Difference between revisions of "User:Tohline/SSC/Structure/PolytropesASIDE1"
(Create the ASIDE to explain Whitworth's (1981) scaling of pressure-bounded polytropes) |
m (→ASIDE: Whitworth's Scaling: Delete extraneous R_rf in table) |
||
(One intermediate revision by the same user not shown) | |||
Line 3: | Line 3: | ||
=ASIDE: Whitworth's Scaling= | =ASIDE: Whitworth's Scaling= | ||
In his study of the "global gravitational stability [of] one-dimensional polytropes," [http://adsabs.harvard.edu/abs/1981MNRAS.195..967W Whitworth] (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>. The paragraph from his paper in which these two reference quantities are defined is shown here: | |||
<div align="center"> | |||
<table border="2"> | |||
<tr><td> | |||
[[File:WhitworthScalingText.jpg|600px|center|Whitworth (1981, MNRAS, 195, 967)]] | |||
</td></tr> | |||
</table> | |||
</div> | |||
In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our {{User:Tohline/Math/MP_PolytropicIndex}} via the relation, | |||
<div align="center"> | |||
<math>\eta = 1 + \frac{1}{n} \, .</math> | |||
</div> | |||
Hence, Whitworth writes the polytropic equation of state as, | |||
<div align="center"> | |||
<math>P = K_\eta \rho^\eta \, ,</math> | |||
</div> | |||
whereas, using our standard notation, this same key relation is written as, | |||
<div align="center"> | |||
{{User:Tohline/Math/EQ_Polytrope01}} ; | |||
</div> | |||
and his parameter <math>K_\eta</math> is identical to our {{User:Tohline/Math/MP_PolytropicConstant}}. | |||
= | According to the second (bottom) expression identified by the red outlined box drawn above, | ||
<div align="center"> | |||
<math> | |||
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, , | |||
</math> | |||
</div> | |||
and inverting the expression inside the green outlined box gives, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, . | |||
</math> | </math> | ||
</div> | </div> | ||
Hence, | |||
<div align="center"> | <div align="center"> | ||
<math> | <math> | ||
P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, , | |||
</math> | </math> | ||
</div> | </div> | ||
or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side, | |||
<div align="center"> | <div align="center"> | ||
<table border="2"> | <math> | ||
<tr><td> | P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, . | ||
[[ | </math> | ||
</td></tr> | </div> | ||
Analogously, according to the first (top) expression identified inside the red outlined box, | |||
<div align="center"> | |||
<math> | |||
R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta} P_\mathrm{rf}^{(1-\eta)/\eta} | |||
~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, . | |||
</math> | |||
</div> | |||
<div align="center"> | |||
<table border="1" width="90%"> | |||
<tr> | |||
<td colspan="4" align="center">'''Examples'''</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
{{User:Tohline/Math/MP_PolytropicIndex}} | |||
</td> | |||
<td align="center"> | |||
<math>\eta = 1+1/n</math> | |||
</td> | |||
<td align="center"> | |||
<math>P_\mathrm{rf}</math> | |||
</td> | |||
<td align="center"> | |||
<math>R_\mathrm{rf}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
1 | |||
</td> | |||
<td align="center"> | |||
2 | |||
</td> | |||
<td align="center"> | |||
<math>\frac{2^{6}\pi}{3^4 5^3} \biggl[ \frac{G^{3} M^{2} }{K^2}\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\biggl[ \frac{3^2 5}{2^4 \pi} \biggl( \frac{K}{G} \biggr) \biggr]^{1/2}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
5 | |||
</td> | |||
<td align="center"> | |||
6/5 | |||
</td> | |||
<td align="center"> | |||
<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} \biggl[ \frac{K^{10}}{G^9 M^6} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\biggl[ \frac{2^{12} \pi}{3^6 5^5} \biggl( \frac{G^5 M^4}{K^5} \biggr) \biggr]^{1/2}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"> | |||
<math>\infty</math> | |||
</td> | |||
<td align="center"> | |||
1 | |||
</td> | |||
<td align="center"> | |||
<math> \frac{3^4 5^3}{2^{10}\pi} \biggl[ \frac{K^4}{G^{3} M^{2} }\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>\frac{2^2GM}{3\cdot 5 K}</math> | |||
</td> | |||
</tr> | |||
</table> | </table> | ||
</div> | </div> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 14:41, 22 October 2012
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
ASIDE: Whitworth's Scaling
In his study of the "global gravitational stability [of] one-dimensional polytropes," Whitworth (1981, MNRAS, 195, 967) normalizes (or "references") various derived mathematical expressions for configuration radii, <math>R</math>, and for the pressure exerted by an external bounding medium, <math>P_\mathrm{ex}</math>, to quantities he refers to as, respectively, <math>R_\mathrm{rf}</math> and <math>P_\mathrm{rf}</math>. The paragraph from his paper in which these two reference quantities are defined is shown here:
In order to map Whitworth's terminology to ours, we note, first, that he uses <math>M_0</math> to represent the spherical configuration's total mass, which we refer to simply as <math>M</math>; and his parameter <math>\eta</math> is related to our <math>~n</math> via the relation,
<math>\eta = 1 + \frac{1}{n} \, .</math>
Hence, Whitworth writes the polytropic equation of state as,
<math>P = K_\eta \rho^\eta \, ,</math>
whereas, using our standard notation, this same key relation is written as,
<math>~P = K_\mathrm{n} \rho^{1+1/n}</math> ;
and his parameter <math>K_\eta</math> is identical to our <math>~K_\mathrm{n}</math>.
According to the second (bottom) expression identified by the red outlined box drawn above,
<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{K_1^4}{G^3 M^2} \biggr) \, , </math>
and inverting the expression inside the green outlined box gives,
<math> K_1 = \biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{1/\eta} \, . </math>
Hence,
<math> P_\mathrm{rf} = \frac{3^4 5^3}{2^{10} \pi} \biggl( \frac{1}{G^3 M^2} \biggr)\biggl[ K_n (4 P_\mathrm{rf})^{\eta - 1} \biggr]^{4/\eta} \, , </math>
or, gathering all factors of <math>P_\mathrm{rf}</math> to the left-hand side,
<math> P_\mathrm{rf}^{(4-3\eta)} = 2^{-2(4+\eta)} \biggl( \frac{3^4 5^3}{\pi} \biggr)^\eta \biggl[ \frac{K_n^4}{G^{3\eta} M^{2\eta}} \biggr] \, . </math>
Analogously, according to the first (top) expression identified inside the red outlined box,
<math> R_\mathrm{rf} = \frac{2^2 GM}{3\cdot 5 K_1} = 2^{2/\eta} \biggl( \frac{GM}{3\cdot 5}\biggr) K_n^{-1/\eta} P_\mathrm{rf}^{(1-\eta)/\eta} ~~~~\Rightarrow~~~~ R_\mathrm{rf}^\eta = \frac{2^{2}}{K_n} \biggl( \frac{GM}{3\cdot 5}\biggr)^\eta P_\mathrm{rf}^{(1-\eta)} \, . </math>
Examples | |||
<math>~n</math> |
<math>\eta = 1+1/n</math> |
<math>P_\mathrm{rf}</math> |
<math>R_\mathrm{rf}</math> |
1 |
2 |
<math>\frac{2^{6}\pi}{3^4 5^3} \biggl[ \frac{G^{3} M^{2} }{K^2}\biggr]</math> |
<math>\biggl[ \frac{3^2 5}{2^4 \pi} \biggl( \frac{K}{G} \biggr) \biggr]^{1/2}</math> |
5 |
6/5 |
<math>\frac{3^{12} 5^{9}}{2^{26} \pi^3} \biggl[ \frac{K^{10}}{G^9 M^6} \biggr]</math> |
<math>\biggl[ \frac{2^{12} \pi}{3^6 5^5} \biggl( \frac{G^5 M^4}{K^5} \biggr) \biggr]^{1/2}</math> |
<math>\infty</math> |
1 |
<math> \frac{3^4 5^3}{2^{10}\pi} \biggl[ \frac{K^4}{G^{3} M^{2} }\biggr]</math> |
<math>\frac{2^2GM}{3\cdot 5 K}</math> |
© 2014 - 2021 by Joel E. Tohline |