Difference between revisions of "User:Tohline/PGE"

From VistrailsWiki
Jump to navigation Jump to search
(Principal equations inserted and spaced apart on the page)
(Fix equation errors)
Line 11: Line 11:
('''Momentum Conservation''')
('''Momentum Conservation''')


<math>\frac{D\vec{v}}{Dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>
<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>




Line 17: Line 17:
('''Mass Conservation''')
('''Mass Conservation''')


<math>\frac{D\vec{v}}{Dt} + \rho \nabla \cdot \vec{v} = 0</math>
<math>\frac{d\vec{v}}{dt} + \rho \nabla \cdot \vec{v} = 0</math>




Line 24: Line 24:
('''Specific Entropy Conservation''')
('''Specific Entropy Conservation''')


<math>\frac{D\vec{v}}{Dt} + \rho \nabla \cdot \vec{v} = 0</math>
<math>\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>





Revision as of 04:50, 18 January 2010

H Book title.gif


Principal Governing Equations

According to the eloquent discussion of the broad subject of Fluid Mechanics presented by Landau and Lifshitz (1975), the state of a moving fluid is determined by five quantities: the three components of the velocity <math>\vec{v}</math> and, for example, the pressure <math>P</math> and the density <math> \rho </math> . For our discussions of astrophysical fluid systems throughout this Hypertext Book [H_Book], we will add to this the gravitational potential <math> \Phi </math>. Accordingly, a complete system of equations of fluid dynamics should be six in number. For an ideal fluid these are:

Euler's Equation
(Momentum Conservation)

<math>\frac{d\vec{v}}{dt} = - \frac{1}{\rho} \nabla P - \nabla \Phi</math>


Equation of Continuity
(Mass Conservation)

<math>\frac{d\vec{v}}{dt} + \rho \nabla \cdot \vec{v} = 0</math>


Adiabatic Form of the
First Law of Thermodynamics
(Specific Entropy Conservation)

<math>\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>


Poisson Equation

<math>\nabla^2 \Phi = 4\pi G \rho</math>



Home |