Difference between revisions of "User:Tohline/SphericallySymmetricConfigurations/PGE"
(Add "see also" section) |
m (linnk modifications) |
||
Line 5: | Line 5: | ||
=Spherically Symmetric Configurations (Part I)= | =Spherically Symmetric Configurations (Part I)= | ||
If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our [ | If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of one-dimensional, ordinary differential equations. This is accomplished by expressing each of the multidimensional spatial operators — gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) — in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the [http://en.wikipedia.org/wiki/Spherical_coordinate_system#Integration_and_differentiation_in_spherical_coordinates Wikipedia discussion of integration and differentiation in spherical coordinates]) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>. After making this simplification, our governing equations become, | ||
<div align="center"> | <div align="center"> | ||
Line 32: | Line 32: | ||
=See Also= | =See Also= | ||
* Part II of ''Spherically Symmetric Configurations'': Structure — [ | * Part II of ''Spherically Symmetric Configurations'': Structure — [[User:Tohline/SphericallySymmetricConfigurations/SolutionStrategies|Solution Strategies]] | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 13:53, 3 April 2010
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spherically Symmetric Configurations (Part I)
If the self-gravitating configuration that we wish to construct is spherically symmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of one-dimensional, ordinary differential equations. This is accomplished by expressing each of the multidimensional spatial operators — gradient (<math>\nabla</math>), divergence (<math>\nabla\cdot</math>), and Laplacian (<math>\nabla^2</math>) — in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the Wikipedia discussion of integration and differentiation in spherical coordinates) then setting to zero all derivatives that are taken with respect to the angular coordinates <math>\theta</math> and <math>\varphi</math>. After making this simplification, our governing equations become,
Equation of Continuity
<math>\frac{d\rho}{dt} + \rho \biggl[\frac{1}{r^2}\frac{d(r^2 v_r)}{dr} \biggr] = 0 </math>
Euler Equation
<math>\frac{dv_r}{dt} = - \frac{1}{\rho}\frac{dP}{dr} - \frac{d\Phi}{dr} </math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>\frac{1}{r^2} \biggl[\frac{d }{dr} \biggl( r^2 \frac{d \Phi}{dr} \biggr) \biggr] = 4\pi G \rho </math>
See Also
- Part II of Spherically Symmetric Configurations: Structure — Solution Strategies
© 2014 - 2021 by Joel E. Tohline |