Difference between revisions of "User:Tohline/PGE"
m (→Principal Governing Equations: Fix continuity equation) |
(→Principal Governing Equations: Add named anchor using <span> tag) |
||
Line 8: | Line 8: | ||
<div align="center"> | <div align="center"> | ||
<font color="#770000">'''Euler's Equation'''</font><br> | <span id="PGE:Euler"><font color="#770000">'''Euler's Equation'''</font></span><br /> | ||
('''Momentum Conservation''') | ('''Momentum Conservation''') | ||
Line 14: | Line 14: | ||
<font color="#770000">'''Equation of Continuity'''</font><br> | <font color="#770000">'''Equation of Continuity'''</font><br /> | ||
('''Mass Conservation''') | ('''Mass Conservation''') | ||
Line 21: | Line 21: | ||
'''Adiabatic Form of the'''<br> | '''Adiabatic Form of the'''<br> | ||
<font color="#770000">'''First Law of Thermodynamics'''</font><br> | <font color="#770000">'''First Law of Thermodynamics'''</font><br /> | ||
('''Specific Entropy Conservation''') | ('''Specific Entropy Conservation''') | ||
Line 27: | Line 27: | ||
<font color="#770000">'''Poisson Equation'''</font><br> | <font color="#770000">'''Poisson Equation'''</font><br /> | ||
<math>\nabla^2 \Phi = 4\pi G \rho</math> | <math>\nabla^2 \Phi = 4\pi G \rho</math> |
Revision as of 18:00, 18 January 2010
Principal Governing Equations
According to the eloquent discussion of the broad subject of Fluid Mechanics presented by Landau and Lifshitz (1975), the state of a moving fluid is determined by five quantities: the three components of the velocity <math>\vec{v}</math> and, for example, the pressure <math>P</math> and the density <math> \rho </math> . For our discussions of astrophysical fluid systems throughout this Hypertext Book [H_Book], we will add to this the gravitational potential <math> \Phi </math>. Accordingly, a complete system of equations of fluid dynamics should be six in number. For an ideal fluid these are:
Euler's Equation
(Momentum Conservation)
<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>
Equation of Continuity
(Mass Conservation)
<math>\frac{d\rho}{dt} + \rho \nabla \cdot \vec{v} = 0</math>
Adiabatic Form of the
First Law of Thermodynamics
(Specific Entropy Conservation)
<math>\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>\nabla^2 \Phi = 4\pi G \rho</math>
Home |