Difference between revisions of "User:Tohline/Appendix/Ramblings/DirectionCosines"

From VistrailsWiki
Jump to navigation Jump to search
(→‎Orthogonality: Add equation number DC.01 to example orthogonality condition)
(→‎Unit Vectors: Complete explicit defiinition of unit vector transformations)
Line 128: Line 128:


===Unit Vectors===
===Unit Vectors===
Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. For example,
Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. The defining expressions are:
<div align="center">
<math>
\hat{e}_n = \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} ;
</math>
</div>
and,
<div align="center">
<math>
\hat\imath = \sum_{n=1,3}\hat{e}_n \gamma_{n1} ; ~~~~\mathrm{etc.}
</math>
</div>
 
More explicitly, this last expression(s) implies,
<table align="center" border="0" cellpadding="5">
<table align="center" border="0" cellpadding="5">
<tr>
<tr>
Line 179: Line 192:
   <td align="left">
   <td align="left">
<math>
<math>
\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} .
\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} ;
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
notice that we have liberally used the idea that, for orthogonal systems, <math>\gamma_{nm} = \gamma_{mn}</math>.


===Position Vector===
===Position Vector===

Revision as of 16:00, 5 July 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Direction Cosines

Basic Definitions and Relations

Here we follow the notation of MF53.

<math> \gamma_{ni} = \frac{1}{h_n} \frac{\partial x_i}{\partial \xi_n} = h_n \frac{\partial\xi_n}{\partial x_i} . </math>

This means that the following inverse relationship applies in general:

<math> \frac{\partial x_i}{\partial \xi_n} = h_n^2 \frac{\partial\xi_n}{\partial x_i} . </math>

Let's define a delta function, <math>\delta_{mn}</math> such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>. The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:

<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} .</math>


Usage

Scale Factors

The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>. For example,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ; </math>

or,

<math> \sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1 </math>

<math> \Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] . </math>

Orthogonality

How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>? Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane. First, note that,

<math> \frac{\partial\varpi}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{x}{\varpi} , </math>

and,

<math> \frac{\partial\varpi}{\partial y} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{y}{\varpi} , </math>

Hence,

<math> \frac{\partial\xi_i}{\partial x} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial x} = \biggl(\frac{x}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} , </math>

and,

<math> \frac{\partial\xi_i}{\partial y} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial y} = \biggl(\frac{y}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} . </math>

Therefore also,

<math> \biggl( \frac{\partial\xi_i}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_i}{\partial y } \biggr)^2 = \biggl( \frac{\partial\xi_i}{\partial\varpi} \biggr)^2 </math>

<math> \Rightarrow ~~~~~ h_i^2 = \biggl[ \biggl(\frac{\partial\xi_i}{\partial \varpi} \biggr)^2 + \biggl(\frac{\partial\xi_i}{\partial z} \biggr)^2 \biggr]^{-1} . </math>

The relationship between the direction cosines when <math>m \ne n</math> gives a key orthogonality condition. Take, for example, <math>m=1</math> and <math>n=2</math>:

<math>\sum_s \gamma_{1s}\gamma_{2s} = 0 .</math>

This means that if <math>\xi_1</math> is orthogonal to <math>\xi_2</math>,

<math> h_1 \frac{\partial\xi_1}{\partial x} \cdot h_2 \frac{\partial\xi_2}{\partial x} + h_1 \frac{\partial\xi_1}{\partial y} \cdot h_2 \frac{\partial\xi_2}{\partial y} + h_1 \frac{\partial\xi_1}{\partial z} \cdot h_2 \frac{\partial\xi_2}{\partial z}= 0 </math>

<math> \Rightarrow ~~~~~ h_1 h_2\biggl[ \biggl( \frac{x^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \biggl( \frac{y^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} \biggr] = 0 .

</math>

Hence,

DC.01

An Example Orthogonality Condition

<math> \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} = - \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} . </math>

Unit Vectors

Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. The defining expressions are:

<math> \hat{e}_n = \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} ; </math>

and,

<math> \hat\imath = \sum_{n=1,3}\hat{e}_n \gamma_{n1} ; ~~~~\mathrm{etc.} </math>

More explicitly, this last expression(s) implies,

<math> \hat\imath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31} ; </math>

<math> \hat\jmath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32} ; </math>

<math> \hat{k} </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} ; </math>

notice that we have liberally used the idea that, for orthogonal systems, <math>\gamma_{nm} = \gamma_{mn}</math>.

Position Vector

And, employing these relations tells us that in general the position vector is,

<math> \vec{x} </math>

<math> = </math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

 

<math> = </math>

<math> (\hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31}) x + (\hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32})y + (\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33})z </math>

 

<math> = </math>

<math> \hat{e}_1(x\gamma_{11} + y\gamma_{12} + z\gamma_{13} ) + \hat{e}_2(x\gamma_{21} + y\gamma_{22} + z\gamma_{23} ) + \hat{e}_3 (x\gamma_{31} + y\gamma_{32} + z \gamma_{33}) . </math>

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation