Difference between revisions of "User:Tohline/SSC/VirialStability"
(→BiPolytrope: Redefine subsections to make discussion easier to follow) |
(→Virial Analysis: Finish derivation of stability condition) |
||
Line 368: | Line 368: | ||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -\frac{3}{n_c} B_c \chi^{-(1+3/n_c)} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ; | \frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -(1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi^{-(1+3/n_c)} | ||
- \delta_{\infty n_c} B_I \chi^{-1} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ; | |||
</math> | </math> | ||
<math> | <math> | ||
\frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)} | \frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + (1-\delta_{\infty n_c}) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)} | ||
+ \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, . | + \delta_{\infty n_c} B_I \chi^{-2} + \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, . | ||
</math> | </math> | ||
</div> | </div> | ||
Line 391: | Line 392: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{3}{n_c} B_c \chi_E^{- | (1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi_E^{-1- 3/n_c)} | ||
+\delta_{\infty n_c} B_I \chi_E^{-1} +\frac{3}{n_e} B_e \chi_E^{-1-3/n_e)} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 399: | Line 401: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\Rightarrow ~~~~~ \ | \Rightarrow ~~~~~ \frac{n_e A}{3B_e} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 405: | Line 407: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\chi_E^{1-3/n_c} +\beta \chi_E^{1-3/ | (1-\delta_{\infty n_c}) \frac{n_e B_c}{n_c B_e} \chi_E^{1- 3/n_c} | ||
+\delta_{\infty n_c} \frac{n_e B_I}{3B_e} \chi_E + \chi_E^{1-3/n_e} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\Rightarrow ~~~~~ \chi_E^{1-3/n_e} | |||
</math> | |||
</td> | |||
<td align="center"><math>=</math></td> | |||
<td align="left"> | |||
<math> | |||
\alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \, , | |||
</math> | </math> | ||
</td> | </td> | ||
Line 414: | Line 431: | ||
where, | where, | ||
<div align="center"> | <div align="center"> | ||
<math>\alpha \equiv \frac{ | <math>\alpha \equiv \frac{n_e A}{3B_e} \, ; ~~~ \beta \equiv \frac{n_e B_c}{n_c B_e} \, ; ~~~ \beta_I \equiv \frac{n_e B_I}{3B_e} \, .</math> | ||
</div> | </div> | ||
==Stability== | ==Stability== | ||
At this equilibrium radius, the second derivative of the free energy has the value, | |||
<div align="center"> | <div align="center"> | ||
<table border="0" cellpadding="5"> | <table border="0" cellpadding="5"> | ||
Line 432: | Line 441: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\chi_E^3 \biggl( \frac{ | \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E | ||
</math> | </math> | ||
</td> | </td> | ||
Line 442: | Line 451: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
-2 \ | -2 A\biggl( \frac{n_e}{3B_e} \biggr) + (1-\delta_{\infty n_c}) \biggl( \frac{n_e}{3B_e} \biggr) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi_E^{1-3/n_c} | ||
+ \biggl(1+\frac{3}{n_e}\biggr) \beta \chi_E^{1-3/n_e} \, , | + \delta_{\infty n_c} \biggl( \frac{n_e}{3B_e} \biggr) B_I \chi_E + \frac{3}{n_e}\biggl( \frac{n_e}{3B_e} \biggr) \biggl(1+\frac{3}{n_e}\biggr) B_e \chi_E^{1-3/n_e} | ||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="right"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
-2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} | |||
+ \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \chi_E^{1-3/n_e} \, , | |||
</math> | </math> | ||
</td> | </td> | ||
Line 456: | Line 482: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\chi_E^3 \biggl( \frac{ | \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E | ||
</math> | </math> | ||
</td> | </td> | ||
Line 466: | Line 492: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
-2 \alpha | -2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} | ||
+ \biggl(1+\frac{3}{ | + \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \biggl[ \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
Line 483: | Line 509: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\biggl(\frac{3}{ | \alpha \biggl(\frac{3}{n_e}-1\biggr) + (1-\delta_{\infty n_c}) \beta \biggl(\frac{3}{n_c}-\frac{3}{n_e}\biggr) \chi_E^{1-3/n_c} | ||
- \delta_{\infty n_c} \beta_I \biggl(\frac{3}{n_e}\biggr)\chi_E | |||
</math> | </math> | ||
</td> | </td> | ||
Line 491: | Line 518: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\Rightarrow | \Rightarrow ~~~~ \chi_E^3 \biggl( \frac{n_e^2}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E | ||
</math> | </math> | ||
</td> | </td> | ||
Line 501: | Line 528: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
n_e ( | \alpha (3-n_e) - (1-\delta_{\infty n_c}) 3\beta \biggl(1 - \frac{n_e}{n_c} \biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} 3\beta_I \chi_E \, . | ||
</math> | </math> | ||
</td> | </td> | ||
Line 508: | Line 535: | ||
</table> | </table> | ||
</div> | </div> | ||
Finally, the equilibrium configuration is stable as long as this second derivative is positive, | |||
Finally, the equilibrium configuration is stable as long as this second derivative is positive. Hence, for a bipolytrope with an | |||
isothermal core (<math>\delta_{\infty n_c} = 1</math>), the configuration is stable as long as, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
\chi_E | \chi_E < \frac{\alpha (3-n_e)}{3\beta_I} \, . | ||
</math> | </math> | ||
</div> | </div> | ||
In the adiabatic case (<math>\delta_{\infty n_c} = 0</math>), the configuration is stable as long as, | |||
<div align="center"> | |||
<math> | |||
\chi_E^{1-3/n_c} < \frac{\alpha n_c (3-n_e)}{3\beta (n_c-n_e)} \, . | |||
</math> | |||
</div> | |||
==Examples== | ==Examples== |
Revision as of 01:46, 14 October 2013
Virial Stability of BiPolytropes
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
BiPolytrope
[Following a discussion that Tohline had with Kundan Kadam on 3 July 2013, we have decided to carry out a virial equilibrium and stability analysis of nonrotating bipolytropes.]
We will adopt the following approach:
- Properties of the core <math>\cdots</math>
- Uniform density, <math>\rho_c</math>;
- Polytropic constant, <math>K_c</math>, and polytropic index, <math>n_c</math>;
- Surface of the core at <math>r_i</math>;
- Properties of the envelope <math>\cdots</math>
- Uniform density, <math>\rho_e</math>;
- Polytropic constant, <math>K_e</math>, and polytropic index, <math>n_e</math>;
- Base of the core at <math>r_i</math> and surface at <math>R</math>.
Use the dimensionless radius,
<math>\xi \equiv \frac{r}{r_i}</math>.
Then, <math>\xi_i = 1</math> and <math>\xi_s \equiv R/r_i</math>.
Expressions for Mass
Inside the core, the expression for the mass interior to any radius, <math>0 \le \xi \le 1</math>, is,
<math>M_\xi = \frac{4\pi}{3} \rho_c r_i^3 \xi^3</math> .
The expression for the mass interior to any position within the envelope, <math>1 \le \xi \le \xi_s</math>, is,
<math>M_\xi = \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi^3 - 1) \biggr]</math> .
Hence, the mass of the core, the mass of the envelope, and the total mass are, respectively,
<math>M_\mathrm{core} = \frac{4\pi}{3} \rho_c r_i^3 = M_0 \biggl[ \frac{\rho_c}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]</math> <math>\Rightarrow</math> <math>\frac{\rho_c}{\rho_0} = \frac{M_\mathrm{core}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3}</math> ;
<math>M_\mathrm{env} = \frac{4\pi}{3} r_i^3 \biggl[\rho_e (\xi_s^3 - 1) \biggr] = M_0 (\xi_s^3 - 1) \biggl[ \frac{\rho_e}{\rho_0} \biggl( \frac{r_i}{R_0}\biggr)^3 \biggr]</math> <math>\Rightarrow</math> <math>\frac{\rho_e}{\rho_0} = \frac{M_\mathrm{env}}{M_0} \biggl( \frac{r_i}{R_0}\biggr)^{-3} (\xi_s^3 - 1)^{-1}</math> ;
<math>M_\mathrm{tot} = \frac{4\pi}{3} r_i^3 \biggl[\rho_c + \rho_e(\xi_s^3 - 1) \biggr] = M_0 \biggl( \frac{\rho_c}{\rho_0} \biggr) \biggl( \frac{r_i}{R_0}\biggr)^3 \biggl[ 1 + \frac{\rho_e}{\rho_c} (\xi_s^3 - 1) \biggr] </math> ;
where, <math>M_0 \equiv 4\pi \rho_0 R_0^3/3</math>. Letting <math>\nu \equiv M_\mathrm{core}/M_\mathrm{tot}</math> — which also means, <math>M_\mathrm{env}/M_\mathrm{tot} = (1-\nu) </math> — we can write,
<math>\frac{\rho_e}{\rho_c} = \frac{M_\mathrm{env}}{M_\mathrm{core}} (\xi_s^3 - 1)^{-1} = \frac{(1-\nu)}{\nu (\xi_s^3 - 1)} </math> ,
and,
<math>\nu (\xi_s^3 - 1) \biggl( \frac{\rho_e}{\rho_c} \biggr) = (1-\nu) </math> <math>\Rightarrow</math> <math>\nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^3 - 1) \biggr]^{-1}</math> .
Following the work of Schönberg & Chandrasekhar (1942) — see our accompanying discussion — we are seeking equilibrium configurations in the <math>\nu - q</math> plane where,
<math>\nu</math> |
<math>\equiv</math> |
<math>\frac{M_\mathrm{core}}{M_\mathrm{tot}} </math>, (as also defined here) |
<math>q</math> |
<math>\equiv</math> |
<math>\frac{r_i}{R} = \frac{1}{\xi_s}</math> . |
So we can rewrite the above expression as,
<math>\nu = \biggl[ 1 + \biggl( \frac{\rho_e}{\rho_c} \biggr) \biggl(\frac{1}{q^3} - 1\biggr) \biggr]^{-1}</math> ,
or,
<math>\frac{\rho_e}{\rho_c} = \biggl[ \frac{1}{\nu} - 1 \biggr] \biggl(\frac{1}{q^3} - 1\biggr)^{-1} = \frac{q^3}{\nu}\biggl( \frac{1 - \nu}{1- q^3} \biggr) \, . </math>
The following figure shows how <math>\nu</math> varies with <math>q</math> for various choices of the mass density ratio, <math>\rho_e/\rho_c</math>. It illustrates that, for a given core-to-total mass ratio, <math>\nu</math>, the relative location of the interface radius, <math>q</math>, can vary between zero and one, but each value of <math>q</math> reflects a different ratio of envelope-to-core mass density.
Energy Expressions
The gravitational potential energy of the bipolytropic configuration is obtained by integrating over the following differential energy contribution,
<math>dW = - \biggl( \frac{GM_r}{r} \biggr) dm</math> .
Hence,
<math>W = W_\mathrm{core} + W_\mathrm{env}</math> |
<math> = - G \biggl\{ \int_0^{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_c dr + \int^R_{r_i} \biggl( \frac{M_r}{r} \biggr) 4\pi r^2 \rho_e dr \biggr\} </math> |
|
<math> = - G \biggl\{ \int_0^1 \biggl( \frac{4\pi }{3} \rho_c r_i^3 \xi^3 \biggr) 4\pi r_i^2 \rho_c \xi d\xi + \int_1^{\xi_s} \frac{4\pi}{3} \rho_c r_i^3 \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] 4\pi r_i^2 \rho_e \xi d\xi \biggr\} </math> |
|
<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \int_0^1 \xi^4 d\xi + \int_1^{\xi_s} \biggl[ 1 + \frac{\rho_e}{\rho_c}(\xi^3 - 1) \biggr] \biggl( \frac{\rho_e}{\rho_c} \biggr) \xi d\xi \biggr\} </math> |
|
<math> = - \frac{3GM^2_\mathrm{core}}{r_i} \biggl\{ \frac{1}{5} + \biggl( \frac{\rho_e}{\rho_c} \biggr) \int_1^{\xi_s} \xi d\xi + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \int_1^{\xi_s} (\xi^3 - 1) \xi d\xi \biggr\} </math> |
|
<math> = - \biggl( \frac{GM^2_\mathrm{tot}}{R} \biggr) 3\nu^2 \xi_s \biggl\{ \frac{1}{5} + \frac{1}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ \frac{1}{5}(\xi_s^5 - 1) - \frac{1}{2}(\xi_s^2-1) \biggr] \biggr\} </math> |
I like the form of this expression. The leading term, which scales as <math>R^{-1}</math>, encapsulates the behavior of the gravitational potential energy for a given choice of the internal structure, namely, a given choice of <math>\xi_s</math>, <math>\nu</math>, and density ratio <math>(\rho_e/\rho_c)</math>. Actually, only two internal structural parameters need to be specified — <math>\nu</math> and <math>\xi_s</math> (or, <math>q</math>). From these two, the expression shown above allows the determination of <math>(\rho_e/\rho_c)</math>.
Drawing on expressions developed in our introductory discussion of the virial equation, the internal energy of the bipolytropic configuration is,
<math> U = U_\mathrm{core} + U_\mathrm{env} </math> |
<math>=</math> |
<math> \biggl\{ M_\mathrm{core} \biggl[ (1 - \delta_{\infty n_c}) n_c K_c \rho_c^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln\biggl(\frac{\rho_c}{\rho_\mathrm{norm}} \biggr) \biggr] + n_e M_\mathrm{env} K_e \rho_e^{1/n_e} \biggr\} \, , </math> |
where we have allowed for either an isothermal (<math>\delta_{\infty n_c} = 1</math>) or an adiabatic (<math>\delta_{\infty n_c} = 0</math>) core and, for normalization purposes, we have introduced,
<math> \rho_\mathrm{norm} \equiv \frac{3M_\mathrm{tot}}{4\pi R_0^3} \, , </math>
where, <math>R_0</math> is an, as yet unspecified, radius. This expression for the total internal energy may be rewritten as,
<math> \frac{U}{M_\mathrm{tot}} </math> |
<math>=</math> |
<math> \nu \biggl[ (1 - \delta_{\infty n_c}) n_c K_c \rho_c^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln\biggl(\frac{\rho_c}{\rho_\mathrm{norm}} \biggr) \biggr] + (1-\nu) n_e K_e \rho_e^{1/n_e} </math> |
|
<math>=</math> |
<math> \nu \biggl\{ (1 - \delta_{\infty n_c}) n_c K_c \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi} \biggr) \nu r_i^{-3} \biggr]^{1/n_c} + \delta_{\infty n_c} c_s^2 \ln( \nu R_0^3 r_i^{-3} ) \biggr\} + (1-\nu) n_e K_e \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi} \biggr) (1-\nu)(\xi_s^3-1)^{-1} r_i^{-3} \biggr]^{1/n_e} </math> |
|
<math>=</math> |
<math> \nu \biggl\{ (1 - \delta_{\infty n_c}) n_c K_c \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr) \nu \xi_s^{3} \biggr]^{1/n_c} \biggl(\frac{R}{R_0}\biggr)^{-3/n_c} + ~\delta_{\infty n_c} c_s^2 \biggl[ \ln( \nu \xi_s^3) - 3 \ln \biggl( \frac{R}{R_0} \biggr) \biggr] \biggr\} </math> |
|
|
<math>~~~ + (1-\nu) n_e K_e \biggl[ \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr) (1-\nu)(\xi_s^3-1)^{-1} \xi_s^{3} \biggr]^{1/n_e} \biggl(\frac{R}{R_0}\biggr)^{-3/n_e} \, . </math> |
Ultimately, we will relate <math>K_e</math> to <math>K_c</math> by demanding that initially the pressure is identical in both layers. As derived earlier, this will be accomplished via the expression,
<math>\frac{K_e}{K_c}</math> |
= |
<math>\biggl[ \frac{\rho_c^{1+1/n_c}}{\rho_e^{1+1/n_e}} \biggr]_0 \, .</math> |
Virial Analysis
Free Energy Expression
To within an additive constant, the free energy may now be written as,
<math> \mathfrak{G} = W + U = - A \chi^{-1} + (1-\delta_{\infty n_c}) B_c \chi^{-3/n_c} - \delta_{\infty n_c} B_I \ln\chi + B_e \chi^{-3/n_e} \, , </math>
where, <math>\chi \equiv R/R_0</math> and,
<math> A </math> |
<math>=</math> |
<math> \biggl( \frac{3GM^2_\mathrm{tot}}{5R_0} \biggr) \nu^2 \xi_s \biggl\{ 1 + \frac{5}{2} \biggl( \frac{\rho_e}{\rho_c} \biggr) (\xi_s^2 - 1) + \biggl( \frac{\rho_e}{\rho_c} \biggr)^2 \biggl[ (\xi_s^5 - 1) - \frac{5}{2}(\xi_s^2-1) \biggr] \biggr\} \, , </math> |
<math>B_c</math> |
<math>=</math> |
<math> n_c K_c M_\mathrm{tot} \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr)^{1/n_c} \nu^{1+1/n_c} \xi_s^{3/n_c} \, , </math> |
<math>B_I</math> |
<math>=</math> |
<math> 3 M_\mathrm{tot} c_s^2 \nu \, , </math> |
<math>B_e</math> |
<math>=</math> |
<math> n_e K_e M_\mathrm{tot} \biggl( \frac{3M_\mathrm{tot}}{4\pi R_0^3} \biggr)^{1/n_e} (1 - \nu)^{1+1/n_e} \xi_s^{3/n_e} (\xi_s^3 - 1)^{-1/n_e} \, . </math> |
Derivatives of Free Energy
<math> \frac{\partial\mathfrak{G}}{\partial \chi} = A \chi^{-2} -(1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi^{-(1+3/n_c)} - \delta_{\infty n_c} B_I \chi^{-1} -\frac{3}{n_e} B_e \chi^{-(1+3/n_e)} \, ; </math>
<math> \frac{\partial^2\mathfrak{G}}{\partial \chi^2} = -2 A \chi^{-3} + (1-\delta_{\infty n_c}) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi^{-(2+3/n_c)} + \delta_{\infty n_c} B_I \chi^{-2} + \frac{3}{n_e} \biggl(1+\frac{3}{n_e}\biggr) B_e \chi^{-(2+3/n_e)} \, . </math>
Equilibrium Condition
We obtain the equilibrium radius, <math>\chi_E</math>, when <math>\partial\mathfrak{G}/\partial\chi = 0</math>. Hence, the relation governing the equilibrium radius is,
<math> A \chi_E^{-2} </math> |
<math>=</math> |
<math> (1-\delta_{\infty n_c}) \frac{3}{n_c} B_c \chi_E^{-1- 3/n_c)} +\delta_{\infty n_c} B_I \chi_E^{-1} +\frac{3}{n_e} B_e \chi_E^{-1-3/n_e)} </math> |
<math> \Rightarrow ~~~~~ \frac{n_e A}{3B_e} </math> |
<math>=</math> |
<math> (1-\delta_{\infty n_c}) \frac{n_e B_c}{n_c B_e} \chi_E^{1- 3/n_c} +\delta_{\infty n_c} \frac{n_e B_I}{3B_e} \chi_E + \chi_E^{1-3/n_e} </math> |
<math> \Rightarrow ~~~~~ \chi_E^{1-3/n_e} </math> |
<math>=</math> |
<math> \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \, , </math> |
where,
<math>\alpha \equiv \frac{n_e A}{3B_e} \, ; ~~~ \beta \equiv \frac{n_e B_c}{n_c B_e} \, ; ~~~ \beta_I \equiv \frac{n_e B_I}{3B_e} \, .</math>
Stability
At this equilibrium radius, the second derivative of the free energy has the value,
<math> \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math> |
<math> = </math> |
<math> -2 A\biggl( \frac{n_e}{3B_e} \biggr) + (1-\delta_{\infty n_c}) \biggl( \frac{n_e}{3B_e} \biggr) \frac{3}{n_c} \biggl(1+\frac{3}{n_c}\biggr) B_c \chi_E^{1-3/n_c} + \delta_{\infty n_c} \biggl( \frac{n_e}{3B_e} \biggr) B_I \chi_E + \frac{3}{n_e}\biggl( \frac{n_e}{3B_e} \biggr) \biggl(1+\frac{3}{n_e}\biggr) B_e \chi_E^{1-3/n_e} </math> |
|
<math> = </math> |
<math> -2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} + \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \chi_E^{1-3/n_e} \, , </math> |
which, when combined with the condition for equilibrium gives,
<math> \chi_E^3 \biggl( \frac{n_e}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math> |
<math> = </math> |
<math> -2 \alpha + (1-\delta_{\infty n_c}) \beta \biggl(1+\frac{3}{n_c}\biggr) \chi_E^{1-3/n_c} + \delta_{\infty n_c} \beta_I \chi_E + \biggl(1+\frac{3}{n_e}\biggr) \biggl[ \alpha - (1-\delta_{\infty n_c}) \beta \chi_E^{1- 3/n_c} - \delta_{\infty n_c} \beta_I \chi_E \biggr] </math> |
|
<math> = </math> |
<math> \alpha \biggl(\frac{3}{n_e}-1\biggr) + (1-\delta_{\infty n_c}) \beta \biggl(\frac{3}{n_c}-\frac{3}{n_e}\biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} \beta_I \biggl(\frac{3}{n_e}\biggr)\chi_E </math> |
<math> \Rightarrow ~~~~ \chi_E^3 \biggl( \frac{n_e^2}{3B_e} \biggr) \frac{\partial^2\mathfrak{G}}{\partial \chi^2} \biggr|_E </math> |
<math> = </math> |
<math> \alpha (3-n_e) - (1-\delta_{\infty n_c}) 3\beta \biggl(1 - \frac{n_e}{n_c} \biggr) \chi_E^{1-3/n_c} - \delta_{\infty n_c} 3\beta_I \chi_E \, . </math> |
Finally, the equilibrium configuration is stable as long as this second derivative is positive. Hence, for a bipolytrope with an isothermal core (<math>\delta_{\infty n_c} = 1</math>), the configuration is stable as long as,
<math> \chi_E < \frac{\alpha (3-n_e)}{3\beta_I} \, . </math>
In the adiabatic case (<math>\delta_{\infty n_c} = 0</math>), the configuration is stable as long as,
<math> \chi_E^{1-3/n_c} < \frac{\alpha n_c (3-n_e)}{3\beta (n_c-n_e)} \, . </math>
Examples
Isothermal Core
If the core is isothermal, we set <math>n_c = \infty</math>, in which case stability occurs for,
<math> \chi_E^{3/n_e-1} < \frac{3\beta}{n_e \alpha} \, . </math>
Envelope with <math>n=3/2</math>
If we choose an <math>n_e = 3/2</math> envelope, we obtain stability for,
<math> \chi_E < \frac{2\beta}{\alpha}\, . </math>
In this case, the equilibrium radius condition is,
<math> \chi_E^2 - \alpha \chi_E + \beta =0 </math>
<math> \Rightarrow ~~~~ \chi_E = \frac{1}{2}\biggl[\alpha \pm \biggl( \alpha^2 -4\beta \biggr)^{1/2} \biggr] = \frac{\alpha}{2}\biggl[1 \pm \biggl( 1 -\frac{4\beta}{\alpha^2} \biggr)^{1/2} \biggr] </math>
Envelope with <math>n=1</math>
If, instead, we choose an <math>n_e = 1</math> envelope, we obtain stability for,
<math> \chi_E < \sqrt{\frac{3\beta}{\alpha} }\, . </math>
In this case, the equilibrium radius condition is,
<math> \alpha = \chi_E + \beta \chi_E^{-2} \, , </math>
<math> \Rightarrow ~~~~ \chi_E^3 - \alpha \chi_E^2 + \beta = 0 \, . </math>
© 2014 - 2021 by Joel E. Tohline |