Difference between revisions of "User:Tohline/SSC/Structure/BiPolytropes/FreeEnergy5 1"

From VistrailsWiki
Jump to navigation Jump to search
(Add links to other related discussions)
 
(→‎Mass Profile: Transfer mass derivation from overview chapter)
Line 9: Line 9:
==Mass Profile==
==Mass Profile==


In this case, <math>~\rho_\mathrm{core}(x) = \rho_c = </math> constant &#8212; hence, also, <math>~[\rho(x)/\bar\rho]_\mathrm{core} = 1</math> &#8212; and <math>~\rho_\mathrm{env}(x) = \rho_e = </math> constant &#8212; hence, also, <math>~[\rho(x)/\bar\rho]_\mathrm{env} = 1</math> &#8212; but in general <math>~\rho_e \ne \rho_c</math>.  Performing the separate integrals to obtain expressions for <math>~M_r(r)</math> inside the core and the envelope, [[User:Tohline/SSC/BipolytropeGeneralization_Version2#Partitioning_the_Mass|as established in our accompanying overview]], we obtain:
The core has <math>~n_c = 5 \Rightarrow \gamma_c = 1+1/n_c = 6/5</math>.  Referring to the general relation [[User:Tohline/SSC/BipolytropeGeneralization_Version2#Partitioning_the_Mass|as established in our accompanying overview]], and using <math>~\rho_0</math> to represent the central density, we can write,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 23: Line 23:
   <td align="left">
   <td align="left">
<math>
<math>
M_\mathrm{tot} \biggl( \frac{\nu}{q^3} \biggr) \int_0^{x} 3x^2 dx = \nu M_\mathrm{tot} \biggl( \frac{x}{q} \biggr)^3 \, ;
M_\mathrm{tot} \biggl( \frac{\nu}{q^3} \biggr) \biggl( \frac{\rho_0} {{\bar\rho}_\mathrm{core}}\biggr)_\mathrm{eq} \int_0^{x}  3
\biggl[ \frac{\rho(x)}{\rho_0} \biggr]_\mathrm{core} 
x^2 dx \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>


</table>
</div>
Drawing on the derivation of [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#BiPolytrope_with_nc_.3D_5_and_ne_.3D_1|detailed force-balance models of <math>~(n_c, n_e) = (5, 1)</math> bipolytropes]], the density profile [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#Step_4:__Throughout_the_core_.28.29|throughout the core]] is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\biggl[ \frac{\rho(\xi)}{\rho_0} \biggr]_\mathrm{core}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} \, ,</math>
  </td>
</tr>
</table>
</div>
where the dimensionless radial coordinate is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>(\mathrm{For}~q \leq x \leq 1)</math> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>~\xi</math>
<math>~M_r </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{G \rho_0^{4/5}}{K_c} \biggr]^{1/2} \biggl( \frac{2\pi}{3} \biggr)^{1/2} r \, .</math>
  </td>
</tr>
</table>
</div>
Switching to the [[User:Tohline/SphericallySymmetricConfigurations/Virial#Normalizations|normalizations that have been adopted in the broad context of our discussion of configurations in virial equilibrium]] and inserting the adiabatic index of the core <math>~(\gamma_c = 6/5)</math> into all normalization parameters, we have,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~R_\mathrm{norm} = \biggl[ \biggl(\frac{G}{K_c} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)}</math>
  </td>
  <td align="center">
<math>~\Rightarrow</math>
  </td>
  <td align="left">
<math>~R_\mathrm{norm} = \biggl( \frac{G^5 M_\mathrm{tot}^4}{K_c^5} \biggr)^{1/2} \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\rho_\mathrm{norm} = \frac{3}{4\pi} \biggl[ \frac{K_c^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma)}</math>
  </td>
  <td align="center">
<math>~\Rightarrow</math>
  </td>
  <td align="left">
<math>~\rho_\mathrm{norm} = \frac{3}{4\pi} \biggl( \frac{K_c^{3}}{G^3 M_\mathrm{tot}^2} \biggr)^{5/2} \, .</math>
  </td>
</tr>
</table>
</div>
Hence, we can rewrite,
 
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\xi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{r}{R_\mathrm{norm}} \biggr) \biggl( \frac{\rho_0}{\rho_\mathrm{norm}} \biggr)^{2/5} \biggl[ \frac{G }{K_c} \biggr]^{1/2}
\biggl( \frac{2\pi}{3} \biggr)^{1/2}  R_\mathrm{norm} \rho_\mathrm{norm}^{2/5}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~r^* (\rho_0^*)^{2/5} \biggl[ \frac{G }{K_c} \biggr]^{1/2} \biggl( \frac{2\pi}{3} \biggr)^{1/2}
\biggl( \frac{G^5 M_\mathrm{tot}^4}{K_c^5} \biggr)^{1/2} \biggl( \frac{3}{4\pi} \biggr)^{2/5} \biggl( \frac{K_c^{3}}{G^3 M_\mathrm{tot}^2} \biggr)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 38: Line 134:
   <td align="left">
   <td align="left">
<math>
<math>
M_\mathrm{tot} \biggl\{\nu + \biggl( \frac{1-\nu}{1-q^3} \biggr) \int_{q}^{x} 3
~r^* (\rho_0^*)^{2/5} \biggl[ \biggl( \frac{2\pi}{3} \biggr)^{5} \biggl( \frac{3}{4\pi} \biggr)^{4} \biggr]^{1/10}
x^2 dx \biggr\}  
= r^* (\rho_0^*)^{2/5} \biggl[ \frac{\pi}{2^3 \cdot 3}\biggr]^{1/10} \, .
= M_\mathrm{core} + (1-\nu) M_\mathrm{tot}\biggl( \frac{x^3 - q^3}{1-q^3} \biggr)\, .
</math>
  </td>
</tr>
</table>
</div>
Now, following the same approach as was used in our [[User:Tohline/SphericallySymmetricConfigurations/Virial#Separate_Time_.26_Space|introductory discussion]] and appreciating that our aim here is to redefine the coordinate, <math>~\xi</math>, in terms of normalized parameters evaluated ''in the equilibrium configuration,'' we will set,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~r^*</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
~ x \chi_\mathrm{eq} \, ;
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\rho_0^*</math>
  </td>
  <td align="center">
<math>~\rightarrow~</math>
  </td>
  <td align="left">
<math>
\biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core} \biggl( \frac{{\bar\rho}_\mathrm{core}}{\rho_\mathrm{norm}} \biggr)
= \biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core} \frac{\nu M_\mathrm{tot}/(q^3 R_\mathrm{edge}^3)_\mathrm{eq}}{M_\mathrm{tot}/R_\mathrm{norm}^3}
= \frac{\nu}{q^3} \biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core}  \chi_\mathrm{eq}^{-3} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
When <math>~x = q</math>, both expressions give,
Then we can set,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~M_r</math>
<math>~\xi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 57: Line 188:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~M_\mathrm{core} = \nu M_\mathrm{tot} \, ,</math>
<math>~(3a_\xi)^{1/2} x \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
as they should.  We deduce, as well, that the mass contained in the envelope is,
in which case,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~M_\mathrm{env}</math>
<math>~\biggl[ \frac{\rho(x)}{\rho_0} \biggr]_\mathrm{core}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 73: Line 205:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~M_\mathrm{tot} - M_\mathrm{core} = (1-\nu) M_\mathrm{tot} \, ,</math>
<math>~\biggl( 1 + a_\xi x^2 \biggr)^{-5/2} \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
</div>
</div>
and that the volumes occupied by the core and envelope are, respectively,
 
where the coefficient,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(3a_\xi)^{1/2}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\chi_\mathrm{eq} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core}  \chi_\mathrm{eq}^{-3} \biggr]^{2/5}
\biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10}
=\chi_\mathrm{eq}^{-1/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{2/5}
\biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10}
</math>
  </td>
</tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~V_\mathrm{core}</math>
<math>\Rightarrow~~~~a_\xi</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\frac{1}{3} \biggl\{ \chi_\mathrm{eq}^{-1/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{2/5}
\biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10} \biggr\}^2
= \chi_\mathrm{eq}^{-2/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{4/5}
\biggl( \frac{\pi}{2^3 \cdot 3^6}\biggr)^{1/5} \, .
</math>
  </td>
</tr>
</table>
</div>
We therefore have,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>(\mathrm{For}~0 \leq x \leq q)</math> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>~M_r </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 89: Line 263:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~q^3 R_\mathrm{edge}^3 \, ,</math>
<math>
M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} {{\bar\rho}}\biggr)_\mathrm{core} \biggr]_\mathrm{eq} \int_0^{x}  3
\biggl( 1 + a_\xi x^2 \biggr)^{-5/2}  x^2 dx 
</math>
   </td>
   </td>
</tr>
</tr>
Line 95: Line 272:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~V_\mathrm{env}</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 101: Line 278:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(1- q^3) R_\mathrm{edge}^3 \, .</math>
<math>
M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} {{\bar\rho}}\biggr)_\mathrm{core} \biggr]_\mathrm{eq}  
\biggl[ x^3\biggl( 1 + a_\xi x^2 \biggr)^{-3/2}  \biggr] \, .
</math>
   </td>
   </td>
</tr>
</tr>
Line 107: Line 287:
</table>
</table>
</div>
</div>
 
Note that, when <math>~x \rightarrow q</math>, <math>~M_r \rightarrow M_\mathrm{core} = \nu M_\mathrm{tot}</math>. Hence, this last expression gives,
Hence, the ratio of envelope density to core density is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\rho_e}{\rho_c} = \frac{\bar\rho_\mathrm{env}}{\bar\rho_\mathrm{core}}</math>
<math>~\nu M_\mathrm{tot}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 119: Line 299:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>
\frac{M_\mathrm{env}/V_\mathrm{env}}{M_\mathrm{core}/V_\mathrm{core}} = \frac{q^3(1-\nu)}{\nu(1-q^3)} \, .
M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} {{\bar\rho}}\biggr)_\mathrm{core} \biggr]_\mathrm{eq}  
\biggl[ q^3\biggl( 1 + a_\xi q^2 \biggr)^{-3/2}  \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>\Rightarrow~~~~\biggl[\biggl( \frac{\rho_0} {{\bar\rho}}\biggr)_\mathrm{core} \biggr]_\mathrm{eq}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\biggl( 1 + a_\xi q^2 \biggr)^{3/2} \, .
</math>
</math>
   </td>
   </td>
Line 126: Line 321:
</table>
</table>
</div>
</div>
Hence, finally,
<div align="center">
<table border="0" cellpadding="5" align="center">


These relations should be compared to &#8212; and ultimately must match &#8212; the prescriptions for <math>~M_r</math> that have been presented elsewhere in connection with [[User:Tohline/SSC/Structure/BiPolytropes/Analytic0_0#BiPolytrope_with_nc_.3D_0_and_ne_.3D_0|detailed force-balance models of <math>~(n_c, n_e) = (0, 0)</math> bipolytropes]] and in our introductory discussion of [[User:Tohline/SSC/VirialStability#Expressions_for_Mass|the virial stability of bipolytropes]].
<tr>
 
  <td align="right">
<math>(\mathrm{For}~0 \leq x \leq q)</math> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
<math>~M_r </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>
\nu M_\mathrm{tot} \biggl( \frac{x^3}{q^3} \biggr)  
\biggl[ \frac{ 1 + a_\xi x^2 }{ 1 + a_\xi q^2 } \biggr]^{-3/2} \, ;
</math>
  </td>
</tr>


</table>
</div>
and the coefficient, <math>~a_\xi</math>, will be determined only after the equilibrium radius, <math>~\chi_\mathrm{eq}</math>, has been determined, via the relation,
<div align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\chi_\mathrm{eq}^{2} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl( \frac{\pi}{2^3 \cdot 3^6}\biggr)
\biggl( \frac{\nu}{q^3}  \biggr)^{4} \biggl( 1 + a_\xi q^2 \biggr)^{6}  a_\xi^{-5} \, .
</math>
  </td>
</tr>
</table>
</div>


==Gravitational Potential Energy==
==Gravitational Potential Energy==

Revision as of 18:47, 29 August 2014

Free Energy of BiPolytrope with <math>~(n_c, n_e) = (5, 1)</math>

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Here we present a specific example of the equilibrium structure of a bipolytrope as determined from a free-energy analysis. The example is a bipolytrope whose core has a polytropic index, <math>~n_c = 5</math>, and whose envelope has a polytropic index, <math>~n_e = 1</math>. The details presented here build upon an overview of the free energy of bipolytropes that has been presented elsewhere.

Preliminaries

Mass Profile

The core has <math>~n_c = 5 \Rightarrow \gamma_c = 1+1/n_c = 6/5</math>. Referring to the general relation as established in our accompanying overview, and using <math>~\rho_0</math> to represent the central density, we can write,

<math>(\mathrm{For}~0 \leq x \leq q)</math>       <math>~M_r </math>

<math>~=</math>

<math> M_\mathrm{tot} \biggl( \frac{\nu}{q^3} \biggr) \biggl( \frac{\rho_0} {{\bar\rho}_\mathrm{core}}\biggr)_\mathrm{eq} \int_0^{x} 3 \biggl[ \frac{\rho(x)}{\rho_0} \biggr]_\mathrm{core} x^2 dx \, . </math>

Drawing on the derivation of detailed force-balance models of <math>~(n_c, n_e) = (5, 1)</math> bipolytropes, the density profile throughout the core is,

<math>~\biggl[ \frac{\rho(\xi)}{\rho_0} \biggr]_\mathrm{core}</math>

<math>~=</math>

<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-5/2} \, ,</math>

where the dimensionless radial coordinate is,

<math>~\xi</math>

<math>~=</math>

<math>~\biggl[ \frac{G \rho_0^{4/5}}{K_c} \biggr]^{1/2} \biggl( \frac{2\pi}{3} \biggr)^{1/2} r \, .</math>

Switching to the normalizations that have been adopted in the broad context of our discussion of configurations in virial equilibrium and inserting the adiabatic index of the core <math>~(\gamma_c = 6/5)</math> into all normalization parameters, we have,

<math>~R_\mathrm{norm} = \biggl[ \biggl(\frac{G}{K_c} \biggr) M_\mathrm{tot}^{2-\gamma} \biggr]^{1/(4-3\gamma)}</math>

<math>~\Rightarrow</math>

<math>~R_\mathrm{norm} = \biggl( \frac{G^5 M_\mathrm{tot}^4}{K_c^5} \biggr)^{1/2} \, ,</math>

<math>~\rho_\mathrm{norm} = \frac{3}{4\pi} \biggl[ \frac{K_c^3}{G^3 M_\mathrm{tot}^2} \biggr]^{1/(4-3\gamma)}</math>

<math>~\Rightarrow</math>

<math>~\rho_\mathrm{norm} = \frac{3}{4\pi} \biggl( \frac{K_c^{3}}{G^3 M_\mathrm{tot}^2} \biggr)^{5/2} \, .</math>

Hence, we can rewrite,

<math>~\xi</math>

<math>~=</math>

<math>~\biggl( \frac{r}{R_\mathrm{norm}} \biggr) \biggl( \frac{\rho_0}{\rho_\mathrm{norm}} \biggr)^{2/5} \biggl[ \frac{G }{K_c} \biggr]^{1/2} \biggl( \frac{2\pi}{3} \biggr)^{1/2} R_\mathrm{norm} \rho_\mathrm{norm}^{2/5}</math>

 

<math>~=</math>

<math>~r^* (\rho_0^*)^{2/5} \biggl[ \frac{G }{K_c} \biggr]^{1/2} \biggl( \frac{2\pi}{3} \biggr)^{1/2} \biggl( \frac{G^5 M_\mathrm{tot}^4}{K_c^5} \biggr)^{1/2} \biggl( \frac{3}{4\pi} \biggr)^{2/5} \biggl( \frac{K_c^{3}}{G^3 M_\mathrm{tot}^2} \biggr)</math>

 

<math>~=</math>

<math> ~r^* (\rho_0^*)^{2/5} \biggl[ \biggl( \frac{2\pi}{3} \biggr)^{5} \biggl( \frac{3}{4\pi} \biggr)^{4} \biggr]^{1/10} = r^* (\rho_0^*)^{2/5} \biggl[ \frac{\pi}{2^3 \cdot 3}\biggr]^{1/10} \, . </math>

Now, following the same approach as was used in our introductory discussion and appreciating that our aim here is to redefine the coordinate, <math>~\xi</math>, in terms of normalized parameters evaluated in the equilibrium configuration, we will set,

<math>~r^*</math>

<math>~\rightarrow~</math>

<math> ~ x \chi_\mathrm{eq} \, ; </math>

<math>~\rho_0^*</math>

<math>~\rightarrow~</math>

<math> \biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core} \biggl( \frac{{\bar\rho}_\mathrm{core}}{\rho_\mathrm{norm}} \biggr) = \biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core} \frac{\nu M_\mathrm{tot}/(q^3 R_\mathrm{edge}^3)_\mathrm{eq}}{M_\mathrm{tot}/R_\mathrm{norm}^3} = \frac{\nu}{q^3} \biggl[ \frac{\rho_0}{\bar\rho} \biggr]_\mathrm{core} \chi_\mathrm{eq}^{-3} \, . </math>

Then we can set,

<math>~\xi</math>

<math>~=</math>

<math>~(3a_\xi)^{1/2} x \, ,</math>

in which case,

<math>~\biggl[ \frac{\rho(x)}{\rho_0} \biggr]_\mathrm{core}</math>

<math>~=</math>

<math>~\biggl( 1 + a_\xi x^2 \biggr)^{-5/2} \, ,</math>

where the coefficient,

<math>~(3a_\xi)^{1/2}</math>

<math>~\equiv</math>

<math>~ \chi_\mathrm{eq} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \chi_\mathrm{eq}^{-3} \biggr]^{2/5} \biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10} =\chi_\mathrm{eq}^{-1/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{2/5} \biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10} </math>

<math>\Rightarrow~~~~a_\xi</math>

<math>~\equiv</math>

<math>~ \frac{1}{3} \biggl\{ \chi_\mathrm{eq}^{-1/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{2/5} \biggl( \frac{\pi}{2^3 \cdot 3}\biggr)^{1/10} \biggr\}^2 = \chi_\mathrm{eq}^{-2/5} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0}{\bar\rho} \biggr)_\mathrm{core} \biggr]_\mathrm{eq}^{4/5} \biggl( \frac{\pi}{2^3 \cdot 3^6}\biggr)^{1/5} \, . </math>

We therefore have,

<math>(\mathrm{For}~0 \leq x \leq q)</math>       <math>~M_r </math>

<math>~=</math>

<math> M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} Template:\bar\rho\biggr)_\mathrm{core} \biggr]_\mathrm{eq} \int_0^{x} 3 \biggl( 1 + a_\xi x^2 \biggr)^{-5/2} x^2 dx </math>

 

<math>~=</math>

<math> M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} Template:\bar\rho\biggr)_\mathrm{core} \biggr]_\mathrm{eq} \biggl[ x^3\biggl( 1 + a_\xi x^2 \biggr)^{-3/2} \biggr] \, . </math>

Note that, when <math>~x \rightarrow q</math>, <math>~M_r \rightarrow M_\mathrm{core} = \nu M_\mathrm{tot}</math>. Hence, this last expression gives,

<math>~\nu M_\mathrm{tot}</math>

<math>~=</math>

<math> M_\mathrm{tot} \biggl[ \frac{\nu}{q^3} \biggl( \frac{\rho_0} Template:\bar\rho\biggr)_\mathrm{core} \biggr]_\mathrm{eq} \biggl[ q^3\biggl( 1 + a_\xi q^2 \biggr)^{-3/2} \biggr] </math>

<math>\Rightarrow~~~~\biggl[\biggl( \frac{\rho_0} Template:\bar\rho\biggr)_\mathrm{core} \biggr]_\mathrm{eq}</math>

<math>~=</math>

<math> \biggl( 1 + a_\xi q^2 \biggr)^{3/2} \, . </math>

Hence, finally,

<math>(\mathrm{For}~0 \leq x \leq q)</math>       <math>~M_r </math>

<math>~=</math>

<math> \nu M_\mathrm{tot} \biggl( \frac{x^3}{q^3} \biggr) \biggl[ \frac{ 1 + a_\xi x^2 }{ 1 + a_\xi q^2 } \biggr]^{-3/2} \, ; </math>

and the coefficient, <math>~a_\xi</math>, will be determined only after the equilibrium radius, <math>~\chi_\mathrm{eq}</math>, has been determined, via the relation,

<math>~\chi_\mathrm{eq}^{2} </math>

<math>~=</math>

<math>~\biggl( \frac{\pi}{2^3 \cdot 3^6}\biggr) \biggl( \frac{\nu}{q^3} \biggr)^{4} \biggl( 1 + a_\xi q^2 \biggr)^{6} a_\xi^{-5} \, . </math>

Gravitational Potential Energy

Here we follow the steps that have been outlined in an accompanying overview to determine the separate contributions to the gravitational potential energy. Let's do the core first. In this case, <math>~\rho_\mathrm{core}(x) = \rho_c = </math> constant — hence, also, <math>~[\rho(x)/\bar\rho]_\mathrm{core} = 1</math>. As has been demonstrated above, the corresponding <math>~M_r</math> function is,

<math>~\biggl[ \frac{M_r(x)}{M_\mathrm{tot}}\biggr]_\mathrm{core} </math>

<math>~=</math>

<math> \biggl( \frac{\nu}{q^3} \biggr) x^3 \, . </math>

Hence,

<math>~W_\mathrm{grav}\biggr|_\mathrm{core}</math>

<math>~=</math>

<math> - E_\mathrm{norm} \cdot \chi^{-1} \biggl( \frac{\nu}{q^3} \biggr) \int_0^{q} 3\biggl( \frac{\nu}{q^3} \biggr)x^4 dx </math>

 

<math>~=</math>

<math> - E_\mathrm{norm} \cdot \chi^{-1} \biggl( \frac{\nu}{q^3} \biggr)^2 \biggl( \frac{3}{5} q^5 \biggr) </math>

Now, let's do the envelope. In this case, <math>~\rho_\mathrm{env}(x) = \rho_e = </math> constant; hence, also, <math>~[\rho(x)/\bar\rho]_\mathrm{env} = 1</math>. As shown elsewhere, the corresponding <math>~M_r</math> function is,

<math>~\biggl[ \frac{M_r(x)}{M_\mathrm{tot}} \biggr]_\mathrm{env} </math>

<math>~=</math>

<math> \nu + \biggl(\frac{1-\nu}{1-q^3} \biggr) (x^3 - q^3) \, . </math>

Hence,

<math>~W_\mathrm{grav}\biggr|_\mathrm{env}</math>

<math>~=</math>

<math> - E_\mathrm{norm} \cdot \chi^{-1} \biggl( \frac{1-\nu}{1-q^3} \biggr) \biggl\{ \int_{q}^{1} \biggl[ \nu -q^3 \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr]3x dx + \int_{q}^{1} \biggl[ \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] 3x^4 dx \biggr\} </math>

 

<math>~=</math>

<math> - E_\mathrm{norm} \cdot \chi^{-1} \biggl( \frac{1-\nu}{1-q^3} \biggr) \biggl\{ \frac{3}{2} \biggl[ \nu -q^3 \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] (1-q^2) + \frac{3}{5} \biggl[ \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] (1-q^5) \biggr\} </math>

 

<math>~=</math>

<math> - \frac{3}{5} \biggl(\frac{\nu^2}{q} \biggr) E_\mathrm{norm} \cdot \chi^{-1} \biggl[ \frac{1}{\nu} \biggl( \frac{1-\nu}{1-q^3} \biggr)\biggr] \biggl\{ \frac{5}{2} \biggl[ 1 - \frac{q^3}{\nu} \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] (q-q^3) + \biggl[ \frac{q}{\nu} \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] (1-q^5) \biggr\} </math>

 

<math>~=</math>

<math> - \frac{3}{5} \biggl(\frac{\nu^2}{q} \biggr) E_\mathrm{norm} \cdot \chi^{-1} \biggl[ \frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3} \biggr)\biggr] \biggl\{ \frac{5}{2} \biggl[ 1 - \frac{q^3}{\nu} \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] \biggl(\frac{1}{q^2}-1 \biggr) + \biggl[ \frac{q^3}{\nu} \biggl(\frac{1-\nu}{1-q^3} \biggr) \biggr] \biggl( \frac{1}{q^5}-1\biggr) \biggr\} \, . </math>

Realizing from the above mass segregation derivation that,

<math>~\frac{q^3}{\nu} \biggl( \frac{1-\nu}{1-q^3} \biggr) = \frac{\rho_e}{\rho_c} \, ,</math>

this last expression can be rewritten as,

<math>~W_\mathrm{grav}\biggr|_\mathrm{env}</math>

<math>~=</math>

<math> - \frac{3}{5} \biggl(\frac{\nu^2}{q} \biggr) E_\mathrm{norm} \cdot \chi^{-1} \biggl[ \frac{\rho_e}{\rho_c} \biggr] \biggl\{ \frac{5}{2} \biggl[ 1 - \frac{\rho_e}{\rho_c} \biggr] \biggl(\frac{1}{q^2}-1 \biggr) + \biggl[ \frac{\rho_e}{\rho_c} \biggr] \biggl( \frac{1}{q^5}-1\biggr) \biggr\} </math>

 

<math>~=</math>

<math> - \frac{3}{5} \biggl(\frac{\nu^2}{q} \biggr) E_\mathrm{norm} \cdot \chi^{-1} \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl\{ \frac{5}{2}\biggl(\frac{1}{q^2}-1 \biggr) +\biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl[ \frac{1}{q^5}-1 + \frac{5}{2} \biggl( 1-\frac{1}{q^2}\biggr)\biggr] \biggr\} \, . </math>

So, when put together to obtain the total gravitational potential energy, we have,

<math>~W_\mathrm{grav} = W_\mathrm{grav}\biggr|_\mathrm{core} + W_\mathrm{grav}\biggr|_\mathrm{env}</math>

<math>~=</math>

<math> - \frac{3}{5} E_\mathrm{norm} \cdot \chi^{-1} \biggl(\frac{\nu^2}{q} \biggr) f(\nu,q) \, , </math>

where,

<math>~f(\nu,q)</math>

<math>~\equiv</math>

<math> 1+ \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^2}-1 \biggr) +\biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{q^5}-1 + \frac{5}{2} \biggl( 1-\frac{1}{q^2}\biggr)\biggr] \, . </math>

(This result agrees with Tohline's earlier derivations in other sections of this H_Book, which may now be erased to avoid repetition.)

Thermodynamic Energy Reservoir

According to our derivation of the properties of detailed force-balance <math>~(n_c, n_e) = (0, 0) </math> bipolytropes, in this case the pressure throughout the core is defined by the dimensionless function,

<math>~p_c(x)</math>

<math>~=</math>

<math>~\biggl( \frac{2\pi}{3} \biggr) \xi^2 \, ,</math>

and the pressure throughout the envelope is defined by the dimensionless function,

<math>~p_e(x)</math>

<math>~=</math>

<math>\frac{2\pi}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl[ \frac{\rho_e}{\rho_0} (\xi^2 - \xi_i^2) - 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \xi_i^3\biggl( \frac{1}{\xi} - \frac{1}{\xi_i}\biggr) \biggr] \, , </math>

where, for both functions,

<math>~\xi</math>

<math>~\equiv</math>

<math>~\biggl[ \biggl( \frac{G\rho_0^2}{P_0} \biggr)^{1/2} R_\mathrm{edge} \biggr]_\mathrm{eq} x</math>

 

<math>~=</math>

<math>~\biggl[ \frac{G R_\mathrm{edge}^2}{P_0} \biggl( \frac{3 \nu M_\mathrm{tot}}{4\pi q^3 R_\mathrm{edge}^3} \biggr)^2 \biggr]^{1/2}_\mathrm{eq} x</math>

 

<math>~=</math>

<math>~\biggl[ \biggl( \frac{3^2}{2^4 \pi^2} \biggr) \frac{G M_\mathrm{tot}^2 }{P_0 R_\mathrm{edge}^4} \biggl( \frac{\nu}{q^3}\biggr)^2 \biggr]^{1/2}_\mathrm{eq} x</math>

So, defining the coefficient,

<math>~b_\xi</math>

<math>~\equiv</math>

<math>~\biggl( \frac{3}{2^3 \pi} \biggr) \frac{G M_\mathrm{tot}^2 }{P_0 R_\mathrm{edge}^4} \biggl( \frac{\nu}{q^3}\biggr)^2\, ,</math>

such that,

<math>~\xi </math>

<math>~=</math>

<math>~\biggl( \frac{3}{2\pi} \cdot b_\xi \biggr)^{1/2} x \, ,</math>

and remembering that, at the interface, <math>~x \rightarrow x_i = q</math>, so <math>~\xi_i = (3b_\xi/2\pi)^{1/2} q</math>, the two dimensionless pressure functions become,

<math>~p_c(x)</math>

<math>~=</math>

<math>~b_\xi x^2 \, ,</math>

and,

<math>~p_e(x)</math>

<math>~=</math>

<math>b_\xi\biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl[ \frac{\rho_e}{\rho_0} (x^2 - q^2) - 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) q^3\biggl( \frac{1}{x} - \frac{1}{q}\biggr) \biggr] \, . </math>

The desired integrals over these pressure distributions therefore give,

<math>~\int_0^q \biggl[\frac{1 - p_c(x)}{1-p_c(q)} \biggr] x^2 dx</math>

<math>~=</math>

<math>~\biggl[ \frac{1}{1-b_\xi q^2} \biggr] \int_0^q (1-b_\xi x^2)x^2 dx</math>

 

<math>~=</math>

<math>~\biggl[ \frac{1}{1-b_\xi q^2} \biggr] \biggl[ \frac{1}{3}\cdot q^3 - \biggl( \frac{b_\xi}{5} \biggr) q^5 \biggr] </math>

 

<math>~=</math>

<math>~\frac{q^3}{3} \biggl[ \frac{1}{1-b_\xi q^2} \biggr] \biggl[ 1 - \biggl( \frac{3b_\xi}{5} \biggr) q^2 \biggr] = \frac{q^3}{3} \biggl( \frac{P_0}{P_{ic}} \biggr) \biggl[ 1 - \biggl( \frac{3b_\xi}{5} \biggr) q^2 \biggr] \, ;</math>

<math>~\int_q^1 \biggl[1 - p_e(x) \biggr] x^2 dx</math>

<math>~=</math>

<math>~\frac{1}{3}(1-q^3) - b_\xi\biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \int_q^1 \biggl[ \frac{\rho_e}{\rho_0} (x^2 - q^2) - 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) q^3\biggl( \frac{1}{x} - \frac{1}{q}\biggr) \biggr] x^2 dx</math>

 

<math>~=</math>

<math>~\frac{1}{3}(1-q^3) - b_\xi\biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{x^5}{5} - \frac{q^2 x^3}{3} \biggr) - 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) q^3\biggl( \frac{x^2}{2} - \frac{x^3}{3q}\biggr) \biggr]_q^1</math>

 

<math>~=</math>

<math>~\frac{1}{3}(1-q^3) - \frac{b_\xi}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl\{ \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{3}{5} - q^2 \biggr) - \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) q^2\biggl( 3q - 2\biggr) \biggr] </math>

 

 

<math>~ - \biggl[ \frac{\rho_e}{\rho_0} \biggl( -\frac{2}{5} \biggr)q^5 - \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) q^5 \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~\frac{1}{3}(1-q^3) - \frac{b_\xi}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl\{ \biggl[ q^2(2-3q) +q^5\biggr] + \frac{\rho_e}{\rho_0}\biggl[ \biggl( \frac{3}{5} - q^2 \biggr) + q^2\biggl( 3q - 2\biggr) +\frac{2q^5}{5} -q^5\biggr] \biggl\} </math>

 

<math>~=</math>

<math>~\frac{1}{3}(1-q^3) - \frac{b_\xi}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \frac{P_0}{P_{ie} } \biggl[ (2q^2 - 3q^3 +q^5) + \frac{3}{5} \cdot \frac{\rho_e}{\rho_0} ( 1 - 5q^2 + 5q^3 - q^5 ) \biggr] </math>

 

<math>~=</math>

<math>~\frac{1}{3}\biggl\{ (1-q^3) + b_\xi \biggl(\frac{P_0}{P_{ie} } \biggr) \biggl[\frac{2}{5} q^5 \mathfrak{F} \biggr] \biggr\} \, , </math>

where,

<math>~\mathfrak{F} </math>

<math>~\equiv</math>

<math>~ \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \frac{1}{q^5} \biggl[ (-2q^2 + 3q^3 - q^5) + \frac{3}{5} \biggl( \frac{\rho_e}{\rho_c}\biggr) (-1 +5q^2 - 5q^3 + q^5) \biggr] \, . </math>


Finally, then, we have,

<math>~\biggl( \frac{\mathfrak{S}_A}{E_\mathrm{norm}} \biggr)_\mathrm{core}</math>

<math>~=</math>

<math> \frac{4\pi/3 }{({\gamma_c}-1)} \biggl[ \frac{P_{ic} \chi^{3\gamma_c}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_c} \biggl\{ \biggl( \frac{P_0}{P_{ic}} \biggr) \biggl[ q^3 - \biggl( \frac{3b_\xi}{5} \biggr) q^5 \biggr] \biggr\} </math>

<math>~\biggl( \frac{\mathfrak{S}_A}{E_\mathrm{norm}} \biggr)_\mathrm{env}</math>

<math>~=</math>

<math> \frac{4\pi/3 }{({\gamma_e}-1)} \biggl[ \frac{P_{ie} \chi^{3\gamma_e}}{P_\mathrm{norm}} \biggr]_\mathrm{eq} \chi^{3-3\gamma_e} \biggl\{ (1-q^3) + b_\xi \biggl(\frac{P_0}{P_{ie} } \biggr) \biggl[\frac{2}{5} q^5 \mathfrak{F} \biggr] \biggr\} \, . </math>


Virial Theorem

As has been shown in our accompanying overview, the condition for equilibrium based on a free-energy analysis — that is, the virial theorem — is,

<math>~\mathcal{A}</math>

<math>~=</math>

<math>~\mathcal{B}_\mathrm{core} \chi_\mathrm{eq}^{4-3\gamma_c} + \mathcal{B}_\mathrm{env} \chi_\mathrm{eq}^{4-3\gamma_e} </math>

 

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl[ \frac{P_i R_\mathrm{edge}^4}{GM_\mathrm{tot}^2} \biggr]_\mathrm{eq} [ q^3 s_\mathrm{core} + (1-q^3) s_\mathrm{env} ] \, . </math>

For <math>~(n_c, n_e) = (0, 0) </math> bipolytropes, the relevant coefficient functions are,

<math>~\mathcal{A}</math>

<math>~=</math>

<math>~\frac{1}{5} \biggl(\frac{\nu^2}{q}\biggr) f \, ,</math>

<math>~q^3 s_\mathrm{core}</math>

<math>~=</math>

<math>~ q^3 \biggl(\frac{P_0}{P_{ic}} \biggr) \biggl[ 1 - \frac{3}{5}q^2 b_\xi\biggr] \, , </math>

<math>~(1-q^3) s_\mathrm{env}</math>

<math>~=</math>

<math>~ (1-q^3) + \biggl(\frac{P_0}{P_{ie}} \biggr) \frac{2}{5} q^5 \mathfrak{F} b_\xi \, , </math>

where,

<math>~f</math>

<math>~\equiv</math>

<math> 1+ \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^2}-1 \biggr) +\biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{q^5}-1 + \frac{5}{2} \biggl( 1-\frac{1}{q^2}\biggr)\biggr] \, , </math>

<math>~\mathfrak{F} </math>

<math>~\equiv</math>

<math>~ \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) \frac{1}{q^5} \biggl[ (-2q^2 + 3q^3 - q^5) + \frac{3}{5} \biggl( \frac{\rho_e}{\rho_c}\biggr) (-1 +5q^2 - 5q^3 + q^5) \biggr] \, , </math>

<math>~\frac{P_{ic}}{P_0}</math>

<math>~=</math>

<math>~1- p_c(q) = 1 - b_\xi q^2 \, ,</math>

<math>~b_\xi</math>

<math>~\equiv</math>

<math>~\biggl( \frac{3}{2^3 \pi} \biggr) \frac{G M_\mathrm{tot}^2 }{P_0 R_\mathrm{edge}^4} \biggl( \frac{\nu}{q^3}\biggr)^2\, .</math>

Plugging these expressions into the equilibrium condition shown above, and setting the interface pressures equal to one another, gives,

<math>~\frac{1}{5} \biggl(\frac{\nu^2}{q}\biggr) f</math>

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl[ \frac{P_i R_\mathrm{edge}^4}{GM_\mathrm{tot}^2} \biggr]_\mathrm{eq} \biggl\{ q^3 \biggl(\frac{P_0}{P_{i}} \biggr) \biggl[ 1 - \frac{3}{5}q^2 b_\xi\biggr] + (1-q^3) + \biggl(\frac{P_0}{P_{i}} \biggr) \frac{2}{5} q^5 \mathfrak{F} b_\xi \biggr\} </math>

 

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl[ \frac{P_0 R_\mathrm{edge}^4}{GM_\mathrm{tot}^2} \biggr]_\mathrm{eq} \biggl\{ q^3 \biggl[ 1 - \frac{3}{5}q^2 b_\xi\biggr] + (1-q^3)( 1- b_\xi q^2) + \frac{2}{5} q^5 \mathfrak{F} b_\xi \biggr\} </math>

 

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl[ \frac{P_0 R_\mathrm{edge}^4}{GM_\mathrm{tot}^2} \biggr]_\mathrm{eq} \biggl\{ 1 - b_\xi \biggl[ \frac{3}{5}q^5 + q^2(1-q^3) - \frac{2}{5} q^5 \mathfrak{F} \biggr] \biggr\} </math>

 

<math>~=</math>

<math>~\frac{4\pi}{3} \biggl[ \frac{P_0 R_\mathrm{edge}^4}{GM_\mathrm{tot}^2} \biggr]_\mathrm{eq} \biggl[ \frac{1}{b_\xi} - q^2 + \frac{2}{5} q^5( 1+\mathfrak{F} ) \biggr] b_\xi </math>

 

<math>~=</math>

<math>~\frac{1}{2} \biggl[ \frac{1}{b_\xi} - q^2 + \frac{2}{5} q^5( 1+\mathfrak{F} ) \biggr] \biggl( \frac{\nu}{q^3}\biggr)^2 </math>

<math>\Rightarrow~~~~\frac{1}{b_\xi}</math>

<math>~=</math>

<math>~ \frac{2}{5}q^5 f + \biggl[q^2 - \frac{2}{5} q^5( 1+\mathfrak{F} ) \biggr] </math>

<math>\Rightarrow~~~~\biggl( \frac{2^3 \pi}{3} \biggr) \frac{P_0 R_\mathrm{edge}^4}{G M_\mathrm{tot}^2 } \biggl( \frac{q^3}{\nu}\biggr)^2</math>

<math>~=</math>

<math>~ q^2 + \frac{2}{5} q^5( f - 1-\mathfrak{F} ) </math>

<math>\Rightarrow ~~~~ \frac{P_0 R_\mathrm{edge}^4}{G M_\mathrm{tot}^2 } </math>

<math>~=</math>

<math>~ \biggl( \frac{3}{2^3 \pi} \biggr) \biggl( \frac{\nu}{q^3}\biggr)^2 \biggl\{ q^2 + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl[ 2q^2(1-q) + \biggl( \frac{\rho_e}{\rho_c} \biggr) (1-3q^2 + 2q^3) \biggr] \biggr\} \, .</math>

This exactly matches the equilibrium relation that was derived from our detailed force-balance analysis of <math>~(n_c, n_e) = (0, 0)</math> bipolytropes.

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation