Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"
(→Axisymmetric Configurations: Fill out discussion) |
(→Axisymmetric Configurations: Simplified PGEs) |
||
Line 4: | Line 4: | ||
=Axisymmetric Configurations= | =Axisymmetric Configurations= | ||
==Strategy== | |||
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by, | If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by, | ||
Line 145: | Line 147: | ||
</ol> | </ol> | ||
==Governing Equations== | |||
Introducing the above expressions into the principal governing equations gives, | |||
<div align="center"> | <div align="center"> | ||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br /> | <span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br /> | ||
<math>\frac{d\rho}{dt} + \ | <math>\frac{d\rho}{dt} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] | ||
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br /> | |||
<span id="PGE:Euler"><font color="#770000">'''Euler Equation'''</font></span><br /> | <span id="PGE:Euler"> | ||
<font color="#770000">'''Euler Equation'''</font> | |||
</span><br /> | |||
<math>\frac{ | <math> | ||
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = - | |||
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | |||
</math><br /> | |||
Line 168: | Line 177: | ||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | <span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | ||
<math>\frac{1}{ | <math> | ||
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . | |||
</math><br /> | |||
</div> | </div> | ||
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of angular momentum, as follows. | |||
<math> | |||
\frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = 0 | |||
</math><br /> | |||
<math> | |||
\Rightarrow ~~~~~ \frac{d()}{dt} = 0 | |||
</math><br /> | |||
=See Also= | =See Also= |
Revision as of 00:57, 16 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Axisymmetric Configurations
Strategy
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by,
- Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
Spatial Operators in Cylindrical Coordinates
<math> \nabla f </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla^2 f </math>
=
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>
<math> (\vec{v}\cdot\nabla)f </math>
=
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla \cdot \vec{F} </math>
=
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>
- Expressing all vector time-derivatives in cylindrical coordinates:
Vector Time-Derivatives in Cylindrical Coordinates
<math> \frac{d}{dt}\vec{F} </math>
=
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>
<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>
=
<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>
Governing Equations
Introducing the above expressions into the principal governing equations gives,
Equation of Continuity
<math>\frac{d\rho}{dt} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
Euler Equation
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of angular momentum, as follows.
<math>
\frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = 0
</math>
<math>
\Rightarrow ~~~~~ \frac{d()}{dt} = 0
</math>
See Also
© 2014 - 2021 by Joel E. Tohline |