Difference between revisions of "User:Tohline/H Book"
(→Structure:: Add pointer to analytic bipolytrope) |
m (→Structure:) |
||
Line 61: | Line 61: | ||
* [[User:Tohline/SSC/Structure/WhiteDwarfs#White_Dwarfs|Zero-temperature White Dwarf]] | * [[User:Tohline/SSC/Structure/WhiteDwarfs#White_Dwarfs|Zero-temperature White Dwarf]] | ||
* [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|BiPolytropes]] | * [[User:Tohline/SSC/Structure/BiPolytropes#BiPolytropes|BiPolytropes]] | ||
** [[User:Tohline/SSC/Structure/BiPolytropes/Analytic5_1#BiPolytrope_with_nc_.3D_5_and_ne_.3D_1|Analytic solution]] for <math>n_c = 5, ~n_e = 1</math>. | |||
* [[User:Tohline/SSC/Structure/LimitingMasses#Mass_Upper_Limits|Limiting Masses]] </td> | * [[User:Tohline/SSC/Structure/LimitingMasses#Mass_Upper_Limits|Limiting Masses]] </td> | ||
</tr> | </tr> |
Revision as of 01:19, 4 June 2013
Preface from the original version of this HyperText Book (H_Book):
November 18, 1994
Much of our present, basic understanding of the structure, stability, and dynamical evolution of individual stars, short-period binary star systems, and the gaseous disks that are associated with numerous types of stellar systems (including galaxies) is derived from an examination of the behavior of a specific set of coupled, partial differential equations. These equations — most of which also are heavily utilized in studies of continuum flows in terrestrial environments — are thought to govern the underlying physics of all macroscopic "fluid" systems in astronomy. Although relatively simple in form, they prove to be very rich in nature... <more>
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Pictorial Table of Contents
Context
- Principal Governing Equations
- Continuity Equation
- Euler Equation
- <math>1^\mathrm{st}</math> Law of Thermodynamics
- Poisson Equation
Applications
Spherically Symmetric Configurations
Introduction (Alternate Introduction)
Structure:
Example Solutions:
|
Stability:
Example Solutions: |
Dynamics:
Two-Dimensional Configurations
- Introduction
Structure:
Solution Strategies |
|
Example Solutions:
|
Stability:
Dynamics:
Three-Dimensional Configurations
- Introduction
Structure:
Solution Strategies |
Example Solutions:
|
Stability:
Dynamics:
Appendices
See Also
- NIST Digital Library of Mathematical Functions; see also the related CUP Publication
© 2014 - 2021 by Joel E. Tohline |