Difference between revisions of "User:Tohline/H Book"
m (→Stability:: Point to more specific URL of bipolytrope generalization) |
(→Context: Add link to the Hybrid Scheme) |
||
Line 21: | Line 21: | ||
** [[User:Tohline/PGE/Euler#Euler_Equation|Euler Equation]] | ** [[User:Tohline/PGE/Euler#Euler_Equation|Euler Equation]] | ||
*** [[User:Tohline/PGE/RotatingFrame#Rotating_Reference_Frame|Rotating Reference Frame]] | *** [[User:Tohline/PGE/RotatingFrame#Rotating_Reference_Frame|Rotating Reference Frame]] | ||
*** [[User:Tohline/PGE/Hybrid_Scheme|Jay Call's Hybrid Scheme]] | |||
** <math>1^\mathrm{st}</math> Law of Thermodynamics | ** <math>1^\mathrm{st}</math> Law of Thermodynamics | ||
** Poisson Equation | ** Poisson Equation |
Revision as of 23:58, 25 February 2014
Preface from the original version of this HyperText Book (H_Book):
November 18, 1994
Much of our present, basic understanding of the structure, stability, and dynamical evolution of individual stars, short-period binary star systems, and the gaseous disks that are associated with numerous types of stellar systems (including galaxies) is derived from an examination of the behavior of a specific set of coupled, partial differential equations. These equations — most of which also are heavily utilized in studies of continuum flows in terrestrial environments — are thought to govern the underlying physics of all macroscopic "fluid" systems in astronomy. Although relatively simple in form, they prove to be very rich in nature... <more>
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Pictorial Table of Contents
Context
- Principal Governing Equations
- Continuity Equation
- Euler Equation
- <math>1^\mathrm{st}</math> Law of Thermodynamics
- Poisson Equation
Applications
Spherically Symmetric Configurations
Introduction (Alternate Introduction)
Structure:
Example Solutions:
|
Stability:
Example Solutions: |
Dynamics:
Two-Dimensional Configurations
- Introduction
Structure:
Solution Strategies |
|
Example Solutions:
|
Stability:
Dynamics:
Three-Dimensional Configurations
Structure:
Solution Strategies |
Example Solutions:
|
Stability:
Dynamics:
Appendices
See Also
- NIST Digital Library of Mathematical Functions; see also the related CUP Publication
© 2014 - 2021 by Joel E. Tohline |