Difference between revisions of "User:Tohline/SSC/Structure/BiPolytropes/Analytic0 0"
(Lay out pressure solution for the core) |
(→Step 4: Throughout the core (0 \le \xi \le \xi_i): Add more details regarding bipolytrope structural solution) |
||
Line 5: | Line 5: | ||
Here we construct a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index. It should be possible for the entire structure to be described by closed-form, analytic expressions. Generally, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that we have outlined elsewhere. [On '''<font color="red">1 February 2014</font>''', J. E. Tohline wrote: This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.] | Here we construct a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index. It should be possible for the entire structure to be described by closed-form, analytic expressions. Generally, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that we have outlined elsewhere. [On '''<font color="red">1 February 2014</font>''', J. E. Tohline wrote: This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.] | ||
==Step 4: Throughout the core (<math>0 \le \ | ==Step 4: Throughout the core (<math>0 \le \chi \le \chi_i</math>)== | ||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="3"> | <table border="0" cellpadding="3"> | ||
<tr> | <tr> | ||
<td align="center" colspan="3"> | <td align="center" colspan="3"> | ||
Specify: <math>P_0</math> and <math>\rho_0 ~\Rightarrow</math> | Specify: <math>~P_0</math> and <math>\rho_0 ~\Rightarrow</math> | ||
</td> | </td> | ||
<td colspan="2"> | <td colspan="2"> | ||
Line 18: | Line 18: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>\rho</math> | <math>~\rho</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 24: | Line 24: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\rho_0</math> | <math>~\rho_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 36: | Line 36: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>P</math> | <math>~P</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 48: | Line 48: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\ | <math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi^2 \biggr)</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 54: | Line 54: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>r</math> | <math>~r</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 60: | Line 60: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \ | <math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 66: | Line 66: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \ | <math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 72: | Line 72: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>M_r</math> | <math>~M_r</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 84: | Line 84: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \ | <math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \chi^3 | ||
= \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \ | = \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \chi^3</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 92: | Line 92: | ||
</div> | </div> | ||
==Step 5: Interface Conditions== | |||
<div align="center"> | |||
<table border="0" cellpadding="3"> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
Specify: <math>~\chi_i</math> and <math>~\rho_e/\rho_0</math>, and demand … | |||
</td> | |||
<td colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~P_{ei}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~P_{ci}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi_i^2 \biggr)</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
==Step 6: Envelope Solution (<math>~\chi > \chi_i</math>)== | |||
<div align="center"> | |||
<table border="0" cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\rho</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\rho_e</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~P</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>P_{ei} + \biggl(\frac{2}{3} \pi G \rho_e\biggr) \biggl[ 2(\rho_0 - \rho_e) r_i^3\biggl( \frac{1}{r} - \frac{1}{r_i}\biggr) - | |||
\rho_e(r^2 - r_i^2) \biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>P_{ei} + \frac{2}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \chi_i^3\biggl( \frac{1}{\chi} - | |||
\frac{1}{\chi_i}\biggr) - \frac{\rho_e}{\rho_0} (\chi^2 - \chi_i^2) \biggr]</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~M_r</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~~</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
=Related Discussions= | =Related Discussions= |
Revision as of 22:30, 1 February 2014
BiPolytrope with <math>n_c = 0</math> and <math>n_e=0</math>
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Here we construct a bipolytrope in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index. It should be possible for the entire structure to be described by closed-form, analytic expressions. Generally, we will follow the general solution steps for constructing a bipolytrope that we have outlined elsewhere. [On 1 February 2014, J. E. Tohline wrote: This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.]
Step 4: Throughout the core (<math>0 \le \chi \le \chi_i</math>)
Specify: <math>~P_0</math> and <math>\rho_0 ~\Rightarrow</math> |
|
|||
<math>~\rho</math> |
<math>~=</math> |
<math>~\rho_0</math> |
|
|
<math>~P</math> |
<math>~=</math> |
<math>P_0 - \frac{2}{3} \pi G \rho_0^2 r^2</math> |
<math>~=</math> |
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi^2 \biggr)</math> |
<math>~r</math> |
<math>~=</math> |
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> |
<math>~=</math> |
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math> |
<math>~M_r</math> |
<math>~=</math> |
<math>\frac{4\pi}{3} \rho_0 r^3</math> |
<math>~=</math> |
<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \chi^3 = \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \chi^3</math> |
Step 5: Interface Conditions
Specify: <math>~\chi_i</math> and <math>~\rho_e/\rho_0</math>, and demand … |
|
|||
<math>~P_{ei}</math> |
<math>~=</math> |
<math>~P_{ci}</math> |
<math>~=</math> |
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi_i^2 \biggr)</math> |
Step 6: Envelope Solution (<math>~\chi > \chi_i</math>)
<math>~\rho</math> |
<math>~=</math> |
<math>~\rho_e</math> |
<math>~P</math> |
<math>~=</math> |
<math>P_{ei} + \biggl(\frac{2}{3} \pi G \rho_e\biggr) \biggl[ 2(\rho_0 - \rho_e) r_i^3\biggl( \frac{1}{r} - \frac{1}{r_i}\biggr) - \rho_e(r^2 - r_i^2) \biggr]</math> |
|
<math>~=</math> |
<math>P_{ei} + \frac{2}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \chi_i^3\biggl( \frac{1}{\chi} - \frac{1}{\chi_i}\biggr) - \frac{\rho_e}{\rho_0} (\chi^2 - \chi_i^2) \biggr]</math> |
<math>~M_r</math> |
<math>~=</math> |
<math>~~</math> |
Related Discussions
- Analytic solution with <math>n_c = 5</math> and <math>n_e=1</math>.
© 2014 - 2021 by Joel E. Tohline |