Difference between revisions of "User:Tohline/PGE/Hybrid Scheme"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Example #2: Elaborate on cylindrical equations in example 2)
(→‎Component Forms: Add example #1 and clear up overview table)
Line 35: Line 35:
<table border="1" cellpadding="5">
<table border="1" cellpadding="5">
<tr>
<tr>
   <th align="center">
   <th align="center" rowspan="2">
Example #
Example #
   </th>
   </th>
  <th align="center" colspan="2">
Grid
  </th>
  <th align="center" colspan="2">
Momentum Vector
  </th>
</tr>
<tr>
   <th align="center">
   <th align="center">
Grid Basis
Basis
   </th>
   </th>
   <th align="center">
   <th align="center">
Grid Rotation
Rotating?
   </th>
   </th>
   <th align="center">
   <th align="center">
Momentum Basis
Basis
   </th>
   </th>
   <th align="center">
   <th align="center">
Momentum Frame
Frame
   </th>
   </th>
</tr>
</tr>
Line 60: Line 69:
   </td>
   </td>
   <td align="center">
   <td align="center">
Nonrotating
No
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 78: Line 87:
   </td>
   </td>
   <td align="center">
   <td align="center">
Nonrotating
Yes <math>~(\Omega_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 84: Line 93:
   </td>
   </td>
   <td align="center">
   <td align="center">
Inertial
Rotating <math>~(\Omega_0)</math>
   </td>
   </td>
</tr>
</tr>
Line 90: Line 99:
</div>
</div>


===Example #1===
This is certainly the most familiar component set.
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="right">
<math>\boldsymbol{\hat{e}}_x: ~~~\frac{\partial (\rho v_x)}{\partial t} + \nabla\cdot[(\rho v_x) \vec{v}~]</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
-~\frac{\partial P}{\partial x} - \rho \frac{\partial \Phi}{\partial x} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\boldsymbol{\hat{e}}_y: ~~~\frac{\partial (\rho v_y)}{\partial t} + \nabla\cdot[(\rho v_y) \vec{v}~]</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
-~\frac{\partial P}{\partial y} - \rho \frac{\partial \Phi}{\partial y} \, ,
</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>\boldsymbol{\hat{e}}_z: ~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math>
  </td>
  <td align="center">
<math>~=~</math>
  </td>
  <td align="left">
<math>
-~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, .
</math>
  </td>
</tr>
</table>
</div>


===Example #2===
===Example #2===

Revision as of 03:00, 26 February 2014

Hybrid Scheme

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Traditional Eulerian Representation (Review)

Here we review the traditional Eulerian representation of the Euler Equation, as has been discussed in detail earlier.

in terms of velocity:

The so-called "Eulerian form" of the Euler equation can be straightforwardly derived from the standard Lagrangian representation to obtain,

Eulerian Representation
of the Euler Equation,

<math>~\frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot \nabla) \vec{v}= - \frac{1}{\rho} \nabla P - \nabla \Phi</math>

in terms of momentum density:

Also, we can multiply this expression through by <math>~\rho</math> and combine it with the continuity equation to derive what is commonly referred to as the,

Conservative Form
of the Euler Equation,

<math>~\frac{\partial(\rho\vec{v})}{\partial t} + \nabla\cdot [(\rho\vec{v})\vec{v}]= - \nabla P - \rho \nabla \Phi</math>

The second term on the left-hand-side of this last expression represents the divergence of the "dyadic product" of the vector momentum density (<math>~\rho</math><math>~\vec{v}</math>) and the velocity vector <math>~\vec{v}</math> and is sometimes written as, <math>\nabla\cdot [(\rho \vec{v}) \otimes \vec{v}]</math>.

Component Forms

Let's split the vector Euler equation into its three scalar components; various examples are identified in Table 1.

Example #

Grid

Momentum Vector

Basis

Rotating?

Basis

Frame

1

Cartesian

No

Cartesian

Inertial

2

Cylindrical

Yes <math>~(\Omega_0)</math>

Cylindrical

Rotating <math>~(\Omega_0)</math>


Example #1

This is certainly the most familiar component set.

<math>\boldsymbol{\hat{e}}_x: ~~~\frac{\partial (\rho v_x)}{\partial t} + \nabla\cdot[(\rho v_x) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial x} - \rho \frac{\partial \Phi}{\partial x} \, , </math>

<math>\boldsymbol{\hat{e}}_y: ~~~\frac{\partial (\rho v_y)}{\partial t} + \nabla\cdot[(\rho v_y) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial y} - \rho \frac{\partial \Phi}{\partial y} \, , </math>

<math>\boldsymbol{\hat{e}}_z: ~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, . </math>

Example #2

This component set has been spelled out in, for example, equations (5) - (7) of Norman & Wilson (1978) and equations (11), (12), & (3) of New & Tohline (1997).

<math>\boldsymbol{\hat{e}}_R: ~~~~~~~\frac{\partial (\rho v_R)}{\partial t} + \nabla\cdot[(\rho v_R) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{(\rho R v_\phi)^2}{\rho R^3} + \rho\Omega_0^2 R + \frac{2\Omega_0 (\rho R v_\phi)}{R} \, , </math>

 

<math>~=~</math>

<math> -~\frac{\partial P}{\partial R} - \rho \frac{\partial \Phi}{\partial R} + \frac{\rho}{R} (v_\phi + R\Omega_0)^2 \, , </math>

<math>\boldsymbol{\hat{e}}_\phi: ~~~\frac{\partial (\rho R v_\phi)}{\partial t} + \nabla\cdot[(\rho R v_\phi) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial \phi} - \rho \frac{\partial \Phi}{\partial \phi} - 2\rho (\Omega_0 R )v_R \, , </math>

<math>\boldsymbol{\hat{e}}_z: ~~~~~~~~\frac{\partial (\rho v_z)}{\partial t} + \nabla\cdot[(\rho v_z) \vec{v}~]</math>

<math>~=~</math>

<math> -~\frac{\partial P}{\partial z} - \rho \frac{\partial \Phi}{\partial z} \, . </math>

Related Discussions


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation