Difference between revisions of "User:Tohline/Appendix/Ramblings/ConcentricEllipsodalDaringAttack"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Daring Attack= {{LSU_HBook_header}} ==Background== Building on our […')
 
Line 54: Line 54:
   <td align="center"><math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math></td>
   <td align="center"><math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math></td>
   <td align="center"><math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math></td>
   <td align="center"><math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math></td>
  <td align="center"><math>~0</math></td>
  <td align="center"><math>~-q^2 y \ell_q</math></td>
  <td align="center"><math>~x\ell_q</math></td>
  <td align="center"><math>~0</math></td>
</tr>
<tr>
  <td align="center" colspan="9">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\ell_{3D}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~[x^2 + q^4 y^2 + p^2 z^2]^{- 1/ 2 }</math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\ell_q</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~[x^2 + q^4 y^2 ]^{- 1/ 2 }</math>
  </td>
</tr>
</table>
  </td>
</tr>
</table>
==New Approach==
As before, let's adopt the first-coordinate expression,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_1</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ,</math>
  </td>
</tr>
</table>
but for the third-coordinate expression we will abandon the trigonometric expression and instead simply use,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\lambda_3</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{y^{1/q^2}}{x} \, .</math>
  </td>
</tr>
</table>
<span id="Table1DaringAttack">This modified third-coordinate expression means that the last row of the above table changes; but note that the direction cosine functions remain the same.</span>
<table border="1" cellpadding="8" align="center">
<tr>
  <td align="center" colspan="9">'''Daring Attack'''</td>
</tr>
<tr>
  <td align="center"><math>~n</math></td>
  <td align="center"><math>~\lambda_n</math></td>
  <td align="center"><math>~h_n</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial x}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial y}</math></td>
  <td align="center"><math>~\frac{\partial \lambda_n}{\partial z}</math></td>
  <td align="center"><math>~\gamma_{n1}</math></td>
  <td align="center"><math>~\gamma_{n2}</math></td>
  <td align="center"><math>~\gamma_{n3}</math></td>
</tr>
<tr>
  <td align="center"><math>~1</math></td>
  <td align="center"><math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math></td>
  <td align="center"><math>~\lambda_1 \ell_{3D}</math></td>
  <td align="center"><math>~\frac{x}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{q^2 y}{\lambda_1}</math></td>
  <td align="center"><math>~\frac{p^2 z}{\lambda_1}</math></td>
  <td align="center"><math>~(x) \ell_{3D}</math></td>
  <td align="center"><math>~(q^2 y)\ell_{3D}</math></td>
  <td align="center"><math>~(p^2z) \ell_{3D}</math></td>
</tr>
<tr>
  <td align="center"><math>~2</math></td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center">---</td>
  <td align="center"><math>~\ell_q \ell_{3D} (xp^2z)</math></td>
  <td align="center"><math>~\ell_q \ell_{3D} (q^2 y p^2z) </math></td>
  <td align="center"><math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math></td>
</tr>
<tr>
  <td align="center"><math>~3</math></td>
  <td align="center"><math>~\frac{y^{1/q^2}}{x} </math></td>
  <td align="center"><math>~\frac{xq^2 y \ell_q}{\lambda_3}</math></td>
  <td align="center"><math>~-\frac{\lambda_3}{x}</math></td>
  <td align="center"><math>~+\frac{\lambda_3}{q^2y}</math></td>
   <td align="center"><math>~0</math></td>
   <td align="center"><math>~0</math></td>
   <td align="center"><math>~-q^2 y \ell_q</math></td>
   <td align="center"><math>~-q^2 y \ell_q</math></td>

Revision as of 20:24, 17 March 2021

Daring Attack

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Background

Building on our general introduction to Direction Cosines in the context of orthogonal curvilinear coordinate systems, and on our previous development of the so-called T6 (concentric elliptic) coordinate system, here we take a somewhat daring attack on this problem, mixing our approach to identifying the expression for the third curvilinear coordinate. Broadly speaking, this entire study is motivated by our desire to construct a fully analytically prescribable model of a nonuniform-density ellipsoidal configuration that is an analog to Riemann S-Type ellipsoids.

Direction Cosine Components for T6 Coordinates
<math>~n</math> <math>~\lambda_n</math> <math>~h_n</math> <math>~\frac{\partial \lambda_n}{\partial x}</math> <math>~\frac{\partial \lambda_n}{\partial y}</math> <math>~\frac{\partial \lambda_n}{\partial z}</math> <math>~\gamma_{n1}</math> <math>~\gamma_{n2}</math> <math>~\gamma_{n3}</math>
<math>~1</math> <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> <math>~\lambda_1 \ell_{3D}</math> <math>~\frac{x}{\lambda_1}</math> <math>~\frac{q^2 y}{\lambda_1}</math> <math>~\frac{p^2 z}{\lambda_1}</math> <math>~(x) \ell_{3D}</math> <math>~(q^2 y)\ell_{3D}</math> <math>~(p^2z) \ell_{3D}</math>
<math>~2</math> --- --- --- --- --- <math>~\ell_q \ell_{3D} (xp^2z)</math> <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math>
<math>~3</math> <math>~\tan^{-1}\biggl( \frac{y^{1/q^2}}{x} \biggr)</math> <math>~\frac{xq^2 y \ell_q}{\sin\lambda_3 \cos\lambda_3}</math> <math>~-\frac{\sin\lambda_3 \cos\lambda_3}{x}</math> <math>~+\frac{\sin\lambda_3 \cos\lambda_3}{q^2y}</math> <math>~0</math> <math>~-q^2 y \ell_q</math> <math>~x\ell_q</math> <math>~0</math>

<math>~\ell_{3D}</math>

<math>~\equiv</math>

<math>~[x^2 + q^4 y^2 + p^2 z^2]^{- 1/ 2 }</math>

<math>~\ell_q</math>

<math>~\equiv</math>

<math>~[x^2 + q^4 y^2 ]^{- 1/ 2 }</math>

New Approach

As before, let's adopt the first-coordinate expression,

<math>~\lambda_1</math>

<math>~\equiv</math>

<math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} \, ,</math>

but for the third-coordinate expression we will abandon the trigonometric expression and instead simply use,

<math>~\lambda_3</math>

<math>~\equiv</math>

<math>~\frac{y^{1/q^2}}{x} \, .</math>

This modified third-coordinate expression means that the last row of the above table changes; but note that the direction cosine functions remain the same.

Daring Attack
<math>~n</math> <math>~\lambda_n</math> <math>~h_n</math> <math>~\frac{\partial \lambda_n}{\partial x}</math> <math>~\frac{\partial \lambda_n}{\partial y}</math> <math>~\frac{\partial \lambda_n}{\partial z}</math> <math>~\gamma_{n1}</math> <math>~\gamma_{n2}</math> <math>~\gamma_{n3}</math>
<math>~1</math> <math>~(x^2 + q^2 y^2 + p^2 z^2)^{1 / 2} </math> <math>~\lambda_1 \ell_{3D}</math> <math>~\frac{x}{\lambda_1}</math> <math>~\frac{q^2 y}{\lambda_1}</math> <math>~\frac{p^2 z}{\lambda_1}</math> <math>~(x) \ell_{3D}</math> <math>~(q^2 y)\ell_{3D}</math> <math>~(p^2z) \ell_{3D}</math>
<math>~2</math> --- --- --- --- --- <math>~\ell_q \ell_{3D} (xp^2z)</math> <math>~\ell_q \ell_{3D} (q^2 y p^2z) </math> <math>~- (x^2 + q^4y^2)\ell_q \ell_{3D}</math>
<math>~3</math> <math>~\frac{y^{1/q^2}}{x} </math> <math>~\frac{xq^2 y \ell_q}{\lambda_3}</math> <math>~-\frac{\lambda_3}{x}</math> <math>~+\frac{\lambda_3}{q^2y}</math> <math>~0</math> <math>~-q^2 y \ell_q</math> <math>~x\ell_q</math> <math>~0</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation