Difference between revisions of "User:Tohline/SphericallySymmetricConfigurations/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(Add "see also" section)
m (linnk modifications)
Line 5: Line 5:
=Spherically Symmetric Configurations (Part I)=
=Spherically Symmetric Configurations (Part I)=


If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our [http://www.vistrails.org/index.php/User:Tohline/PGE principal governing equations] can be simplified to a coupled set of one-dimensional, ordinary differential equations.  This is accomplished by expressing each of the multidimensional spatial operators &#8212; gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) &#8212; in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the [http://en.wikipedia.org/wiki/Spherical_coordinate_system#Integration_and_differentiation_in_spherical_coordinates Wikipedia discussion of integration and differentiation in spherical coordinates]) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>.  After making this simplification, our governing equations become,
If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of one-dimensional, ordinary differential equations.  This is accomplished by expressing each of the multidimensional spatial operators &#8212; gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) &#8212; in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the [http://en.wikipedia.org/wiki/Spherical_coordinate_system#Integration_and_differentiation_in_spherical_coordinates Wikipedia discussion of integration and differentiation in spherical coordinates]) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>.  After making this simplification, our governing equations become,


<div align="center">
<div align="center">
Line 32: Line 32:


=See Also=
=See Also=
* Part II of ''Spherically Symmetric Configurations'':  Structure &#8212; [http://www.vistrails.org/index.php/User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies Solution Strategies]
* Part II of ''Spherically Symmetric Configurations'':  Structure &#8212; [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies|Solution Strategies]]






{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 13:53, 3 April 2010

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spherically Symmetric Configurations (Part I)

If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of one-dimensional, ordinary differential equations. This is accomplished by expressing each of the multidimensional spatial operators — gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) — in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the Wikipedia discussion of integration and differentiation in spherical coordinates) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>. After making this simplification, our governing equations become,

Equation of Continuity

<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>


Euler Equation

<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>


Adiabatic Form of the
First Law of Thermodynamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math>


See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation