Difference between revisions of "User:Tohline/Appendix/Ramblings/Radiation/SummaryScalings"
(Begin "summary scalings" page) |
(→Summary of Scalings: Insert temperature scaling relation; and type in higher precision coefficients based on constants found in variables appendix) |
||
(10 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
=Summary of Scalings= | =Summary of Scalings= | ||
On [[User:Tohline/Appendix/Ramblings/Radiation/CodeUnits|an accompanying Wiki page]] we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following tables summarize some of the mathematical relationships that have been derived in that accompanying discussion. | |||
<!-- | |||
***************************************** | |||
* | |||
* | |||
* FIRST TABLE | |||
* | |||
* | |||
***************************************** | |||
--> | |||
<table border="4" align="center" cellpadding="8" width="95%"> | |||
<tr> | |||
<td colspan="3" align="center" width="80%"> | |||
<b>General Relation</b> | |||
</td> | |||
<td colspan="1" align="center"> | |||
<b>Case A</b>: | |||
</td> | |||
</tr> | |||
<tr><td colspan="4" align="center"><table border="0" cellpadding="3" cellspacing="10"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{m_\mathrm{cgs}}{m_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
0.40375~\mu_e^2 M_\mathrm{Ch} \biggl( \frac{\tilde{g}^3 \tilde{a}}{\tilde{r}^4 \bar{\mu}^4 } \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~2.8094\times 10^{33}~\mathrm{g} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{\ell_\mathrm{cgs}}{\ell_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
4.4379\times 10^{-4}~ \mu_e \ell_\mathrm{Ch}~\biggl( \frac{\tilde{c}^4 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left" width="30%"> | |||
<math>=~~ 8.179\times 10^{9}~\mathrm{cm}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{t_\mathrm{cgs}}{t_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
2.9216\times 10^{-6}~\mu_e^{1/2} t_\mathrm{Ch} ~\biggl( \frac{\tilde{c}^6 \tilde{g} \tilde{a}} {\bar{\mu}^4 \tilde{r}^4} \biggr)^{1/2} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~54.02~\mathrm{s}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{T_\mathrm{cgs}}{T_\mathrm{code}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
1.08095\times 10^{13} ~\biggl( \frac{\tilde{r} \bar\mu}{\tilde{c}^2} \biggr) | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~1.618 \times 10^8~\mathrm{K}</math> | |||
</td> | |||
</tr> | |||
</table></td></tr> | |||
<tr> | |||
<td colspan="1" align="right" width="10%"> | |||
where: | |||
</td> | |||
<td colspan="3" align="left"> | |||
<math> | |||
\mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} | |||
</math>; | |||
<math> | |||
\mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} | |||
</math>; | |||
<math> | |||
\mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="4" align="center"> | |||
<b>Case A</b> | |||
<math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<!-- | |||
***************************************** | |||
* | |||
* | |||
* SECOND TABLE | |||
* | |||
* | |||
***************************************** | |||
--> | |||
Now let's convert all of the system parameters listed on the [[User:Tohline/Appendix/PolytropicBinaries|accompanying page]] that details the properties of various polytropic binary systems. | |||
<span id="TableProperties"><table align="center" border="1" cellpadding="8" width="95%"> | |||
<tr> | |||
<td align="center" colspan="15"> | |||
'''<font color="darkblue"> | |||
Properties of (<math>n=3/2</math>) Polytropic Binary Systems | |||
</font>''' | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
'''Q07'''<sup>1</sup> | |||
</td> | |||
<td align="center" colspan="5"> | |||
'''Binary System''' | |||
</td> | |||
<td align="center" colspan="4"> | |||
'''Accretor''' | |||
</td> | |||
<td align="center" colspan="5"> | |||
'''Donor''' | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>q</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>M_\mathrm{tot}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>a</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>P = \frac{2\pi}{\Omega}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>J_\mathrm{tot}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>M_a</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>\rho^\mathrm{max}_a</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>K^a_{3/2}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>R_a</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>M_d</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>\rho^\mathrm{max}_d</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>K^d_{3/2}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>R_d</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>f_\mathrm{RL}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
'''SCF''' units | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.70000 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.02371 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.83938 | |||
</td> | |||
<td align="center" colspan="1"> | |||
31.19 | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>8.938\times 10^{-4}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.013945 | |||
</td> | |||
<td align="center" colspan="1"> | |||
1.0000 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.02732 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.2728 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.009761 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.6077 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.02512 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.2888 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.998 | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
conversion<sup>2</sup> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^5 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math> | |||
\biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) | |||
</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
'''Rad-Hydro''' units | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.70000 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.6847 | |||
</td> | |||
<td align="center" colspan="1"> | |||
2.5752 | |||
</td> | |||
<td align="center" colspan="1"> | |||
31.19 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.24293 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.4027 | |||
</td> | |||
<td align="center" colspan="1"> | |||
1.0000 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.2571 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.8369 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.28187 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.6077 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.2364 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.88603 | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.998 | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
'''cgs''' units | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.70000 | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>1.924\times 10^{33}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>2.106\times 10^{10}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>1.687\times 10^{3}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>1.924\times 10^{33}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>1.132\times 10^{33}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>5.136\times 10^{3}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>6.845\times 10^{9}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>7.921\times 10^{32}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>3.121\times 10^{3}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>7.247\times 10^{9}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
0.996 | |||
</td> | |||
</tr> | |||
<tr> | |||
<td colspan="1" align="center"> | |||
'''Other''' units | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.967 M_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.303 R_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>28.1~\mathrm{min}</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.569 M_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.0984 R_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.398 M_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
<td align="center" colspan="1"> | |||
<math>0.1042 R_\odot</math> | |||
</td> | |||
<td align="center" colspan="1"> | |||
| |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="left" colspan="15"> | |||
<sup>1</sup>Model '''Q07''' (<math>q = 0.700</math>): Drawn from the first page of the [http://www.phys.lsu.edu/~tohline/clayton/q07.pdf accompanying PDF document]. <font color="red">NOTE: In this PDF document, Roche-lobe volumes appear to be too large by factor of 2.</font><br /> | |||
<sup>2</sup>For this model, <math>(\ell_\mathrm{code}/\ell_\mathrm{SCF}) = \pi(128 - 3)/128 = 3.068</math>; see [[User:Tohline/Appendix/Ramblings/Radiation/CodeUnits#Corrected_Logic|more detailed, accompanying discussion]]. | |||
</td> | |||
</tr> | |||
</table> | |||
</span> | |||
<!-- | |||
***************************************** | |||
* | |||
* | |||
* THIRD TABLE | |||
* | |||
* | |||
***************************************** | |||
--> | |||
Here are some additional useful relations: | |||
<table border="4" align="center" cellpadding="8"> | |||
<tr> | |||
<td colspan="3" align="center"> | |||
<b>General Relation</b> | |||
</td> | |||
<td colspan="1" align="center" width="32%"> | |||
<b>Case A</b>: | |||
</td> | |||
</tr> | |||
<tr><td colspan="4" align="center"><table border="0" cellpadding="3" cellspacing="10"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
f_\mathrm{Edd} \equiv \frac{L_\mathrm{acc}}{L_\mathrm{Edd}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
1.25\times 10^{21} \biggl( \frac{\tilde{g}^{1/2} \tilde{r}^2 \bar{\mu}^2 }{\tilde{c}^5 \tilde{a}^{1/2}} \biggr) \biggl[ \frac{\dot{M}}{R_a} \biggr]_\mathrm{code} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~6.74\times 10^9 \biggl[ \frac{\dot{M}}{R_a} \biggr]_\mathrm{code}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{\rho_\mathrm{threshold}}{\rho_\mathrm{max}} \equiv \frac{1}{\rho_\mathrm{max}\kappa_\mathrm{T} (\Delta R)} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
5.164\times 10^{-21}~\biggl( \frac{\tilde{c}^4 \tilde{a}^{1/2}}{\bar{\mu}^2 \tilde{r}^2 \tilde{g}^{1/2}} \biggr) \biggl[ \frac{1}{\rho_\mathrm{max}(\Delta R)} \biggr]_\mathrm{code} | |||
</math> | |||
</td> | |||
<td align="left" width="30%"> | |||
<math>=~~ 4.83\times 10^{-12}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\Gamma \equiv \frac{P_\mathrm{gas}}{P_\mathrm{rad}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl( \frac{3\tilde{r}}{\tilde{a}} \biggr) \biggl[ \frac{ \rho }{T^3} \biggr]_\mathrm{code} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~30 \biggl[ \frac{ \rho }{T^3} \biggr]_\mathrm{code}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{v_\mathrm{circ}}{c} \equiv \frac{2\pi a_\mathrm{separation}}{c P_\mathrm{orbit}} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math> | |||
= | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{2\pi}{\tilde{c}} \biggl[\frac{a_\mathrm{sep}}{P_\mathrm{orb}}\biggr]_\mathrm{code} | |||
</math> | |||
</td> | |||
<td align="left"> | |||
<math>= ~~0.032 \biggl[\frac{a_\mathrm{sep}}{P_\mathrm{orb}}\biggr]_\mathrm{code}</math> | |||
</td> | |||
</tr> | |||
</table></td></tr> | |||
<tr> | |||
<td colspan="4" align="center"> | |||
<b>Case A</b> | |||
<math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Combining the above '''Case A''' relations with the ''RadHydro-code'' [[User:Tohline/Appendix/Ramblings/Radiation/CodeUnits#Q0.7properties|properties of the Q0.7 polytropic binary]] that serves as an initial condition for Dominic's simulations, we conclude the following: | |||
(1) The system will experience "super-Eddington" accretion (''i.e.,'' <math>f_\mathrm{Edd} > 1</math>) when | |||
<div align="center"> | |||
<math> | |||
[\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . | |||
</math> | |||
</div> | |||
(2) The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when | |||
<div align="center"> | |||
<math> | |||
[\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . | |||
</math> | |||
</div> | |||
(3) The system is weakly relativistic because, | |||
<div align="center"> | |||
<math> | |||
\frac{v_\mathrm{circ}}{c} = 0.0026 . | |||
</math> | |||
</div> | |||
<br /> | <br /> | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 20:43, 15 August 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Summary of Scalings
On an accompanying Wiki page we have explained how to interpret the set of dimensionless units that Dominic Marcello is using in his rad-hydrocode. The following tables summarize some of the mathematical relationships that have been derived in that accompanying discussion.
General Relation |
Case A: |
||||||||||||||||||
| |||||||||||||||||||
where: |
<math> \mu_e^2 M_\mathrm{Ch} = 1.14169\times 10^{34}~\mathrm{g} </math>; <math> \mu_e \ell_\mathrm{Ch} = 7.71311\times 10^{8}~\mathrm{cm} </math>; <math> \mu_e^{1/2} t_\mathrm{Ch} = 3.90812~\mathrm{s} </math> |
||||||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Now let's convert all of the system parameters listed on the accompanying page that details the properties of various polytropic binary systems.
Properties of (<math>n=3/2</math>) Polytropic Binary Systems |
||||||||||||||
Q071 |
Binary System |
Accretor |
Donor |
|||||||||||
|
<math>q</math> |
<math>M_\mathrm{tot}</math> |
<math>a</math> |
<math>P = \frac{2\pi}{\Omega}</math> |
<math>J_\mathrm{tot}</math> |
<math>M_a</math> |
<math>\rho^\mathrm{max}_a</math> |
<math>K^a_{3/2}</math> |
<math>R_a</math> |
<math>M_d</math> |
<math>\rho^\mathrm{max}_d</math> |
<math>K^d_{3/2}</math> |
<math>R_d</math> |
<math>f_\mathrm{RL}</math> |
SCF units |
0.70000 |
0.02371 |
0.83938 |
31.19 |
<math>8.938\times 10^{-4}</math> |
0.013945 |
1.0000 |
0.02732 |
0.2728 |
0.009761 |
0.6077 |
0.02512 |
0.2888 |
0.998 |
conversion2 |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^5 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^3 </math> |
|
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr)^2 </math> |
<math> \biggl( \frac{\ell_\mathrm{code}}{\ell_\mathrm{SCF}} \biggr) </math> |
|
Rad-Hydro units |
0.70000 |
0.6847 |
2.5752 |
31.19 |
0.24293 |
0.4027 |
1.0000 |
0.2571 |
0.8369 |
0.28187 |
0.6077 |
0.2364 |
0.88603 |
0.998 |
cgs units |
0.70000 |
<math>1.924\times 10^{33}</math> |
<math>2.106\times 10^{10}</math> |
<math>1.687\times 10^{3}</math> |
<math>1.924\times 10^{33}</math> |
<math>1.132\times 10^{33}</math> |
<math>5.136\times 10^{3}</math> |
|
<math>6.845\times 10^{9}</math> |
<math>7.921\times 10^{32}</math> |
<math>3.121\times 10^{3}</math> |
|
<math>7.247\times 10^{9}</math> |
0.996 |
Other units |
|
<math>0.967 M_\odot</math> |
<math>0.303 R_\odot</math> |
<math>28.1~\mathrm{min}</math> |
|
<math>0.569 M_\odot</math> |
|
|
<math>0.0984 R_\odot</math> |
<math>0.398 M_\odot</math> |
|
|
<math>0.1042 R_\odot</math> |
|
1Model Q07 (<math>q = 0.700</math>): Drawn from the first page of the accompanying PDF document. NOTE: In this PDF document, Roche-lobe volumes appear to be too large by factor of 2. |
Here are some additional useful relations:
General Relation |
Case A: |
||||||||||||||||||
| |||||||||||||||||||
Case A <math>\Rightarrow ~~~\tilde{g} = 1</math>; <math>\tilde{c} = 198</math>; <math>\tilde{r} = 0.44</math>; <math>\tilde{a} = 0.044</math>; <math>\bar\mu = 4/3</math>; <math>\rho_\mathrm{max} = 1</math>; <math>(\Delta R) = \frac{\pi}{128}</math> |
Combining the above Case A relations with the RadHydro-code properties of the Q0.7 polytropic binary that serves as an initial condition for Dominic's simulations, we conclude the following:
(1) The system will experience "super-Eddington" accretion (i.e., <math>f_\mathrm{Edd} > 1</math>) when
<math> [\dot{M}]_\mathrm{code} > 1.3\times 10^{-10} . </math>
(2) The mean-free-path, <math>\ell_\mathrm{mfp}</math>, of a photon will be less than one grid cell <math>(\Delta R)_\mathrm{code}</math> when
<math> [\rho]_\mathrm{code} > \rho_\mathrm{threshold} = 5\times 10^{-12} . </math>
(3) The system is weakly relativistic because,
<math> \frac{v_\mathrm{circ}}{c} = 0.0026 . </math>
© 2014 - 2021 by Joel E. Tohline |