>~\Rightarrow ~~~~ \frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1} \nabla_x \cdot \biggl[ a^{-1} \nabla_x \psi \biggr] + a^{-1} \nabla_x \psi \cdot \frac{a^{-1}\nabla_x \rho}{\rho}</math> |
<math>~=</math> |
<math>~0</math> |
<math>~\frac{1}{\rho} \frac{\partial \rho}{\partial t} + a^{-1}(a^{-1} \nabla_x\psi - \dot{a} \vec{x}) \cdot \frac{\nabla_x\rho}{\rho} + a^{-2} \nabla_x^2\psi </math> |
<math>~=</math> |
<math>~0</math> |
Goldreich & Weber's (1980) Governing Equations After Initial Length Scaling (yet to be demonstrated) | ||||||||||||
|
© 2014 - 2021 by Joel E. Tohline |