Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"
(→Axisymmetric Configurations: Layout equations inside table) |
(→Axisymmetric Configurations: Introduce "cancel" stroke in LaTeX) |
||
Line 8: | Line 8: | ||
<ol> | <ol> | ||
<li>Expressing | <li>Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>: | ||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
Line 28: | Line 28: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
{\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; | {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; | ||
</math> | </math> | ||
</td> | </td> | ||
Line 44: | Line 44: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2} + \frac{\partial^2 f}{\partial z^2} ; | \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; | ||
</math> | </math> | ||
</td> | </td> | ||
Line 61: | Line 61: | ||
<math> | <math> | ||
\biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + | \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + | ||
\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr] + | \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + | ||
\biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; | \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; | ||
</math> | </math> | ||
Line 78: | Line 78: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi} + \frac{\partial F_z}{\partial z} ; | \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; | ||
</math> | </math> | ||
</td> | |||
</tr> | |||
</table> | |||
<li>Expressing all vector time-derivatives and in cylindrical coordinates: | |||
<table align="center" border="0" cellpadding="5"> | |||
<tr> | |||
<td colspan="3" align="center"> | |||
<font color="#770000"><b>3D Operators in Cylindrical Coordinates</b></font> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 116: | Line 126: | ||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
\vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 124: | Line 134: | ||
<td align="left"> | <td align="left"> | ||
<math> | <math> | ||
{\hat{e}}_\varpi \biggl[ | {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + | ||
{\hat{e}}_\varphi \biggl[ | {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + | ||
{\hat{e}}_z \biggl[ | {\hat{e}}_z \biggl[ \dot{z} \biggr] . | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<li>Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>: | <li>Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>: |
Revision as of 03:38, 15 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Axisymmetric Configurations
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs. Here we accomplish this by,
- Expressing each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and setting to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
3D Operators in Cylindrical Coordinates
<math> \nabla f </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla^2 f </math>
=
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>
<math> (\vec{v}\cdot\nabla)f </math>
=
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla \cdot \vec{F} </math>
=
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>
- Expressing all vector time-derivatives and in cylindrical coordinates:
3D Operators in Cylindrical Coordinates
<math> \frac{d}{dt}\vec{F} </math>
=
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>
<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>
=
<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>
- Setting to zero all derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
2D Operators, Assuming Axisymmetric Conditions
<math> \nabla f </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla^2 f </math>
=
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \frac{\partial^2 f}{\partial z^2} ; </math>
<math> (\vec{v}\cdot\nabla)f </math>
=
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla \cdot \vec{F} </math>
=
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \frac{\partial F_z}{\partial z} ; </math>
<math> \frac{d}{dt}\vec{F} </math>
=
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>
<math> (\vec{v}\cdot\nabla)\vec{F} </math>
=
<math> {\hat{e}}_\varpi \biggl[ (\vec{v}\cdot\nabla)F_\varpi - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ (\vec{v}\cdot\nabla)F_\varphi + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ (\vec{v}\cdot\nabla)F_z \biggr] . </math>
- Setting (who know what?)
After making this simplification, our governing equations become,
Equation of Continuity
<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>
Euler Equation
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math>
See Also
© 2014 - 2021 by Joel E. Tohline |