Difference between revisions of "User:Tohline/Cylindrical 3D"
(→Eulerian Formulation: Finish implementation of zero radial and vertical velocities) |
(→Eulerian Formulation: Write summary form of linearized continuity equation) |
||
(6 intermediate revisions by the same user not shown) | |||
Line 199: | Line 199: | ||
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 | + \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 | ||
</math><br /> | </math><br /> | ||
</div> | |||
<!-- | Assuming that the initial (subscript <i>i</i>) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation, | ||
TABLE TO LINEARIZE CONTINUITY EQUATION | <div align="center"> | ||
<math> | |||
Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, , | |||
</math> | |||
</div> | |||
the linearized form of the continuity equation becomes: | |||
<div align="center"> | |||
<table border="1" cellpadding="5" width="95%"> | |||
<tr> | |||
<td align="center" bgcolor="lightblue" colspan="3"> | |||
(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.) | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> | |||
</td> | |||
<td align="center"> | |||
<math>=</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] | |||
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] | |||
</math> | |||
| |||
<math> | |||
+ e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\} | |||
</math> | |||
<math> | |||
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | |||
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} | |||
</math> | |||
<math> | |||
+ (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | |||
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} | |||
</math> | |||
<math> | |||
+ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + | |||
\dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
<!-- | |||
XXX | |||
XXX | |||
XXX | |||
XXX TABLE TO LINEARIZE CONTINUITY EQUATION | |||
XXX | |||
XXX | |||
XXX | |||
--> | --> | ||
<table border="1" cellpadding="5"> | <table border="1" cellpadding="5"> | ||
Line 212: | Line 268: | ||
<td align="center" colspan="3"> | <td align="center" colspan="3"> | ||
<math> | <math> | ||
Q(\varpi, \ | Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 | ||
</math> | </math> | ||
</td> | </td> | ||
Line 236: | Line 292: | ||
<td align="center" colspan="2"> | <td align="center" colspan="2"> | ||
| | ||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightblue"> | |||
<math> | |||
e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightgreen"> | |||
<math> | |||
e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 275: | Line 353: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{ \rho_i \dot\varpi_i}{\varpi} + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) \biggr] + | |||
e^{2im\varphi} \biggl[ \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } \biggr] | |||
</math> | </math> | ||
<math> | <math> | ||
+ (\rho_i + \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + (\rho_i + \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + e^{im\varphi} \biggl[ (\rho_i + e^{im\varphi} \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} \biggr] | ||
</math> | </math> | ||
<math> | <math> | ||
+ ( {\dot\varpi_i} + \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} + \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] | + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + e^{im\varphi}\biggl[ ( {\dot\varpi_i} + e^{im\varphi} \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] | ||
</math> | |||
</td> | |||
<td align="center" colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightblue"> | |||
<math> | |||
\frac{ \rho_i \dot\varpi_i}{\varpi} + \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} + \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} | |||
</math> | |||
<math> | |||
+ e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | |||
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} | |||
</math> | |||
<math> | |||
+ (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | |||
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 292: | Line 398: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\cancel{ \frac{ \rho_i \dot\varpi_i}{\varpi} } + \cancel{ \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} } + \cancel{ \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} } | |||
</math> | |||
<math> | |||
+ e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \cancel{ \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) } | |||
+ \cancel{ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} } | |||
</math> | </math> | ||
<math> | <math> | ||
+ \ | + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | ||
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel{ ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} } \biggr] | |||
</math> | </math> | ||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="3"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~~ \rightarrow ~~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightgreen"> | |||
<math> | <math> | ||
+ | + e^{im\varphi} \biggl\{ \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \rho_i (\delta \dot\varpi) \biggr] \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 316: | Line 439: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
e^{im\varphi} \ | (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varphi_i} + e^{im\varphi} \delta\dot\varphi)}{\partial\varphi} | ||
+ ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varphi} | |||
</math> | </math> | ||
</td> | |||
<td align="center" colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left"> | |||
<math> | <math> | ||
(\rho_i + e^{im\varphi} \delta\rho) \cancel{ \frac{\partial ( {\dot\varphi_i} )}{\partial\varphi} } | |||
+ im e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{ \delta\rho })( \delta\dot\varphi) | |||
</math> | </math> | ||
<math> | <math> | ||
+ ( {\dot\ | + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \cancel{ \frac{\partial (\rho_i )}{\partial\varphi} } | ||
+ im e^{im\varphi} ( {\dot\varphi_i} +e^{im\varphi} \cancel{ \delta\dot\varphi }) (\delta\rho) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 332: | Line 471: | ||
</tr> | </tr> | ||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightblue"> | |||
<math> | |||
im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightgreen"> | |||
<math> | |||
im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>\frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
(\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial z} | |||
+ ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial z} | |||
</math> | |||
</td> | |||
<td align="center" colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
(\rho_i + e^{im\varphi} \delta\rho) { \frac{\partial ( {\dot{z}_i} )}{\partial z} } | |||
+ e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{{ \delta\rho } } ) \frac{\partial ( \delta\dot{z})}{\partial z} | |||
</math> | |||
<math> | |||
+ ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i )}{\partial z} | |||
+ e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} } ) \frac{\partial (\delta\rho)}{\partial z} | |||
</math> | |||
</td> | |||
<td align="center" colspan="2"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~~ \rightarrow ~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightblue"> | |||
<math> | |||
\rho_i \frac{\partial \dot z_i }{\partial z} + \dot{z}_i \frac{\partial \rho_i}{\partial z} | |||
+ | |||
e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + | |||
\dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\rho_i \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot{z}_i } \frac{\partial \rho_i}{\partial z} | |||
</math> | |||
<math> | |||
+ e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \cancel{ \frac{\partial \dot z_i }{\partial z} } + | |||
\cancel{ \dot z_i } \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightgreen"> | |||
<math> | |||
e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
Combining all terms: | |||
</td> | |||
<td align="center"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightblue"> | |||
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] = \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] | |||
+ \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] | |||
</math> | |||
| |||
<math> | |||
+ e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) | |||
+ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} | |||
</math> | |||
<math> | |||
+ (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} | |||
+ ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} | |||
</math> | |||
<math> | |||
+ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] | |||
</math> | |||
<math> | |||
+ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + | |||
\dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>~~~ \rightarrow ~~~</math> | |||
</td> | |||
<td align="left" bgcolor="lightgreen"> | |||
<math> | |||
+ e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | </table> | ||
<!-- END CONTINUITY EQUATION TABLE --> | <!-- | ||
XXX | |||
XXX | |||
XXX | |||
XXX END CONTINUITY EQUATION TABLE | |||
XXX | |||
XXX | |||
XXX | |||
--> | |||
<div align="center"> | |||
<span id="PGE:Euler:R"> | <span id="PGE:Euler:R"> | ||
<font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font> | <font color="#770000">'''<math>\varpi</math> Component of Euler Equation'''</font> |
Latest revision as of 22:41, 17 March 2013
Equations Cast in Cylindrical Coordinates
Spatial Operators in Cylindrical Coordinates |
||
<math> \nabla f </math> |
= |
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi {\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math> |
<math> \nabla^2 f </math> |
= |
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + {\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math> |
<math> (\vec{v}\cdot\nabla)f </math> |
= |
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + {\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math> |
<math> \nabla \cdot \vec{F} </math> |
= |
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + {\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math> |
Vector Time-Derivatives in Cylindrical Coordinates |
||
<math> \frac{d}{dt}\vec{F} </math> |
= |
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math> |
|
= |
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math> |
<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math> |
= |
<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math> |
Governing Equations
Introducing the above expressions into the principal governing equations gives,
Equation of Continuity
<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr]
+ \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0 </math>
Euler Equation
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr]
- {\hat{e}}_\varphi \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
- {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr]
+ \frac{1}{\varpi^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
Eulerian Formulation
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,
<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot\varphi \frac{\partial f}{\partial\varphi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>
Hence,
Equation of Continuity
<math>
\frac{\partial\rho}{\partial t} + \biggl[ \dot\varpi \frac{\partial \rho}{\partial\varpi} \biggr] + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr]
+ \biggl[ \dot\varphi \frac{\partial \rho}{\partial\varphi} \biggr] + \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \varpi \dot\varphi \biggr]
+ \biggl[ \dot{z} \frac{\partial \rho}{\partial z} \biggr] + \rho \frac{\partial}{\partial z} \biggl[ \dot{z} \biggr] = 0
</math>
<math>
\Rightarrow ~~~ \frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{1}{\varpi} \frac{\partial}{\partial \varphi} \biggl[ \rho \varpi \dot\varphi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0
</math>
Assuming that the initial (subscript i) configuration is axisymmetric and that, following perturbation, each physical parameter, <math>Q</math>, behaves according to the relation,
<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 \, , </math>
the linearized form of the continuity equation becomes:
(This has been obtained by combining the expressions highlighted with a lightblue background color from the accompanying table.) |
||
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>=</math> |
<math> \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math> <math> + e^{im\varphi} \biggl\{ im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] \biggr\} </math> <math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math> <math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math> |
Linearize each term of the Continuity Equation assuming ... |
||||
<math> Q(\varpi, \varphi, z, t) = [q_i(\varpi, z) + \delta q(\varpi, z, t) e^{i m \varphi}] ~~~ \mathrm{and} ~~~ \delta q/q_i \ll 1 </math> |
<math> \mathrm{and} ~~~ \dot\varpi_i = \dot z_i = 0 </math> |
|||
<math>\frac{\partial\rho}{\partial t}</math> |
<math>~~ \rightarrow ~~</math> |
<math> \cancel{ \frac{\partial (\rho_i) }{\partial t} } + e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] </math> |
<math>\frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] = \frac{\rho \dot\varpi}{\varpi} + \rho\frac{\partial \dot\varpi}{\partial\varpi} + \dot\varpi \frac{\partial \rho}{\partial\varpi} </math> |
<math>~~ \rightarrow ~~</math> |
<math> \frac{ (\rho_i + e^{im\varphi} \delta\rho) ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\varpi} </math> <math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi)}{\partial\varpi} </math> <math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varpi} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) \biggr] + e^{2im\varphi} \biggl[ \cancel{ \frac{ (\delta\rho) ( \delta\dot\varpi)}{\varpi} } \biggr] </math> <math> + (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} + e^{im\varphi} \biggl[ (\rho_i + e^{im\varphi} \cancel{\delta\rho}) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} \biggr] </math> <math> + ( {\dot\varpi_i} + e^{im\varphi} \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + e^{im\varphi}\biggl[ ( {\dot\varpi_i} + e^{im\varphi} \cancel{\delta\dot\varpi}) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \frac{ \rho_i \dot\varpi_i}{\varpi} + \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} + \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} </math> <math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} \biggr] </math> |
<math>~~~~ \rightarrow ~~~~</math> |
<math> \cancel{ \frac{ \rho_i \dot\varpi_i}{\varpi} } + \cancel{ \rho_i \frac{\partial \dot\varpi_i}{\partial \varpi} } + \cancel{ \dot\varpi_i \frac{ \partial \rho_i}{\partial \varpi} } </math> <math> + e^{im\varphi} \biggl[ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \cancel{ \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) } + \cancel{ (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} } </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + \cancel{ ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} } \biggr] </math> |
|
<math>~~~~ \rightarrow ~~~~</math> |
<math> + e^{im\varphi} \biggl\{ \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \rho_i (\delta \dot\varpi) \biggr] \biggr\} </math> |
||
<math>\frac{1}{\varpi} \frac{\partial}{\partial\varphi} \biggl[ \rho \varpi \dot\varphi \biggr] = \frac{\rho}{\varpi} \frac{\partial (\varpi \dot\varphi) }{\partial\varphi} + \dot\varphi \frac{\partial \rho}{\partial\varphi} </math> |
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot\varphi_i} + e^{im\varphi} \delta\dot\varphi)}{\partial\varphi} + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial\varphi} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \cancel{ \frac{\partial ( {\dot\varphi_i} )}{\partial\varphi} } + im e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{ \delta\rho })( \delta\dot\varphi) </math> <math> + ( {\dot\varphi_i} +e^{im\varphi} \delta\dot\varphi) \cancel{ \frac{\partial (\rho_i )}{\partial\varphi} } + im e^{im\varphi} ( {\dot\varphi_i} +e^{im\varphi} \cancel{ \delta\dot\varphi }) (\delta\rho) </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> im e^{im\varphi} \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> |
<math>\frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr]</math> |
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) \frac{\partial ( {\dot{z}_i} + e^{im\varphi} \delta\dot{z})}{\partial z} + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i + e^{im\varphi} \delta\rho)}{\partial z} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> (\rho_i + e^{im\varphi} \delta\rho) { \frac{\partial ( {\dot{z}_i} )}{\partial z} } + e^{im\varphi} (\rho_i + e^{im\varphi} \cancel{{ \delta\rho } } ) \frac{\partial ( \delta\dot{z})}{\partial z} </math> <math> + ( {\dot{z}_i} +e^{im\varphi} \delta\dot{z}) \frac{\partial (\rho_i )}{\partial z} + e^{im\varphi} ( {\dot{z}_i} +e^{im\varphi} \cancel{ \delta\dot{z} } ) \frac{\partial (\delta\rho)}{\partial z} </math> |
|
|
|
<math>~~ \rightarrow ~~</math> |
<math> \rho_i \frac{\partial \dot z_i }{\partial z} + \dot{z}_i \frac{\partial \rho_i}{\partial z} + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> \rho_i \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot{z}_i } \frac{\partial \rho_i}{\partial z} </math> <math> + e^{im\varphi} \biggl[ \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \cancel{ \frac{\partial \dot z_i }{\partial z} } + \cancel{ \dot z_i } \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr] </math> |
|
|
|
<math>~~~ \rightarrow ~~~</math> |
<math> e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math> |
Combining all terms: |
<math>~~~ \rightarrow ~~~</math> |
<math>e^{im\varphi} \biggr[ \frac{\partial (\delta\rho) }{\partial t} \biggr] = \frac{1}{\varpi} \frac{ \partial}{\partial\varpi} \biggl[ \rho_i \varpi \dot\varpi_i \biggr] + \frac{\partial}{\partial z} \biggl[ \rho_i \dot z_i \biggr] </math> <math> + e^{im\varphi} \biggl\{ \frac{ \rho_i }{\varpi} ( \delta\dot\varpi ) + \frac{ \dot\varpi_i }{\varpi} ( \delta\rho ) + (\delta\rho) \frac{\partial {\dot\varpi_i} }{\partial\varpi} </math> <math> + (\rho_i ) \frac{\partial ( \delta\dot\varpi)}{\partial\varpi} + ( \delta\dot\varpi) \frac{\partial \rho_i }{\partial\varpi} + ( {\dot\varpi_i} ) \frac{\partial (\delta\rho)}{\partial\varpi} </math> <math> + im \biggl[ \rho_i ( \delta\dot\varphi) + \dot\varphi_i (\delta\rho) \biggr] </math> <math> + \rho_i \frac{\partial (\delta \dot z )}{\partial z} + \delta \rho \frac{\partial \dot z_i }{\partial z} + \dot z_i \frac{\partial (\delta \rho )}{\partial z} + (\delta \dot z )\frac{\partial \rho_i }{\partial z} \biggr\} </math> |
<math>~~~ \rightarrow ~~~</math> |
<math> + e^{im\varphi} \biggl\{ \frac{\partial}{\partial z} \biggl[ \rho_i (\delta \dot z ) \biggr] \biggr\} </math> |
<math>\varpi</math> Component of Euler Equation
<math>
\frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 = - \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi}
</math>
<math>
\rightarrow ~~~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial \dot\varpi}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] - \varpi {\dot\varphi}^2 =
- \frac{1}{\rho}\frac{\partial P}{\partial\varpi} - \frac{\partial \Phi}{\partial\varpi}
</math>
<math>\varphi</math> Component of Euler Equation
<math>
\frac{d (\varpi\dot\varphi) }{dt} + \dot\varpi \dot\varphi =
- \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
</math>
<math>
\rightarrow ~~~ \frac{\partial (\varpi\dot\varphi)}{\partial t} + \biggl[ \dot\varpi \frac{\partial (\varpi\dot\varphi)}{\partial\varpi} \biggr] +
\biggl[ \dot\varphi \frac{\partial (\varpi\dot\varphi)}{\partial\varphi} \biggr] +
\biggl[ \dot{z} \frac{\partial (\varpi\dot\varphi)}{\partial z} \biggr] + \dot\varpi \dot\varphi =
- \frac{1}{\varpi} \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial \varphi} + \frac{\partial \Phi}{\partial \varphi} \biggr]
</math>
<math>z</math> Component of Euler Equation
<math>
\frac{d \dot{z} }{dt} = - \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}
</math>
<math>
\rightarrow ~~~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr]
+ \biggl[ \dot\varphi \frac{\partial \dot{z}}{\partial\varphi} \biggr] +\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] =
- \frac{1}{\rho}\frac{\partial P}{\partial z} - \frac{\partial \Phi}{\partial z}
</math>
See Also
© 2014 - 2021 by Joel E. Tohline |