Difference between revisions of "User:Tohline/SSC/Structure/BiPolytropes/Analytic0 0"

From VistrailsWiki
Jump to navigation Jump to search
(Lay out pressure solution for the core)
 
(→‎Step 4: Throughout the core (0 \le \xi \le \xi_i): Add more details regarding bipolytrope structural solution)
Line 5: Line 5:
Here we construct a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index.  It should be possible for the entire structure to be described by closed-form, analytic expressions.  Generally, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that we have outlined elsewhere.  [On '''<font color="red">1 February 2014</font>''', J. E. Tohline wrote:  This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.]   
Here we construct a [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|bipolytrope]] in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index.  It should be possible for the entire structure to be described by closed-form, analytic expressions.  Generally, we will follow the [[User:Tohline/SSC/Structure/BiPolytropes#Solution_Steps|general solution steps for constructing a bipolytrope]] that we have outlined elsewhere.  [On '''<font color="red">1 February 2014</font>''', J. E. Tohline wrote:  This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.]   


==Step 4:  Throughout the core (<math>0 \le \xi \le \xi_i</math>)==
==Step 4:  Throughout the core (<math>0 \le \chi \le \chi_i</math>)==
<div align="center">
<div align="center">
<table border="0" cellpadding="3">
<table border="0" cellpadding="3">
<tr>
<tr>
   <td align="center" colspan="3">
   <td align="center" colspan="3">
Specify:  <math>P_0</math> and <math>\rho_0 ~\Rightarrow</math>
Specify:  <math>~P_0</math> and <math>\rho_0 ~\Rightarrow</math>
   </td>
   </td>
   <td colspan="2">
   <td colspan="2">
Line 18: Line 18:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>\rho</math>
<math>~\rho</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 24: Line 24:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\rho_0</math>
<math>~\rho_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 36: Line 36:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>P</math>
<math>~P</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 48: Line 48:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\xi^2 \biggr)</math>
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi^2 \biggr)</math>
   </td>
   </td>
</tr>
</tr>
Line 54: Line 54:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>r</math>
<math>~r</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 60: Line 60:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \xi</math>
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 66: Line 66:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \xi</math>
<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math>
   </td>
   </td>
</tr>
</tr>
Line 72: Line 72:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>M_r</math>
<math>~M_r</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 84: Line 84:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \xi^3
<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \chi^3
= \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \xi^3</math>
= \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \chi^3</math>
   </td>
   </td>
</tr>
</tr>
Line 92: Line 92:
</div>
</div>


==Step 5:  Interface Conditions==
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="center" colspan="3">
Specify:  <math>~\chi_i</math> and <math>~\rho_e/\rho_0</math>, and demand &hellip;
  </td>
  <td colspan="2">
&nbsp;
  </td>
</tr>
<tr>
  <td align="right">
<math>~P_{ei}</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>~P_{ci}</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi_i^2 \biggr)</math>
  </td>
</tr>
</table>
</div>
==Step 6:  Envelope Solution (<math>~\chi > \chi_i</math>)==
<div align="center">
<table border="0" cellpadding="3">
<tr>
  <td align="right">
<math>~\rho</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>~\rho_e</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~P</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>P_{ei} + \biggl(\frac{2}{3} \pi G \rho_e\biggr) \biggl[ 2(\rho_0 - \rho_e) r_i^3\biggl( \frac{1}{r} - \frac{1}{r_i}\biggr) -
\rho_e(r^2 - r_i^2) \biggr]</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
  </td>
  <td align="left">
<math>P_{ei} + \frac{2}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \chi_i^3\biggl( \frac{1}{\chi} -
\frac{1}{\chi_i}\biggr) - \frac{\rho_e}{\rho_0} (\chi^2 - \chi_i^2) \biggr]</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~M_r</math>
  </td>
  <td align="center">
&nbsp; <math>~=</math>&nbsp;
</td>
  <td align="left">
<math>~~</math>
  </td>
</tr>
</table>
</div>


=Related Discussions=
=Related Discussions=

Revision as of 22:30, 1 February 2014

BiPolytrope with <math>n_c = 0</math> and <math>n_e=0</math>

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Here we construct a bipolytrope in which both the core and the envelope have uniform densities, that is, the structure of both the core and the envelope will be modeled using an <math>n = 0</math> polytropic index. It should be possible for the entire structure to be described by closed-form, analytic expressions. Generally, we will follow the general solution steps for constructing a bipolytrope that we have outlined elsewhere. [On 1 February 2014, J. E. Tohline wrote: This particular system became of interest to me during discussions with Kundan Kadam about the relative stability of bipolytropes.]

Step 4: Throughout the core (<math>0 \le \chi \le \chi_i</math>)

Specify: <math>~P_0</math> and <math>\rho_0 ~\Rightarrow</math>

 

<math>~\rho</math>

  <math>~=</math> 

<math>~\rho_0</math>

 

 

<math>~P</math>

  <math>~=</math> 

<math>P_0 - \frac{2}{3} \pi G \rho_0^2 r^2</math>

  <math>~=</math> 

<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi^2 \biggr)</math>

<math>~r</math>

  <math>~=</math> 

<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math>

  <math>~=</math> 

<math>\biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{1/2} \chi</math>

<math>~M_r</math>

  <math>~=</math> 

<math>\frac{4\pi}{3} \rho_0 r^3</math>

  <math>~=</math> 

<math>\frac{4\pi}{3} \rho_0 \biggl[ \frac{P_0}{G \rho_0^2} \biggr]^{3/2} \chi^3 = \frac{4\pi}{3} \biggl[ \frac{P_0^3}{G^3 \rho_0^4} \biggr]^{1/2} \chi^3</math>

Step 5: Interface Conditions

Specify: <math>~\chi_i</math> and <math>~\rho_e/\rho_0</math>, and demand …

 

<math>~P_{ei}</math>

  <math>~=</math> 

<math>~P_{ci}</math>

  <math>~=</math> 

<math>P_0 \biggl( 1 - \frac{2\pi}{3}\chi_i^2 \biggr)</math>

Step 6: Envelope Solution (<math>~\chi > \chi_i</math>)

<math>~\rho</math>

  <math>~=</math> 

<math>~\rho_e</math>

<math>~P</math>

  <math>~=</math> 

<math>P_{ei} + \biggl(\frac{2}{3} \pi G \rho_e\biggr) \biggl[ 2(\rho_0 - \rho_e) r_i^3\biggl( \frac{1}{r} - \frac{1}{r_i}\biggr) - \rho_e(r^2 - r_i^2) \biggr]</math>

 

  <math>~=</math> 

<math>P_{ei} + \frac{2}{3} \biggl(\frac{\rho_e}{\rho_0}\biggr) \biggl[ 2 \biggl(1 - \frac{\rho_e}{\rho_0} \biggr) \chi_i^3\biggl( \frac{1}{\chi} - \frac{1}{\chi_i}\biggr) - \frac{\rho_e}{\rho_0} (\chi^2 - \chi_i^2) \biggr]</math>

<math>~M_r</math>

  <math>~=</math> 

<math>~~</math>

Related Discussions

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation