Difference between revisions of "User:Tohline/Appendix/Ramblings/Bordeaux"

From VistrailsWiki
Jump to navigation Jump to search
 
(212 intermediate revisions by the same user not shown)
Line 1: Line 1:
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __FORCETOC__ will force the creation of a Table of Contents -->
<!-- __NOTOC__ will force TOC off -->
<!-- __NOTOC__ will force TOC off -->
=Universit&eacute; de Bordeaux=
=Universit&eacute; de Bordeaux (Part 1)=


{{LSU_HBook_header}}
{{LSU_HBook_header}}
Line 8: Line 8:
Through a research collaboration at the [https://www.u-bordeaux.com Universit&eacute; de Bordeaux], [https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.4504B/abstract B. Basillais &amp; J. -M. Hur&eacute; (2019), MNRAS, 487, 4504-4509] have published a paper titled, ''Rigidly Rotating, Incompressible Spheroid-Ring Systems:  New Bifurcations, Critical Rotations, and Degenerate States.''
Through a research collaboration at the [https://www.u-bordeaux.com Universit&eacute; de Bordeaux], [https://ui.adsabs.harvard.edu/abs/2019MNRAS.487.4504B/abstract B. Basillais &amp; J. -M. Hur&eacute; (2019), MNRAS, 487, 4504-4509] have published a paper titled, ''Rigidly Rotating, Incompressible Spheroid-Ring Systems:  New Bifurcations, Critical Rotations, and Degenerate States.''


We discuss this topic in a [[User:Tohline/Appendix/Ramblings/BordeauxSequences#Spheroid-Ring_Systems|separate, accompanying chapter]].


==Exterior Gravitational Potential of Toroids==
==Exterior Gravitational Potential of Toroids==
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Hur&eacute;, B. Basillais, V. Karas, A. Trova, &amp; O. Semer&aacute;k (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.''  Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]].
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Hur&eacute;, B. Basillais, V. Karas, A. Trova, &amp; O. Semer&aacute;k (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.''  Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]].


===Their Presentation===
===Our Presentation of Wong's (1973) Result===
On an initial reading, it appears as though the most relevant section of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] paper is &sect;8 titled, ''The Solid Torus.''  They write the gravitational potential in terms of the series expansion,
 
<div align="center">
<table border="1" cellpadding="8" align="center" width="80%">
<tr><td align="center">'''Summary:'''&nbsp; First three terms in [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] expression for the gravitational potential at any point, P(&#x03D6;, z), outside of a uniform-density torus.</td></tr>
<tr><td align="left">
 
[[File:WongTorusIllustration02.png|500px|center|Wong diagram]]
 
----
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Psi_\mathrm{grav}(\vec{r})</math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\approx</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\Psi_0 + \sum\limits_{n=1}^N \Psi_n \, ,
- \biggl( \frac{2^{3} }{3\pi^3} \biggr)
\Upsilon_{W0}(\eta_0) \biggl\{
\frac{a}{ r_1 } \cdot  \boldsymbol{K}(k) \biggr\}\, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;7, p. 5831, Eq. (42)
</div>
where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Psi_0 </math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 47: Line 49:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr]
- \biggl( \frac{2^{3} }{3\pi^3} \biggr)
\Upsilon_{W1}(\eta_0) \times \cos\theta
\biggl\{ \frac{a}{r_2} \cdot
\boldsymbol{E}(k) \biggr\} \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eqs. (52) &amp; (53)
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\varpi, z)\biggr|_\mathrm{exterior}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 68: Line 66:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{
- \biggl( \frac{2^{3} }{3\pi^3} \biggr)\Upsilon_{W2}(\eta_0)
[\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k)
\times \cos(2\theta)
\biggr\} \, .
\biggl\{  
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot  \boldsymbol{E}(k)
-  
\frac{a}{r_1}  \cdot \boldsymbol{K}(k)  
\biggr\} \, ,
</math>
</math>
   </td>
   </td>
Line 76: Line 78:
</table>
</table>


[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eq. (54)
where, once the major ( R ) and minor ( d ) radii of the torus &#8212; as well as the vertical location of its equatorial plane (Z<sub>0</sub>) &#8212; have been specified, we have,
</div>
Note that the argument of the elliptic integral functions is,
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~k</math>
<math>~a^2 </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 91: Line 90:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{2\sqrt{\varpi R}}{\Delta}
R^2 - d^2</math>
&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp;
<math>~\cosh\eta_0 \equiv \frac{R}{d} ~~~~\Rightarrow ~~~\sinh\eta_0 = \frac{a}{d}
\, ,
</math>
</math>
   </td>
   </td>
<td align="center">&nbsp; &nbsp; where, &nbsp; &nbsp;</td>
</tr>
 
<tr>
   <td align="right">
   <td align="right">
<math>~\Delta</math>
<math>~r_1^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 102: Line 106:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>
\biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;2, p. 5826, Eqs. (4) &amp; (5)
</div>
===Our Presentation of Wong's (1973) Result===
====Setup====
From our [[User:Tohline/Apps/Wong1973Potential#D0andCn|accompanying discussion of Wong's (1973) derivation]], the exterior potential is given by the expression,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math>
<math>~r_2^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>
-D_0
(\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, ,
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~D_0 </math>
<math>~\cos\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 146: Line 130:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \, ,</math>
\frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
=
\frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr]  
\, ,</math>
   </td>
   </td>
</tr>
</tr>
Line 156: Line 136:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~C_n(\cosh\eta_0)</math>
<math>~k</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 162: Line 142:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0)
<math>~
- (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \,  
\biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2}
= \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2}
= \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2}  
\, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
and where, in terms of the major ( R ) and minor ( d ) radii of the torus &#8212; or their ratio, &epsilon; &equiv; d/R,
 
----
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="left" colspan="2">&nbsp;</td>
  <td align="left" colspan="1">Leading Coefficient Expressions &hellip;</td>
  <td align="right" colspan="1" width="30%">&hellip; evaluated for:&nbsp; &nbsp;</td>
  <td align="center" colspan="1"><math>~\frac{R}{d} = \cosh\eta_0 = 3</math>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\cosh\eta_0</math>
<math>~\Upsilon_{W0}(\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left" colspan="2">
<math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math>
<math>~
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]  \biggl\{
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ]
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0  + 1 ]
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0)  ]
\biggr\} \, ,
</math>
   </td>
   </td>
  <td align="center"><font color="red">7.134677</font></td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sinh\eta_0</math>
<math>~\Upsilon_{W1}(\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left" colspan="2">
<math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math>
<math>~\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] 
\biggl\{
K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)]  
+~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)]
-~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)]
\biggr\}
\, ,
</math>
   </td>
   </td>
  <td align="center"><font color="red">0.130324</font></td>
</tr>
</tr>
</table>
These expressions incorporate a number of [[User:Tohline/2DStructure/ToroidalGreenFunction#Basic_Elements_of_a_Toroidal_Coordinate_System|basic elements of a toroidal coordinate system]].  In what follows, we will also make use of the following relations:
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="left">
Once the primary scale factor, <math>~a</math>, has been specified, the illustration shown at the bottom of this inset box &#8212; see also our [[User:Tohline/Apps/DysonWongTori#Self-Gravitating.2C_Incompressible_.28Dyson-Wong.29_Tori|accompanying set of similar figures]] used by other researchers &#8212; helps in explaining how transformations can be made between any two of the referenced coordinate pairs:  <math>~(\varpi, z)</math>, <math>~(\eta, \theta)</math>, <math>~(r_1, r_2)</math>.
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\varpi</math>
<math>~\Upsilon_{W2}(\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left" colspan="2">
<math>~\frac{a\sinh\eta}{(\cosh\eta - \cos\theta)}</math>
<math>~
\frac{2^{3 / 2}}{3^2}  \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{
K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13]
+  2  K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ]
</math>
   </td>
   </td>
<td align="center">&nbsp; &nbsp; &nbsp;<math>~\Rightarrow ~</math>&nbsp; &nbsp; &nbsp;</td>
  <td align="center">&nbsp;</td>
</tr>
 
<tr>
   <td align="right">
   <td align="right">
<math>~\cos\theta</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left" colspan="2">
<math>~\cosh\eta - \frac{a\sinh\eta}{\varpi}</math>
<math>~
-~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ]
\biggr\} \, ,
</math>
   </td>
   </td>
  <td align="center"><font color="red">0.003153</font></td>
</tr>
</tr>
 
<tr><td align="left" colspan="5">where,</td></tr>
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~z - Z_0</math>
<math>~k_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left" colspan="2">
<math>~\frac{a\sin\theta}{(\cosh\eta - \cos\theta)}</math>
<math>~
  </td>
\biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, .
<td align="center">&nbsp; &nbsp; &nbsp;<math>~\Rightarrow ~</math>&nbsp; &nbsp; &nbsp;</td>
</math>
  <td align="right">
<math>~\sin\theta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{(z - Z_0)}{\varpi} \cdot \sinh\eta </math>
   </td>
   </td>
  <td align="center"><font color="red">0.707106781</font></td>
</tr>
</tr>
</table>
</table>
Given that (sin<sup>2</sup>&theta; + cos<sup>2</sup>&theta;) = 1, we have,
NOTE:  In evaluating these "leading coefficient expressions" for the case, <math>~R/d = 3</math>, we have used the complete elliptic integral evaluations, '''K'''(k<sub>0</sub>) = <font color="red">1.854074677</font> and  '''E'''(k<sub>0</sub>) = <font color="red">1.350643881</font>.
</td></tr>
</table>
 
====Setup====
 
From our [[User:Tohline/Apps/Wong1973Potential#D0andCn|accompanying discussion of Wong's (1973) derivation]], the exterior potential is given by the expression,
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~1</math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 259: Line 268:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \frac{(z - Z_0)}{\varpi} \cdot \sinh\eta \biggr]^2 + \biggl[\cosh\eta - \frac{a\sinh\eta}{\varpi}\biggr]^2
-D_0
(\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], &sect;II.D, p. 294, Eqs. (2.59) &amp; (2.61)
</div>
where,
<div align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ \coth\eta</math>
<math>~D_0 </math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{1}{2a\varpi}\biggl[\varpi^2 + a^2 + (z - Z_0)^2  \biggr] \, .
\frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
</math>
=
\frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr]  
\, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
We deduce as well that,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{2}{\coth\eta + 1}</math>
<math>~C_n(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0)
\frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \, ,
- (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \,  
</math>&nbsp; &nbsp; &nbsp; &nbsp; and,
</math>
   </td>
   </td>
</tr>
</tr>
</table>
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], &sect;II.D, p. 294, Eq. (2.63)
</div>
and where, in terms of the major ( R ) and minor ( d ) radii of the torus &#8212; or their ratio, &epsilon; &equiv; d/R,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\sinh\eta + \cosh\eta</math>
<math>~\cosh\eta_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 304: Line 323:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math>
\frac{\varpi^2 + a^2 + (z - Z_0)^2}{(\varpi + a)^2 + (z - Z_0)^2} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
----
Given the definitions,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~r_1^2</math>
<math>~\sinh\eta_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 323: Line 335:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>
<math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
These expressions incorporate a number of [[User:Tohline/2DStructure/ToroidalGreenFunction#Basic_Elements_of_a_Toroidal_Coordinate_System|basic elements of a toroidal coordinate system]].  In what follows, we will also make use of the following relations:
<table border="1" width="80%" cellpadding="8" align="center"><tr><td align="left">
Once the primary scale factor, <math>~a</math>, has been specified, the illustration shown at the bottom of this inset box &#8212; see also our [[User:Tohline/Apps/DysonWongTori#Self-Gravitating.2C_Incompressible_.28Dyson-Wong.29_Tori|accompanying set of similar figures]] used by other researchers &#8212; helps in explaining how transformations can be made between any two of the referenced coordinate pairs:  <math>~(\varpi, z)</math>, <math>~(\eta, \theta)</math>, <math>~(r_1, r_2)</math>.
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~r_2^2</math>
<math>~\varpi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 335: Line 355:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>
<math>~\frac{a\sinh\eta}{(\cosh\eta - \cos\theta)}</math>
   </td>
   </td>
</tr>
<td align="center">&nbsp; &nbsp; &nbsp;<math>~\Rightarrow ~</math>&nbsp; &nbsp; &nbsp;</td>
</table>
we can use the transformations,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
<math>~\varpi</math>
<math>~\cos\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 351: Line 365:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{(r_1^2 - r_2^2)}{4a}</math> &nbsp; &nbsp; and,
<math>~\cosh\eta - \frac{a\sinh\eta}{\varpi}</math>
   </td>
   </td>
</tr>
</tr>
Line 357: Line 371:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~(z - Z_0)^2</math>
<math>~z - Z_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 363: Line 377:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~r_2^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 - 4a^2 \biggr]^2 \, ,</math> &nbsp; &nbsp; or,
<math>~\frac{a\sin\theta}{(\cosh\eta - \cos\theta)}</math>
   </td>
   </td>
</tr>
<td align="center">&nbsp; &nbsp; &nbsp;<math>~\Rightarrow ~</math>&nbsp; &nbsp; &nbsp;</td>
 
<tr>
   <td align="right">
   <td align="right">
<math>~(z - Z_0)^2</math>
<math>~\sin\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 375: Line 387:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~r_1^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 + 4a^2 \biggr]^2 \, .</math>
<math>~\frac{(z - Z_0)}{\varpi} \cdot \sinh\eta </math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Or we can use the transformations,
Given that (sin<sup>2</sup>&theta; + cos<sup>2</sup>&theta;) = 1, we have,
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\eta</math>
<math>~1</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 391: Line 402:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\ln \biggl(\frac{r_1}{r_2}\biggr) \, ,</math>
<math>~
\biggl[ \frac{(z - Z_0)}{\varpi} \cdot \sinh\eta \biggr]^2 + \biggl[\cosh\eta - \frac{a\sinh\eta}{\varpi}\biggr]^2
</math>
   </td>
   </td>
</tr>
</tr>
Line 397: Line 410:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\cos\theta</math>
<math>~\Rightarrow ~~~ \coth\eta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 403: Line 416:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, .</math>
<math>~
\frac{1}{2a\varpi}\biggl[\varpi^2 + a^2 + (z - Z_0)^2 \biggr] \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 
We deduce as well that,
----
 
Additional potentially useful relations can be found in an [[User:Tohline/2DStructure/ToroidalGreenFunction#Using_Toroidal_Coordinates_to_Determine_the_Gravitational_Potential|accompanying chapter wherein we present a variety of basic elements of a toroidal coordinate system]].
 
[[File:WongTorusIllustration02.png|400px|center|Wong diagram]]
</td></tr></table>
 
====Leading (n  = 0) Term====
=====Wong's Expression=====
Now, from our [[User:Tohline/Apps/Wong1973Potential#Attempt_.232|separate derivation]] we have,


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 423: Line 428:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P_{-1 / 2}(\cosh\eta)</math>
<math>~\frac{2}{\coth\eta + 1}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 430: Line 435:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, .
\frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \, ,
</math>
</math>&nbsp; &nbsp; &nbsp; &nbsp; and,
   </td>
   </td>
</tr>
</tr>
</table>
<span id="KeyEquation">And if we make the function-argument substitution,</span> <math>~z \rightarrow \coth\eta</math>, in the "[[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|Key Equation]],"
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
<td align="right">
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations]]
</td>
   <td align="right">
   <td align="right">
<math>~Q_{-\frac{1}{2}}(z)</math>
<math>~\sinh\eta + \cosh\eta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 451: Line 449:
   <td align="left">
   <td align="left">
<math>~
<math>~
\sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr)
\frac{\varpi^2 + a^2 + (z - Z_0)^2}{(\varpi + a)^2 + (z - Z_0)^2} \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
  <td align="center" colspan="4">
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], p. 337, eq. (8.13.3)
  </td>
</table>
</table>
we can write,
 
----
Given the definitions,  
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P_{-1 / 2}(\cosh\eta)</math>
<math>~r_1^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 471: Line 467:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>
\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, ,
</math>
   </td>
   </td>
</tr>
</tr>
</table>


where, from above, we recognize that,
<tr>
<div align="center">
  <td align="right">
<math>~
<math>~r_2^2</math>
k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} 
  </td>
=
  <td align="center">
\biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, .
<math>~=</math>
</math>
  </td>
</div>
  <td align="left">
<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>
  </td>
</tr>
</table>
we can use the transformations,


So, the leading (n = 0) term gives,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math>
<math>~\varpi</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 498: Line 495:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\frac{(r_1^2 - r_2^2)}{4a}</math> &nbsp; &nbsp; and,
-D_0
(\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta)
</math>
   </td>
   </td>
</tr>
</tr>
Line 507: Line 501:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~(z - Z_0)^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 513: Line 507:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~r_2^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 - 4a^2 \biggr]^2 \, ,</math> &nbsp; &nbsp; or,
-D_0~C_0(\cosh\eta_0)
\biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)
</math>
   </td>
   </td>
</tr>
</tr>
Line 522: Line 513:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~(z - Z_0)^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 528: Line 519:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~r_1^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 + 4a^2 \biggr]^2 \, .</math>
-\frac{D_0~C_0(\cosh\eta_0)}{\pi}
\biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k)
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Or we can use the transformations,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\eta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 543: Line 535:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\ln \biggl(\frac{r_1}{r_2}\biggr) \, ,</math>
- C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot  \boldsymbol{K}(k) \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
=====Thin-Ring Evaluation of C<sub>0</sub>=====
In an [[User:Tohline/Apps/Wong1973Potential#Thin_Ring_Approximation|accompanying discussion of the thin-ring approximation]], we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~C_0(x)\biggr|_{x\rightarrow \infty}</math>
<math>~\cos\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 563: Line 547:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, .
<math>~\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, .</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
Hence, in this limit we can write,
 
----
 
Additional potentially useful relations can be found in an [[User:Tohline/2DStructure/ToroidalGreenFunction#Using_Toroidal_Coordinates_to_Determine_the_Gravitational_Potential|accompanying chapter wherein we present a variety of basic elements of a toroidal coordinate system]].
 
[[File:WongTorusIllustration02.png|400px|center|Wong diagram]]
</td></tr></table>
 
====Leading (n  = 0) Term====
=====Wong's Expression=====
Now, from our [[User:Tohline/Apps/Wong1973Potential#Attempt_.232|separate derivation]] we have,


<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 574: Line 567:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math>
<math>~P_{-1 / 2}(\cosh\eta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 581: Line 574:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2 }{\pi} \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 }
\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, .
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot  \boldsymbol{K}(k) \, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
<span id="KeyEquation">And if we make the function-argument substitution,</span> <math>~z \rightarrow \coth\eta</math>, in the "[[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|Key Equation]],"


=====More General Evaluation of C<sub>0</sub>=====
<table border="0" cellpadding="5" align="center">


<table border="1" align="center" cellpadding="10" width="80%"><tr><td align="left">
<tr>
<font color="red">NOTE of CAUTION:</font>  In our [[#KeyEquation|above evaluation of the toroidal function]], <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>. Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion with the argument, <math>~z</math>.
<td align="right">
</td></tr></table>
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations]]
 
</td>  
Drawing from our [[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|accompanying tabulation of ''Toroidal Function Evaluations'']], we have more generally,
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
<math>~2C_0(\cosh\eta_0)</math>
<math>~Q_{-\frac{1}{2}}(z)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 606: Line 595:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr]
\sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr)  
\biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr]
+
3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr]
\biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr>
  <td align="center" colspan="4">
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], p. 337, eq. (8.13.3)
  </td>
</table>
we can write,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~P_{-1 / 2}(\cosh\eta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 624: Line 616:
   <td align="left">
   <td align="left">
<math>~
<math>~
\biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr]
\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, ,
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>


<tr>
where, from above, we recognize that,
  <td align="right">
<div align="center">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
<math>~
-
k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2}  
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr]
=
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 )  
\biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, .
~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0)
\biggr\} \, ,
</math>
</math>
  </td>
</div>
</tr>
 
</table>
So, the leading (n = 0) term gives,
<span id="FirstEvaluations">where,</span>
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~k_0</math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math>
<math>~
-D_0
(\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta)
</math>
   </td>
   </td>
</tr>
</tr>
</table>
<table border="1" align="center" width="80%" cellpadding="10">
<tr><td align="left">
Looking back at our [[User:Tohline/Apps/Wong1973Potential#Exterior_Solution_.28n_.3D_0.29|previous numerical evaluation]] of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 677: Line 657:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~k_0 K(k_0)</math>
<math>~
-D_0~C_0(\cosh\eta_0)
\biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)  
</math>
   </td>
   </td>
</tr>
</tr>
Line 683: Line 666:
<tr>
<tr>
   <td align="right">
   <td align="right">
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{-\tfrac{1}{2}}(3)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 689: Line 672:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~1.311028777 ~~~\Rightarrow ~~~ K(k_0) = 1.854074677</math>
<math>~
-\frac{D_0~C_0(\cosh\eta_0)}{\pi}
\biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k)  
</math>
   </td>
   </td>
</tr>
</tr>
Line 695: Line 681:
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 701: Line 687:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>
<math>~
- C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot  \boldsymbol{K}(k) \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
=====Thin-Ring Evaluation of C<sub>0</sub>=====
In an [[User:Tohline/Apps/Wong1973Potential#Thin_Ring_Approximation|accompanying discussion of the thin-ring approximation]], we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{+\tfrac{1}{2}}(3)</math>
<math>~C_0(x)\biggr|_{x\rightarrow \infty}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 713: Line 707:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0.1128885424 ~~~\Rightarrow~~~ E(k_0) = 1.350643881</math>
<math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Hence, in this limit we can write,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 725: Line 724:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>
<math>~
- \frac{2 }{\pi}  \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 }
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot  \boldsymbol{K}(k) \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>


<tr>
=====More General Evaluation of C<sub>0</sub>=====
  <td align="right">
 
Hence, <math>~Q^2_{-\tfrac{1}{2}}(3)</math>
<table border="1" align="center" cellpadding="10" width="80%"><tr><td align="left">
<font color="red">NOTE of CAUTION:</font>  In our [[#KeyEquation|above evaluation of the toroidal function]], <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>.  Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion with the argument, <math>~z</math>.
</td></tr></table>
 
Drawing from our [[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|accompanying tabulation of ''Toroidal Function Evaluations'']], we have more generally,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2C_0(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 737: Line 749:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~1.104816977</math>, which matches  [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]]
<math>~
\biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr]
\biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr]
+
3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr]
\biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
Line 743: Line 761:
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 750: Line 768:
   <td align="left">
   <td align="left">
<math>~
<math>~
-~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 )
\biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr]
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}  
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\}
</math>
</math>
   </td>
   </td>
Line 758: Line 776:
<tr>
<tr>
   <td align="right">
   <td align="right">
Hence, <math>~Q^2_{+\tfrac{1}{2}}(3)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0.449302588</math>
<math>~
-
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr]
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) 
~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0)
\biggr\} \, ,
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
<span id="FirstEvaluations">where,</span>
<table border="0" cellpadding="5" align="center">


----
<tr>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ C_0(3)</math>
<math>~k_0</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \frac{1}{2}~Q_{+\frac{1}{2}}(3) \cdot Q_{- \frac{1}{2}}^2(3)  
<math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math>
+ \frac{3}{2}~ Q_{- \frac{1}{2}}(3)\cdot Q^2_{+ \frac{1}{2}}(3)
=
0.945933522 \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


</td></tr>
<table border="1" align="center" width="80%" cellpadding="10">
</table>
<tr><td align="left">
 
Looking back at our [[User:Tohline/Apps/Wong1973Potential#Exterior_Solution_.28n_.3D_0.29|previous numerical evaluation]] of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,
 
Attempting to simplify this expression, we have,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~2C_0(\cosh\eta_0)</math>
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 805: Line 821:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~k_0 K(k_0)</math>
\biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\}
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 814: Line 827:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{-\tfrac{1}{2}}(3)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~1.311028777 ~~~\Rightarrow ~~~ K(k_0) = 1.854074677</math>
-
   </td>
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr]
</tr>
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 )
~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0)
\biggr\}
</math>
   </td>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math>
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 838: Line 845:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>
\biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\}
\times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0)  \biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 847: Line 851:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{+\tfrac{1}{2}}(3)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~0.1128885424 ~~~\Rightarrow~~~ E(k_0) = 1.350643881</math>
-
3 k_0 ~K ( k_0)
\times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 ) 
~-~(\cosh^2\eta_0+3) k_0 E(k_0)
\biggr\}
</math>
   </td>
   </td>
</tr>
</tr>
Line 865: Line 863:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 871: Line 869:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr]  
</math>
   </td>
   </td>
</tr>
</tr>
Line 879: Line 875:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
Hence, <math>~Q^2_{-\tfrac{1}{2}}(3)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~1.104816977</math>, which matches  [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]]
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2  + 2(\cosh\eta_0 ~-1)  + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr]
   </td>
- E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0  \biggr]
</math>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math>
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 901: Line 894:
   <td align="left">
   <td align="left">
<math>~
<math>~
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0  + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr]  
-~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 )
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}
</math>
</math>
   </td>
   </td>
Line 908: Line 902:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
Hence, <math>~Q^2_{+\tfrac{1}{2}}(3)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp;
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~0.449302588</math>
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0  + \frac{2}{k_0^2}(\cosh\eta_0 ~-1)  + 3 (\cosh^2\eta_0 ~ + 3)\biggr]
- E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2}  \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
----
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math>
<math>~\Rightarrow ~~~ C_0(3)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 929: Line 925:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~ \frac{1}{2}~Q_{+\frac{1}{2}}(3) \cdot Q_{- \frac{1}{2}}^2(3)  
K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0) \biggr]
+ \frac{3}{2}~ Q_{- \frac{1}{2}}(3)\cdot Q^2_{+ \frac{1}{2}}(3)  
+ 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0  + 1\biggr]
=
- E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr]
0.945933522 \, .
</math>
</math>
   </td>
   </td>
Line 938: Line 934:
</table>
</table>


This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>.  <font color="red">TERRIFIC!</font>
</td></tr>
</table>
 


Finally then, for any choice of <math>~\eta_0</math>,
Attempting to simplify this expression, we have,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math>
<math>~2C_0(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 952: Line 950:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} }{3\pi^3}  
\biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\}
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\}
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot  \boldsymbol{K}(k)
</math>
</math>
   </td>
   </td>
Line 968: Line 965:
   <td align="left">
   <td align="left">
<math>~
<math>~
\times \biggl\{
-
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ]
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr]
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ]
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 )
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ]
~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0)
\biggr\} \, .
\biggr\}  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
====Second (n  = 1) Term====
The second (n = 1) term in [[User:Tohline/Apps/Wong1973Potential#D0andCn|Wong's (1973) expression for the exterior potential]] is,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>
<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 991: Line 983:
   <td align="left">
   <td align="left">
<math>~
<math>~
-D_0
\biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\}
(\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos\theta \cdot  C_1(\cosh\eta_0)P_{+\frac{1}{2}}(\cosh\eta) \, ,
\times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0)  \biggr\}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where, <math>~D_0</math> is the same as [[#Setup|above]], and,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~C_1(\cosh\eta_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0)  
<math>~
+ \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, .
-
3 k_0 ~K ( k_0)
\times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 )
~-~(\cosh^2\eta_0+3) k_0 E(k_0)
\biggr\}
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Now, from our [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|accompanying table of "Toroidal Function Evaluations"]], it appears as though,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~P_{+\frac{1}{2}}(\cosh\eta)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,025: Line 1,015:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} E(k) \, ,</math>
<math>~
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
where, as above,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~k</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~\equiv</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\biggl[ \frac{2}{\coth\eta+1} \biggr]^{1 / 2} \, .</math>
<math>~
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2  + 2(\cosh\eta_0 ~-1)  + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr]  
- E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0  \biggr]
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Hence, we have,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>
<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,057: Line 1,045:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr]  
\biggl[ \cos\theta \cdot (\cosh\eta - \cos\theta)^{1 / 2}  (\sinh\eta)^{+1 / 2} \biggr]  
k^{-1} E(k)
</math>
</math>
   </td>
   </td>
Line 1,069: Line 1,055:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0  + \frac{2}{k_0^2}(\cosh\eta_0 ~-1)  + 3 (\cosh^2\eta_0 ~ + 3)\biggr]  
\biggl\{ \frac{a\sinh^2\eta}{\varpi}  \cdot \frac{\coth\eta + 1}{2} \biggr\}^{1 / 2}
- E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2} \biggr]
E(k)
</math>
</math>
   </td>
   </td>
Line 1,082: Line 1,067:
<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,089: Line 1,074:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0\biggr]  
\biggl\{ \biggl( \frac{a}{2\varpi} \biggr) \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2}
+ 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0  + 1\biggr]  
E(k)  
- E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr]
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>.  <font color="red">TERRIFIC!</font>
Finally then, for any choice of <math>~\eta_0</math>,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,105: Line 1,096:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
- \frac{2^{3} }{3\pi^3}  
\biggl\{ \biggl( \frac{a}{2} \biggr)\biggl[ \frac{4a}{r_1^2 - r_2^2} \biggr] \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2}
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]  
E(k)  
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k)  
</math>
</math>
   </td>
   </td>
Line 1,117: Line 1,108:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
&nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)  
\times \biggl\{
\biggl[ \frac{\cos\theta}{r_2} \biggr]  
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ]
E(k)
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0  + 1 ]  
=
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ]
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)  
\biggr\} \, .
\biggl[ \frac{\cos\theta}{\sqrt{ (\varpi - a)^2 + (z-Z_0)^2 }} \biggr]
E(k)
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
====Second (n  = 1) Term====
The second (n = 1) term in [[User:Tohline/Apps/Wong1973Potential#D0andCn|Wong's (1973) expression for the exterior potential]] is,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,141: Line 1,135:
   <td align="left">
   <td align="left">
<math>~
<math>~
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr]
-D_0
\boldsymbol{E}(k) \, .
(\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos\theta \cdot C_1(\cosh\eta_0)P_{+\frac{1}{2}}(\cosh\eta) \, ,
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 
where, <math>~D_0</math> is the same as [[#Setup|above]], and,
 
<table border="1" align="center" width="80%" cellpadding="10">
<tr><td align="left">
From the [[#FirstEvaluations|above function tabulations &amp; evaluations]] &#8212; for example, <math>~ K(k_0) = 1.854074677</math> and <math>~ E(k_0) = 1.350643881</math> &#8212; and a [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|separate listing of ''Example Recurrence Relations'']], we have,
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math>
<math>~C_1(\cosh\eta_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~k_0 K(k_0)</math>
<math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0)
+ \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Now, from our [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|accompanying table of "Toroidal Function Evaluations"]], it appears as though,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math>
<math>~P_{+\frac{1}{2}}(\cosh\eta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,174: Line 1,169:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>
<math>~\frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} E(k) \, ,</math>
   </td>
   </td>
</tr>
</tr>
</table>
where, as above,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~Q^0_{m-\tfrac{1}{2}}</math> [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|recurrence]] with m = 2: 
<math>~k</math>
<math>~Q_{+\tfrac{3}{2}}(z_0)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\equiv</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{4}{3} z~Q_{+\tfrac{1}{2}}(z_0) - \frac{1}{3} Q_{-\tfrac{1}{2}}(z_0)</math>
<math>~\biggl[ \frac{2}{\coth\eta+1} \biggr]^{1 / 2} \, .</math>
   </td>
   </td>
</tr>
</tr>
</table>
Hence, we have,
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
&nbsp;
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,199: Line 1,200:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{4}{3} z \{z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)\} - \frac{1}{3}k_0 K(k_0)</math>
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)  
\biggl[ \cos\theta \cdot (\cosh\eta - \cos\theta)^{1 / 2} (\sinh\eta)^{+1 / 2} \biggr]
k^{-1} E(k)  
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,211: Line 1,216:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\frac{1}{3}k_0 K(k_0) \biggl[ 4z^2 - 1\biggr] - \frac{4}{3} z[2(z+1)]^{1 / 2} E(k_0) </math>
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
\biggl\{ \frac{a\sinh^2\eta}{\varpi} \cdot \frac{\coth\eta + 1}{2} \biggr\}^{1 / 2}  
E(k)  
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,217: Line 1,226:
<tr>
<tr>
   <td align="right">
   <td align="right">
Hence, <math>~Q_{+\tfrac{3}{2}}(3)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,223: Line 1,232:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~0.014544576 \, .</math>
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
\biggl\{ \biggl( \frac{a}{2\varpi} \biggr) \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2}
E(k)
</math>
   </td>
   </td>
</tr>
</tr>
</table>


----
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,239: Line 1,248:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>
<math>~
   </td>
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta
\biggl\{ \biggl( \frac{a}{2} \biggr)\biggl[ \frac{4a}{r_1^2 - r_2^2} \biggr] \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2}  
E(k)  
</math>
   </td>
</tr>
</tr>


<tr>
<tr>
   <td align="right">
   <td align="right">
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,252: Line 1,265:
   <td align="left">
   <td align="left">
<math>~
<math>~
-~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 )
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}
\biggl[ \frac{\cos\theta}{r_2} \biggr]
E(k)
=
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0)  
\biggl[ \frac{\cos\theta}{\sqrt{ (\varpi - a)^2 + (z-Z_0)^2 }} \biggr]  
E(k)  
</math>
</math>
   </td>
   </td>
</tr>
</tr>
</table>
Then, letting <math>~\mu \rightarrow 2</math> and, for all m &ge; 2, letting <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> in the "Key Equation,"


{{ User:Tohline/Math/EQ_Toroidal04 }}
we have,
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~(m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z)</math>
&nbsp;
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,275: Line 1,285:
   <td align="left">
   <td align="left">
<math>~
<math>~
(2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \, .
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]  C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr]
\boldsymbol{E}(k) \, .
</math>
  </td>
</tr>
</table>
 
<span id="Qrecurrence">&nbsp;</span>
<table border="1" align="center" width="80%" cellpadding="10">
<tr><td align="left">
From the [[#FirstEvaluations|above function tabulations &amp; evaluations]] &#8212; for example, <math>~ K(k_0) = 1.854074677</math> and <math>~ E(k_0) = 1.350643881</math> &#8212; and a [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|separate listing of ''Example Recurrence Relations'']], we have,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~k_0 K(k_0)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~Q^0_{m-\tfrac{1}{2}}</math> [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|recurrence]] with m = 2: 
<math>~Q_{+\tfrac{3}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4}{3} z~Q_{+\tfrac{1}{2}}(z_0) - \frac{1}{3} Q_{-\tfrac{1}{2}}(z_0)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4}{3} z \{z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)\} - \frac{1}{3}k_0 K(k_0)</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{3} \biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr] </math>
  </td>
</tr>
 
<tr>
  <td align="right">
Hence, <math>~Q_{+\tfrac{3}{2}}(3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0.014544576 \, .</math>
  </td>
</tr>
</table>
 
----
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-~\frac{1}{2^2}
\biggl\{ z k_0~K ( k_0 ) 
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}
</math>
  </td>
</tr>
</table>
 
Then, letting <math>~\mu \rightarrow 2</math> and, for all m &ge; 2, letting <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> in the "Key Equation,"
 
{{ User:Tohline/Math/EQ_Toroidal04 }}
 
we have,
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~(m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \, .
</math>
</math>
   </td>
   </td>
Line 1,282: Line 1,427:


Therefore, specifically for m = 1, we obtain the recurrence relation,
Therefore, specifically for m = 1, we obtain the recurrence relation,
 
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
 
 
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~Q^{2}_{+\tfrac{3}{2}} (z_0)</math>
<math>~Q^{2}_{+\tfrac{3}{2}} (z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
5 \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\}
+ z \biggl\{ z k_0~K ( k_0 ) 
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} \biggl\{  [5 z]
~-~z (z^2+3) \biggr\} E(k_0)
+ \biggl\{ z^2 k_0~ 
- [(z-1)(z^2-1)]^{-1 / 2} [ 2^{-3 / 2} \cdot 5 (z-1)] \biggr\}K(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2  -  5  ]K(k_0)
-~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z  E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
Hence, <math>~Q^{2}_{+\tfrac{3}{2}} (3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
0.132453829 \, .
</math>
  </td>
</tr>
</table>
 
----
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ C_1(3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~ \frac{3}{2}~Q_{+\frac{3}{2}}(3) \cdot Q_{+ \frac{1}{2}}^2(3)
+ \frac{1}{2}~ Q_{+ \frac{1}{2}}(3)\cdot Q^2_{+ \frac{3}{2}}(3)
= 0.017278633 \, .
</math>
  </td>
</tr>
</table>
 
</td></tr>
</table>
 
 
While keeping in mind that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~z_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\cosh\eta_0 \, ,</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp;</td>
  <td align="right">
<math>~k_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2}{\cosh\eta_0 + 1}
=
\frac{2}{z_0 + 1}
\, ,</math>
  </td>
</tr>
</table>
 
let's attempt to express this leading coefficient, <math>~C_1(\cosh\eta_0)</math>, entirely in terms of the pair of complete elliptic integral functions.
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2C_1(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~3 \biggl[ Q_{+\frac{3}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr]
+ \biggl[ Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[3 Q_{+\frac{3}{2}}(z_0)  -4z Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr]
+ \biggl[ 5Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q^{2}_{- \tfrac{1}{2}}(z_0) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~-~\frac{1}{2^2}\biggl\{  (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0)   
-4z \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \biggr\}
\times
\biggl\{ z k_0~K ( k_0 ) 
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 5\biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr]
\times
\biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{1}{2^2} \cdot k_0 K(k_0)
\times
\biggl\{ z k_0~K ( k_0 ) 
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 5[2^3(z-1)(z^2-1)]^{-1 / 2} \biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr]
\times
\biggl\{ 4zE(k_0) - (z-1)K(k_0) \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
K(k_0)\cdot K(k_0) \biggl\{ \frac{z k_0^2}{2^2} - 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot zk_0(z-1)\biggr\}
+
E(k_0)\cdot E(k_0) \biggl\{ -5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot 4z  \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~K(k_0)\cdot E(k_0) \biggl\{
-~\frac{1}{2^2} \cdot k_0(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} 
+ 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot 4z^2k_0
+ 5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot (z-1)
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
Hence,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2[(z-1)(z^2-1)]^{1 / 2} C_1(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[(z-1)(z^2-1) \biggr]^{1 / 2}  - \frac{5(z-1)}{2^{3/2}} \biggr\}
-~10 z(z+1)^{1 / 2}  \cdot E(k_0)\cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{
k_0[19z^2 - 3 ] 
+ 5(z-1) [2(z+1)]^{1 / 2} 
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~2^{3/2}\biggl[ \frac{(z-1)}{k_0} \biggr] C_1(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[\frac{2^{1 / 2}(z-1)}{k_0} \biggr]  - \frac{5(z-1)}{2^{3/2}} \biggr\}
-~\biggl[ \frac{2^{3 / 2} \cdot 5z}{k_0}  \biggr] E(k_0)\cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{
k_0[19z^2 - 3 ] 
+ \frac{10 (z-1)}{k_0} 
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~C_1(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{2(3z^2 - 1)}{(z^2-1)}      \biggr]K(k_0)\cdot E(k_0)
-~\biggl[ \frac{z}{(z+1)} \biggr] K(k_0)\cdot K(k_0)
-~\biggl[ \frac{ 5z}{(z-1)}  \biggr] E(k_0)\cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~(z_0^2-1)C_1(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2(3z^2 - 1) K(k_0)\cdot E(k_0)
-~z_0(z_0-1) K(k_0)\cdot K(k_0)
-~5z_0(z_0+1) E(k_0)\cdot E(k_0) \, .
</math>
  </td>
</tr>
</table>
 
Hence, we have,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]  C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr]
\boldsymbol{E}(k) \, .
</math>
  </td>
</tr>
</table>
 
====Third (n = 2) Term====
 
=====Part A=====
The third (n = 2) term in [[User:Tohline/Apps/Wong1973Potential#D0andCn|Wong's (1973) expression for the exterior potential]] is,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-D_0
(\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos(2\theta) \cdot  C_2(\cosh\eta_0)P_{+\frac{3}{2}}(\cosh\eta) \, ,
</math>
  </td>
</tr>
</table>
where, <math>~D_0</math> is the same as [[#Setup|above]], and,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~C_2(\cosh\eta_0)</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\tfrac{5}{2}Q_{+\frac{5}{2}}(\cosh \eta_0) Q_{+\frac{3}{2}}^2(\cosh \eta_0)
- \tfrac{1}{2} Q_{+\frac{3}{2}}(\cosh \eta_0)~Q^2_{+ \frac{5}{2}}(\cosh \eta_0) \, .
</math>
  </td>
</tr>
</table>
 
<table border="1" align="center" width="80%" cellpadding="10">
<tr><td align="left">
In order to evaluate <math>~C_2(z)</math>, we will need the following pair of expressions in addition to the ones already used:
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~Q^0_{m-\tfrac{1}{2}}</math> [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|recurrence]] with m = 3, gives:  &nbsp; &nbsp;
<math>~Q_{+\tfrac{5}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{8}{5} z~Q_{+\tfrac{3}{2}}(z_0) - \frac{3}{5} Q_{+\tfrac{1}{2}}(z_0)</math>
  </td>
</tr>
</table>
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Rightarrow~~~15Q_{+\tfrac{5}{2}}(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~8 z~\biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr]
-
9 \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)  \biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z~k_0 K(k_0) \biggl[ 8(4z^2 - 1 ) - 9 \biggr]
+
[2(z+1)]^{1 / 2} E(k_0) \biggl[-32z^2 + 9  \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z~k_0 K(k_0) [ 32z^2 - 17 ]
+
[2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] \, .
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
Hence, &nbsp; &nbsp; <math>~Q_{+\frac{5}{2}}(3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0.002080867 \, .</math>
  </td>
</tr>
</table>
 
And, setting m = 2 in the [[#Qrecurrence|above recurrence relation for]] <math>~Q^2_{m+\frac{1}{2}}(z)</math> gives,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl[ (m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z) \biggr]_{m=2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ (2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \biggr]_{m=2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~  Q^{2}_{+\tfrac{5}{2}} (z) </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
8z Q_{+\tfrac{3}{2}}^{2}(z) - 7 Q^{2}_{+ \tfrac{1}{2}}(z)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
8z \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] - 7 Q^{2}_{+ \tfrac{1}{2}}(z)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
40z Q^{2}_{- \tfrac{1}{2}}(z_0)
- [32z^2 +7]Q_{+\tfrac{1}{2}}^{2}(z_0) 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
40z \biggl\{
[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{[32z^2 +7]}{4} \biggl\{
z k_0~K ( k_0 ) 
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)
\biggr\} 
</math>
  </td>
</tr>
</table>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~  4Q^{2}_{+\tfrac{5}{2}} (z) </math>  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^5\cdot 5z \biggl\{ 2^{1 / 2}
[(z-1)(z^2-1)]^{-1 / 2} [zE(k_0) ]
-
2^{-3 / 2}[(z-1)(z^2-1)]^{-1 / 2} [(z-1)K(k_0)]
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ [32z^2 +7] \biggl\{
z k_0~K ( k_0 ) 
~-~2^{1 / 2}(z^2+3) [ (z-1)(z^2-1) ]^{-1 / 2} E(k_0)
\biggr\} 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
2^{11 / 2}\cdot 5  [z^2 ] - 2^{1 / 2} [32z^2 +7]  (z^2+3)
\biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~2^{7 / 2}\cdot 5 \biggl\{ [(z-1)(z^2-1)]^{-1 / 2} (z-1) \biggr\} z K(k_0)
+ [32z^2 +7] \biggl\{ 2^{1 / 2}[z + 1]^{-1 / 2} \biggr\}  z K ( k_0 )
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{1 / 2}\biggl\{ 32z^2 - 33 \biggr\}  z [z + 1]^{-1 / 2}  K ( k_0 )
-~2^{1 / 2}
\biggl\{
32z^4 - 57  z^2  + 21
\biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33)  z (z-1)  K ( k_0 )
-~(32z^4 - 57  z^2  + 21)E(k_0) \biggr]
\, .
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
Hence, &nbsp; &nbsp; <math>~Q^2_{+\frac{5}{2}}(3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~0.03377378 \, .</math>
  </td>
</tr>
</table>
 
</td></tr></table>
 
=====Part B=====
 
Let's evaluate <math>~C_2(z)</math> specifically for the case where <math>~z = \cosh\eta_0 = 3</math>, using the already separately evaluated values of the four relevant toroidal functions.  We find,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2C_2(3)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~5Q_{+\frac{5}{2}}(3) Q_{+\frac{3}{2}}^2(3)
- Q_{+\frac{3}{2}}(3)~Q^2_{+ \frac{5}{2}}(3)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
5\cdot ( 0.002080867 ) \times ( 0.132453829 ) -  ( 0.014544576 ) \times (0.03377378 )
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
8.868687\times 10^{-4} \, .
</math>
  </td>
</tr>
</table>
 
Next, let's develop a consolidated expression for <math>~C_2(z_0)</math> that replaces all the toroidal functions with complete elliptic integrals of the first and second kind.
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2C_2(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~5Q_{+\frac{5}{2}}(z_0) Q_{+\frac{3}{2}}^2(z_0)
- Q_{+\frac{3}{2}}(z_0)~Q^2_{+ \frac{5}{2}}(z_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{3}\biggl\{
z~k_0 K(k_0) [ 32z^2 - 17 ]
+
[2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ]
\biggr\}
\times \biggl\{
2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2  -  5  ]K(k_0)
-~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z  E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{1}{2^2\cdot 3}
\biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0)  \biggr\}
\times \biggl\{
2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33)  z (z-1)  K ( k_0 )
-~(32z^4 - 57  z^2  + 21)E(k_0) \biggr]
\biggr\}
</math>
  </td>
</tr>
</table>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ 2^{2} \cdot 3 (z^2-1) C_2(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
K(k_0) z[ 32z^2 - 17 ]
+
(z+1) E(k_0) [9 -32z^2 ]
\biggr\}
\times \biggl\{
(z-1) [4 z^2  -  5  ]K(k_0)
-~4 (z^2 - 2)z  E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- ~
\biggl\{ (4z^2 - 1 )  K(k_0) - 4 z(z+1) E(k_0)  \biggr\}
\times \biggl\{
(32z^2 - 33)  z (z-1)  K ( k_0 )
-~(32z^4 - 57  z^2  + 21)E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
(z-1)[ 32z^2 - 17 ] [4 z^2  -  5  ]z K(k_0) \cdot K(k_0)
-~4 (z^2 - 2)z^2 [ 32z^2 - 17 ]  K(k_0) \cdot E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+  \biggl\{
(z-1) (z+1) [9 -32z^2 ] [4 z^2  -  5  ]K(k_0) \cdot E(k_0)
-~4 (z^2 - 2)z (z+1) [9 -32z^2 ] E(k_0) \cdot E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ ~   
\biggl\{
(32z^4 - 57  z^2  + 21)(4z^2 - 1 ) K(k_0) \cdot E(k_0)
-~(32z^2 - 33)  z (z-1)(4z^2 - 1 )  K ( k_0 ) \cdot K(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ ~ 
\biggl\{
4 z(z+1)(32z^2 - 33)  z (z-1)  K ( k_0 ) \cdot E(k_0)
-~4 z(z+1)(32z^4 - 57  z^2  + 21)E(k_0) \cdot E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~(z-1)\biggl\{
\biggl[
( 32z^2 - 17 ) (4 z^2  -  5  )z \biggr]
-~\biggl[ (32z^2 - 33)  z (4z^2 - 1 ) \biggr] \biggr\} K ( k_0 ) \cdot K(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+  \biggl\{ \biggl[
(z-1) (z+1) (9 -32z^2 ) (4 z^2  -  5  )\biggr] 
-~\biggl[ 4 (z^2 - 2)z^2 ( 32z^2 - 17 ) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ ~   
\biggl[
(32z^4 - 57  z^2  + 21)(4z^2 - 1 ) \biggr]
+ ~  \biggl[ 4 z(z+1)(32z^2 - 33)  z (z-1)\biggr]\biggr\}  K ( k_0 ) \cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~2z(z+1) \biggl\{ \biggl[ 2 (32z^4 - 57  z^2  + 21) \biggr]
+~2\biggl[  (z^2 - 2) (9 -32z^2 )\biggr] \biggr\} E(k_0) \cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
z(z-1)\biggl\{[ 52 - 64z^2 ] \biggr\} K ( k_0 ) \cdot K(k_0)
-~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+  \biggl\{
\biggl[ 5(32z^4 - 41z^2 + 9 ) \biggr] 
- \biggl[ (32z^4 - 57  z^2  + 21)\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ ~   
4z^2\biggl[ (32z^4 - 57  z^2  + 21)
+  (32z^4 - 65z^2 + 33)  + (-32z^4 + 41z^2 -9 )  +~( -32z^4 + 81z^2 - 34 )
\biggr]\biggr\}  K ( k_0 ) \cdot E(k_0)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
4z(z-1)\biggl\{ 13 - 16z^2  \biggr\} K ( k_0 ) \cdot K(k_0)
-~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0)
+  8\biggl\{
16z^4 -13z^2 + 3 \biggr\}  K ( k_0 ) \cdot E(k_0) \, .
</math>
  </td>
</tr>
</table>
 
Finally, let's evaluate this consolidated expression for the specific case of <math>~z_0 = \cosh\eta_0 = 3</math>, remembering that in this specific case <math>~k_0  = 2^{-1 / 2}</math>, <math>~K(k_0) = 1.854074677</math>, and <math>~E(k_0) = 1.350643881</math>.  We find,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~2C_2(z_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[2 \cdot 3 (z^2-1) ]^{-1} \biggl\{
4z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0)
-~4z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0)
+  8[
16z^4 -13z^2 + 3 ]  K ( k_0 ) \cdot E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[48 ]^{-1} \biggl\{
-24[ 131 ] K ( k_0 ) \cdot K(k_0)
-~48 [ 147] E(k_0) \cdot E(k_0)
+  8[ 1182 ]  K ( k_0 ) \cdot E(k_0)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
8.8708 \times 10^{-4} \, .
</math>
  </td>
</tr>
</table>
 
<font color="red">This matches the numerically evaluated expression, from above (6/30/2020)</font>.  There is a tremendous amount of cancellation between the three key terms in this expression, so the match  is only to three significant digits.</tr>
 
=====Part C=====
 
Next &hellip;
 
<table border="1" cellpadding="8" align="center" width="60%">
<tr><td align="left">
<div align="center">'''Useful Relations from Above'''</div>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\cosh\eta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{r_1^2 + r_2^2}{2r_1 r_2} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\sinh\eta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{r_1^2 - r_2^2}{2r_1 r_2} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\varpi</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{r_1^2 - r_2^2}{2a} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\cosh\eta - \cos\theta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2a^2}{r_1 r_2} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~ \cos\theta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{r_1^2 + r_2^2-4a^2}{2r_1 r_2} \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{2}{\coth\eta + 1}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4a\varpi}{r_1^2} \, .</math>
  </td>
</tr>
</table>
 
</td></tr>
</table>
 
 
Now, from our tabulation of [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|example recurrence relations]], we see that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ P_{+\frac{3}{2}}(\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4}{3} \cdot \cosh\eta ~P_{+\frac{1}{2}}(\cosh\eta) - \frac{1}{3} ~ P_{-\frac{1}{2}}(\cosh\eta) </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{4}{3} \cdot \cosh\eta \biggl[ \frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) \biggr]
-
\frac{1}{3} ~ \biggl[ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2^{1 / 2}}{3\pi}
\biggl[ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) 
-
(\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr]
\, ,</math>
  </td>
</tr>
</table>
 
where, as above,
<div align="center">
<math>~
k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} 
=
\biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2}
=
\biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} \, .
</math>
</div>
So we have,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{5/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
C_2(\cosh\eta_0)\cos(2\theta)
\biggl\{ (\cosh\eta - \cos\theta)^{1 / 2}P_{+\frac{3}{2}}(\cosh\eta) \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2}
\biggl\{
4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) 
-
(\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times
\biggl\{
4 \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \biggl[\frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{+1 / 2} \biggl[ \frac{4a}{r_1^2} \biggl( \frac{r_1^2 - r_2^2}{2a} \biggr)\biggr]^{-1 / 2}  \boldsymbol{E}(k) 
-
\biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2}  \biggr]^{-1 / 2} ~\biggl[ \frac{4a}{r_1^2}\biggl( \frac{r_1^2 - r_2^2}{2a} \biggr) \biggr]^{1 / 2} \boldsymbol{K}(k)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{9/2} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr]
C_2(\cosh\eta_0)\cos(2\theta)
\times
\biggl\{
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot  \boldsymbol{E}(k) 
-
\frac{a}{r_1}  \cdot \boldsymbol{K}(k)
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
Finally, inserting the expression for <math>~\sinh^2\eta_0~ C_2(\cosh\eta_0) = (z_0^2-1)C_2(z_0)</math> that we have derived, above, gives,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{9/2} }{3^3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]
\times \cos(2\theta)
\biggl\{
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot  \boldsymbol{E}(k) 
-
\frac{a}{r_1}  \cdot \boldsymbol{K}(k)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{
z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0)
-~z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0)
+  2 [ 16z^4 -13z^2 + 3 ]  K ( k_0 ) \cdot E(k_0)
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
====Summary====
 
Once the major ( R ) and minor ( d ) radii of the torus have been specified, two key model parameters can be immediately determined, namely,
<div align="center">
<math>~a^2 \equiv R^2 - d^2\, ,</math> &nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp; <math>~\cosh\eta_0 \equiv \frac{R}{d} \, ,</math>
</div>
in which case also, <math>~\sinh\eta_0 = a/d \, .</math>  Once the mass-density ( &rho;<sub>0</sub> ) of the torus has been specified, the torus mass is given by the expression,
<div align="center">
<math>~M = 2\pi^2 \rho_0 d^2 R \, .</math>
</div>
In addition to the principal pair of meridional-plane coordinates, <math>~(\varpi, z)</math>, it is useful to define the pair of distances,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~r_1^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~r_2^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>
  </td>
</tr>
</table>
where, the equatorial plane of the torus is located at <math>~z = Z_0</math>.  As we have shown above, the leading (n = 0) term in Wong's (1973) series-expression for the gravitational potential anywhere outside the torus is,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{2^{3} }{3\pi^3}
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]
\frac{a}{ r_1 } \cdot  \boldsymbol{K}(k)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \biggl\{
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ]
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0  + 1 ]
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0)  ]
\biggr\}  \, .
</math>
  </td>
</tr>
</table>
 
where, the two distinctly different arguments &#8212; one with, and one without a zero subscript &#8212; of the complete elliptic-integral functions are,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} 
=
\biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2}
= \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2}
= \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k_0</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2}  \, .
</math>
  </td>
</tr>
</table>
 
As we also have shown above, the second (n = 1) term in Wong's (1973) series-expression for the exterior gravitational potential is,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]  \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot
\boldsymbol{E}(k)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~\times
\biggl\{
K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)]
+~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)]
-~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)]
\biggr\}
\, .
</math>
  </td>
</tr>
</table>
Note that a transformation from the <math>~(r_1, r_2)</math> coordinate pair to the toroidal-coordinate pair <math>~(\eta, \theta)</math> includes the expression,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\cos\theta</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, .
</math>
  </td>
</tr>
</table>
So this (n = 1) term's explicit dependence on "cos(n&theta;)" is clear.  Finally,  the third (n = 2) term in Wong's (1973) series-expression for the exterior gravitational potential is,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr]
\times \cos(2\theta)
\biggl\{
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot  \boldsymbol{E}(k) 
-
\frac{a}{r_1}  \cdot \boldsymbol{K}(k)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times \frac{2^{3 / 2}}{3^2}\biggl\{
K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13]
+  2  K ( k_0 ) \cdot E(k_0)  [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ]
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
===The Hur&eacute;, ''et al'' (2020) Presentation===
 
{{LSU_WorkInProgress}}
 
====Notation====
 
In [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], the major and minor radii of the torus surface ("shell") are labeled, respectively, R<sub>c</sub> and b, and their ratio is denoted,
<div align="center">
<math>~e \equiv \frac{b}{R_c} \, .</math>
 
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;2, p. 5826, Eq. (1)
</div>
The authors work in cylindrical coordinates, <math>~(R, Z)</math>, whereas we refer to this same coordinate-pair as, <math>~(\varpi_W, z_W)</math>.  The quantity,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Delta^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
[R + (R_c + b\cos\theta_H)]^2 + [Z - b\sin\theta_H]^2 \, .
</math>
  </td>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;2, p. 5826, Eqs. (5) &amp; (7)
</div>
 
We have affixed the subscript "H" to their meridional-plane angle, &theta;, to clarify that it has a different coordinate-base definition from the meridional-plane angle, &theta;, that appears in our above discussion of [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] work. In their paper, the subscript "0" is used in the case of an infinitesimally thin hoop <math>~(b \rightarrow 0)</math>, that is to say,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Delta_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[R + R_c]^2 + Z^2 \, .
</math>
  </td>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;3, p. 5827, Eq. (13)
</div>
 
Generally, the argument (modulus) of the complete elliptic integral functions is,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k_H</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\Delta}\biggl[ R (R_c + b\cos\theta_H) \biggr]^{1 / 2}  \, ,
</math>
  </td>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;2, p. 5826, Eq. (4)
</div>
and, as stated in the first sentence of their &sect;3, reference may also be made to the ''complementary modulus'',
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k'_H</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~[1 - k_H^2]^{1 / 2} \, .</math>
  </td>
</tr>
</table>
 
(Again, we have affixed the subscript "H" in order to differentiate from the modulus employed by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)].)  And in the case of an infinitesimally thin hoop <math>~(b\rightarrow 0)</math>,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~[k^2_H]_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{4R R_c}{\Delta_0^2}  \, .
</math>
  </td>
</tr>
</table>
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;3, p. 5827, Eq. (12)
</div>
 
====Key Finding====
On an initial reading, it appears as though the most relevant section of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] paper is &sect;8 titled, ''The Solid Torus.''  They write the gravitational potential in terms of the series expansion,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Psi_\mathrm{grav}(\vec{r})</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\Psi_0 + \sum\limits_{n=1}^N \Psi_n \, ,
</math>
  </td>
</tr>
</table>
 
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;7, p. 5831, Eq. (42)
</div>
where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Psi_0 </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}([k_H]_0) \biggr]
</math>
  </td>
</tr>
</table>
 
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eqs. (52) &amp; (53)
</div>
and,
<div align="center">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{G\pi \rho_0 R_c b^2}{4 (k'_H)^2 \Delta_0^3} \biggl\{
[\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k_H) - (k'_H)^2 \Delta_0^2 \boldsymbol{K}(k_H)
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)], &sect;8, p. 5832, Eq. (54)
</div>
 
Rewriting this last expression in a form that can more readily be compared with Wong's work, we obtain,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^3\pi}{e^2} \biggl[ \frac{ \Psi_1 + \Psi_2 }{GM} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{ 1 }{(k'_H)^2 \Delta_0^3}\biggl\{
[\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k_H) - (k'_H)^2 \Delta_0^2 \boldsymbol{K}(k_H)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \frac{\boldsymbol{E}(k_H)}{\Delta_0} +  \frac{\boldsymbol{K}(k_H)}{\Delta_0} \, .
</math>
  </td>
</tr>
</table>
 
<span id="Step01">Hence, also,</span>
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ \frac{ \Psi_0 }{GM}  + \biggl[ \frac{ \Psi_1 + \Psi_2 }{GM} \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{2}{\pi}\biggl\{
\frac{\boldsymbol{K}([k_H]_0)}{\Delta_0}
\biggr\} +
\frac{e^2}{2^3\pi}\biggl\{
\frac{\boldsymbol{K}(k_H)}{\Delta_0}
- \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \frac{\boldsymbol{E}(k_H)}{\Delta_0}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~- \frac{2}{\pi \Delta_0}\biggl\{
\boldsymbol{K}([k_H]_0)
-
\frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H) \biggr\}
- \frac{2}{\pi\Delta_0} \cdot \frac{e^2}{2^4}\biggl\{\biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr]
\biggr\} \boldsymbol{E}(k_H)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~- \frac{\pi \Delta_0}{2} \biggl[ \frac{ \Psi_0 + \Psi_1 + \Psi_2 }{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\boldsymbol{K}([k_H]_0)
-
\frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H)
+  \frac{e^2}{2^4} \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr]  \boldsymbol{E}(k_H) \, .
</math>
  </td>
</tr>
</table>
 
===Compare First Terms===
 
Rewriting the first term in the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] series expression for the potential, we have,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{\Psi_0}{GM} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{2}{\pi} \biggl\{ \frac{\boldsymbol{K}([k_H]_0) }{[ (\varpi_W + R_c)^2 + z_W^2]^{1 / 2}} \biggr\} \, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~[k_H]_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{4\varpi_W R_c}{\Delta_0^2}  \biggr]^{1 / 2}
=
\biggl\{ \frac{4\varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2} \biggr\}^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
 
For comparison, the first term in Wong's expression is,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\Phi_\mathrm{W0}}{GM} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl( \frac{2^{3} }{3\pi^3} \biggr)
\Upsilon_{W0}(\eta_0) \biggl\{
\frac{\boldsymbol{K}(k) }{ r_1 }  \biggr\}\, ,
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~a^2 </math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
R^2 - d^2 ~~~\Rightarrow ~~~ a = R_c(1 - e^2)^{1 / 2} \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~r_1^2</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\biggl[ \varpi + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + \biggl[z - Z_0 \biggr]^2 \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{4\varpi R_c(1-e^2)^{1 / 2}}{[\varpi + R_c(1-e^2)^{1 / 2}]^2 + [z - Z_0]^2} \biggr\}^{1 / 2}
\, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\sinh\eta_0}{\cosh\eta_0}\biggl\{
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ]
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0  + 1 ]
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0)  ]
\biggr\}  \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{(1-e^2)^{1 / 2}}{e^2} \biggl\{
- K(k_0)\cdot K(k_0) (1-e)
+ 2K(k_0)\cdot E(k_0) (1+e^2)
- E(k_0)\cdot E(k_0) (1+e)
\biggr\}  \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k_0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{2}{1+1/e} \biggr]^{1 / 2}
=
\biggl[ \frac{2e}{1+e} \biggr]^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
This expression is correct for any value of the aspect ratio, <math>~e</math>.  But let's set <math>~Z_0 = 0</math> &#8212; as Hur&eacute;, et al. (2020) have done &#8212; then see how the expression simplifies for an infinitesimally thin hoop, that is, if we let <math>~e \rightarrow 0</math>.  First we note that,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k\biggr|_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{4\varpi R_c}{[\varpi + R_c]^2 + z^2} \biggr\}^{1 / 2}
\, ,
</math>
  </td>
</tr>
</table>
so in this limit the modulus of the complete elliptic integral of the first kind becomes identical to the modulus used by Hur&eacute;, et al. (2020), <math>~[k_H]_0</math>.  Next, we note that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~r_1\biggr|_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~[( \varpi + R_c )^2 + z^2]^{1 / 2} \, .</math>
  </td>
</tr>
</table>
As a result, we can write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\Phi_\mathrm{W0}}{GM} \biggr|_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\Psi_0}{GM}  \cdot
\biggl[
\biggl( \frac{2^{2} }{3\pi^2} \biggr)
\Upsilon_{W0}(\eta_0)
\biggr]_{e\rightarrow 0} \, .
</math>
  </td>
</tr>
</table>
Now let's evaluate the coefficient, <math>~\Upsilon_{W0}</math>, in the limit of <math>~e \rightarrow 0</math>.
 
 
<table align="center"  border="1" width="100%" cellpadding="8"><tr><td align="left">
 
<div align="center">
<math>~\Upsilon_{W0}</math>, in the limit of <math>~e \rightarrow 0</math>.
</div>
First, drawing from our [[User:Tohline/Apps/Wong1973Potential#Phase_0C|separate examination of the behavior of complete elliptic integral functions]], we appreciate that,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot  E(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 ~+~\frac{1}{2^5} ~k_0^4
~+~\frac{1}{2^5} ~ k_0^6
+ \mathcal{O}(k_0^{8}) \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot  K(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \frac{1}{2} k_0^2
+ \frac{11}{2^5} ~k_0^4
+ \frac{17}{2^6} ~ k_0^6
+ \mathcal{O}(k_0^{8}) \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[E(k_0) \cdot  E(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~-~\frac{1}{2^6} ~ k_0^6
+ \mathcal{O}(k_0^{8}) \, .
</math>
  </td>
</tr>
</table>
Next, employing the [[User:Tohline/Appendix/Ramblings/PowerSeriesExpressions#Binomial|binomial expansion]], we find that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2e(1+e)^{-1}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2e(  1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) \, ;</math>
  </td>
</tr>
</table>
and,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k_0^4</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4e^2(1+e)^{-2}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4e^2(  1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) \, .</math>
  </td>
</tr>
</table>
Hence, we have,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + \frac{1}{2} k_0^2
+ \frac{11}{2^5} ~k_0^4
+ \mathcal{O}(k_0^{6})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4
+ \mathcal{O}(k_0^{6})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- (1+e) \biggl[ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~
+ \mathcal{O}(k_0^{6})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + e (  1 - e +e^2 - e^3 + e^4 - e^5 + \cdots )
+ \frac{11}{2^3} \cdot ~e^2(  1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots )
+ \mathcal{O}(e^{3})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2(  1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots )
+ \mathcal{O}(e^{3})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- (1+e) \biggl[ 1 - e ~(  1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) ~
-~ \frac{1}{2^3} \cdot~ e^2(  1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) ~
+ \mathcal{O}(e^{3})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + e (  1 - e  )
+ \frac{11}{2^3} \cdot ~e^2
\biggr]
+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2
\biggr]
- (1+e) \biggl[ 1 - e ~(  1 - e  ) ~
-~ \frac{1}{2^3} \cdot~ e^2 ~
\biggr]
+ \mathcal{O}(e^{3})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl[ 1 + e (  1 - e  )
+ \frac{11}{2^3} \cdot ~e^2
\biggr]
+e \biggl[ 1 + e
\biggr]
+ 2 \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2
\biggr]
+ 2 e^2
- \biggl[ 1 - e ~(  1 - e  ) ~
-~ \frac{1}{2^3} \cdot~ e^2 ~
\biggr]
- e \biggl[ 1 - e
\biggr]
+ \mathcal{O}(e^{3})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-1 - e + e^2
- \frac{11}{2^3} \cdot ~e^2
+ e + e^2
+ 2 ~+~\frac{1}{2^2} \cdot~e^2
+ 2 e^2
-1 + e - e^2  ~
+~ \frac{1}{2^3} \cdot~ e^2 ~
- e +e^2
+ \mathcal{O}(e^{3})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{e^2}{2^3}
\biggl[ 2^5
- 11~
~+~3 \biggr]~
+ \mathcal{O}(e^{3})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
3e^2
+ \mathcal{O}(e^{3})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[1 + \mathcal{O}(e^{1})]\cdot (1 - e^2)^{1 / 2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \biggl[ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0) \biggr]_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 \, .</math>
  </td>
</tr>
</table>
 
</td></tr></table>
 
Given that,
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~ \biggl[ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0) \biggr]_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 \, ,</math>
  </td>
</tr>
</table>
we conclude that,
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{\Phi_\mathrm{W0}}{GM} \biggr|_{e\rightarrow 0}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\Psi_0}{GM}  \, ,
</math>
  </td>
</tr>
</table>
that is, we conclude that <math>~\Psi_0</math> matches <math>~\Phi_{W0}</math> in the limit of, <math>~e\rightarrow 0</math>.
 
===Go to Higher Order===
 
Let's keep higher order terms in Wong's n = 0 component, and let's examine contributions to the same order that come from Wong's n = 1 and (if necessary) n = 2 components.
 
<span id="Step02">First, note that,</span>
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\Delta_0 \biggl( \frac{2^{2} }{3\pi^2} \biggr)
\Upsilon_{W0}(\eta_0) \biggl\{
\frac{\boldsymbol{K}(k) }{ r_1 }  \biggr\}\, .
</math>
  </td>
</tr>
</table>
 
 
====Keeping Higher Order in Wong's First Component====
 
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot  E(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 ~+~\frac{1}{2^5} ~k_0^4
~+~\frac{1}{2^5} ~ k_0^6
~+~\frac{231}{2^{13}} ~ k_0^8
+ \mathcal{O}(k_0^{10}) \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot  K(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \frac{1}{2} k_0^2
+ \frac{11}{2^5} ~k_0^4
+ \frac{17}{2^6} ~ k_0^6
+ \frac{1787}{2^{13}} ~k^8
+ \mathcal{O}(k_0^{10})
\, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[E(k_0) \cdot  E(k_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4
~-~\frac{1}{2^6} ~ k_0^6
~-~\frac{77}{2^{13}} ~ k_0^8
+ \mathcal{O}(k_0^{10}) \, .
</math>
  </td>
</tr>
</table>
 
<table border="1" width="80%" cellpadding="5" align="center">
<tr><td align="center">'''Add One Additional Term'''</td></tr>
<tr><td align="center">
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k) \cdot  E(k) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 + \biggl( \frac{1}{2} \biggr)^2k^2
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
+ \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8
+ \cdots
+ \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n}
+ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
- \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5}
- \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7}
~-~ \cdots
\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}
~-~ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
- \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5}
- \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7}
\biggr\}
~+~
\biggl\{
\biggl( \frac{1}{2} \biggr)^2k^2
\biggr\}
\times~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
- \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~+~
\biggl\{
\biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
\biggr\}
\times~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
\biggr\}
~+~
\biggl\{
\biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
\biggr\}\times
\biggl\{1 - \frac{1}{2^2} ~k^2
\biggr\}
+ \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \biggl(\frac{5}{2^8}\biggr)~k^6
- \biggl( \frac{5^2 \cdot 7}{2^{14}}\biggr)~k^8
\biggr\}
~+~
\biggl\{
\biggl( \frac{1}{2^2} \biggr)k^2
- \frac{1}{2^4} ~k^4
- \frac{3}{2^8}~ k^6
-\frac{5}{2^{10}} ~k^8
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
~+~
\biggl( \frac{3^2}{2^6}\biggr) k^4
~-~
\biggl( \frac{3^2}{2^8}\biggr) k^6
~-~ \biggl(\frac{3^3}{2^{12}}\biggr) ~k^8
~+~
\biggl( \frac{5^2}{2^8}\biggr) k^6
~-~\biggl(\frac{5^2}{2^{10}}\biggr) ~k^8
~+~\biggl(\frac{5^2\cdot 7^2}{2^{14}}\biggr) ~k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1
~+~\biggl[ \frac{1}{2^2} 
- \frac{1}{2^2} \biggr] ~k^2
~+~\biggl[ \frac{3^2}{2^6}
- \frac{3}{2^6}
- \frac{1}{2^4} \biggr]~k^4
~+~\biggl[ \frac{5^2}{2^8} 
- \frac{5}{2^8}
- \frac{3}{2^8}
~-~\frac{3^2}{2^8} \biggr]~ k^6
+ \biggl[
\biggl(\frac{5^2\cdot 7^2}{2^{14}}\biggr) - \biggl(\frac{5^2}{2^{10}}\biggr) - \biggl(\frac{3^3}{2^{12}}\biggr) - \frac{5}{2^{10}} - \biggl( \frac{5^2 \cdot 7}{2^{14}}\biggr)
\biggr]~k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 ~+~\frac{1}{2^5} ~k^4
~+~\frac{1}{2^5} ~ k^6
~+~\frac{231}{2^{13}} ~ k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
</table>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[K(k) \cdot  K(k) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 + \biggl( \frac{1}{2} \biggr)^2k^2
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
+ \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8
+ \cdots
+ \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n}
+ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times~
\biggl\{
1 + \biggl( \frac{1}{2} \biggr)^2k^2
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
+ \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8
+ \cdots
+ \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n}
+ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1
+ \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
+ \frac{5^2}{2^8} k^6
+ \frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
\times~
\biggl\{
1
+ \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
+ \frac{5^2}{2^8} k^6
+ \frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1
+ \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
+ \frac{5^2}{2^8} k^6
+ \frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
~+~\frac{1}{2^2} k^2
\biggl\{
1
+ \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
+ \frac{5^2}{2^8} k^6
\biggr\}
~+~\frac{3^2}{2^6} k^4
\biggl\{
1
+ \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
\biggr\}
~+~
\biggl\{
\frac{5^2}{2^8} k^6
\biggr\}
\biggl\{
1
+ \frac{1}{2^2} k^2
\biggr\}
~+~
\biggl\{
\frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 + \frac{1}{2^2} k^2
+ \frac{3^2}{2^6} k^4
+ \frac{5^2}{2^8} k^6
+ \frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
~+~
\biggl\{
\frac{1}{2^2} k^2
+ \frac{1}{2^4} k^4
+ \frac{3^2}{2^8} k^6
+ \frac{5^2}{2^{10}} k^8
\biggr\}
~+~
\biggl\{
\frac{3^2}{2^6} k^4
~+~\frac{3^2}{2^8} k^6
~+~\frac{3^4}{2^{12}} k^8
\biggr\}
~+~
\biggl\{
\frac{5^2}{2^8} k^6
~+~\frac{5^2}{2^{10}} k^8
\biggr\}
~+~
\biggl\{
\frac{5^2 \cdot 7^2}{2^{14}} k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \biggl[ \frac{1}{2^2}
~+~ \frac{1}{2^2} \biggr] ~k^2
+ \biggl[ \frac{3^2}{2^6}
+ \frac{1}{2^4}
~+~\frac{3^2}{2^6} \biggr]~k^4
+ \biggl[ \frac{5^2}{2^8}
+ \frac{3^2}{2^8}
~+~\frac{3^2}{2^8} 
~+~\frac{5^2}{2^8} \biggr]~ k^6
~+~\biggl[
\frac{5^2 \cdot 7^2}{2^{14}}+ \frac{5^2}{2^{10}} ~+~\frac{3^4}{2^{12}} ~+~\frac{5^2}{2^{10}} ~+~\frac{5^2 \cdot 7^2}{2^{14}}
\biggr]k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \frac{1}{2} k^2
+ \frac{11}{2^5} ~k^4
+ \frac{17}{2^6} ~ k^6
+ \frac{1787}{2^{13}} ~k^{8}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
</table>
 
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[E(k) \cdot  E(k) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
- \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5}
- \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7}
~-~ \cdots
\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}
~-~ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
\times~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4
- \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5}
- \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7}
~-~ \cdots
\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}
~-~ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \frac{5}{2^8}~ k^6
- \frac{5^2\cdot 7}{2^{14}} ~k^8
\biggr\}
\times
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \frac{5}{2^8}~ k^6
- \frac{5^2\cdot 7}{2^{14}} ~k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \frac{5}{2^8}~ k^6
- \frac{5^2\cdot 7}{2^{14}} ~k^8
\biggr\}
~+~
\biggl\{- \frac{1}{2^2} ~k^2
\biggr\}
\times
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \frac{5}{2^8}~ k^6
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
~+~
\biggl\{
- \frac{3}{2^6}~ k^4
\biggr\}
\times
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
\biggr\}
~+~
\biggl\{
- \frac{5}{2^8}~ k^6
\biggr\}
\times
\biggl\{
1 - \frac{1}{2^2} ~k^2
\biggr\}
~+~
\biggl\{
- \frac{5^2\cdot 7}{2^{14}}k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
 
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
1 - \frac{1}{2^2} ~k^2
- \frac{3}{2^6}~ k^4
- \frac{5}{2^8}~ k^6
- \frac{5^2\cdot 7}{2^{14}} ~k^8
\biggr\}
~+~
\biggl\{
- \frac{1}{2^2} ~k^2  + \frac{1}{2^4} ~k^4
+ \frac{3}{2^8}~ k^6
+ \frac{5}{2^{10}}~k^8
\biggr\}
</math>
  </td>
</tr>
 
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
~+~
\biggl\{
~-~ \frac{3}{2^6}~ k^4
~+~ \frac{3}{2^8}~ k^6
+ \frac{3^2}{2^{12}}~k^8
\biggr\}
~+~
\biggl\{
~-~\frac{5}{2^8}~ k^6
+ \frac{5}{2^{10}}~k^8
\biggr\}
~+~
\biggl\{
~-~ \frac{5^2\cdot 7}{2^{14}}k^8
\biggr\}
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
 
<tr>
  <td align="right">
<math>~</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \biggl[ - \frac{1}{2^2}- \frac{1}{2^2} \biggr]k^2
+ \biggl[ - \frac{3}{2^6}+ \frac{1}{2^4}~-~ \frac{3}{2^6} \biggr] k^4
+ \biggl[ - \frac{5}{2^8}+ \frac{3}{2^8}~+~ \frac{3}{2^8}~-~\frac{5}{2^8} \biggr] k^6
+ \biggl[ - \frac{5^2\cdot 7}{2^{14}} + \frac{5}{2^{10}}+ \frac{3^2}{2^{12}}+ \frac{5}{2^{10}}~-~ \frac{5^2\cdot 7}{2^{14}} \biggr] k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \biggl[ - \frac{2}{2^2} \biggr]k^2
+ \biggl[ - \frac{3}{2^5}+ \frac{2}{2^5} \biggr] k^4
+ \biggl[ - \frac{5}{2^7}+ \frac{3}{2^7} \biggr] k^6
+ \biggl[ - \frac{5^2\cdot 7}{2^{13}} + \frac{5\cdot 2^4}{2^{13}}+ \frac{2 \cdot 3^2}{2^{13}}\biggr] k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 - \frac{1}{2} ~k^2 ~-~ \frac{1}{2^5} ~ k^4 ~-~\frac{1}{2^6} ~ k^6 ~-~\frac{77}{2^{13}} ~ k^8
+ \mathcal{O}(k^{10})
</math>
  </td>
</tr>
</table>
 
</td></tr>
</table>
 
 
Next, employing the [[User:Tohline/Appendix/Ramblings/PowerSeriesExpressions#Binomial|binomial expansion]], we find that,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~k_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2e(1+e)^{-1}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2e(  1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k_0^4</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4e^2(1+e)^{-2}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~4e^2(  1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k_0^6</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^3e^3(1+e)^{-3}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^3e^3(  1 - 3e + 6e^2 - 10e^3 + 15e^4 - 21e^5 + \cdots ) \, ;</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~k_0^8</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^4e^4(1+e)^{-4}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2^4e^4(1 - 4e + 10 e^2 - 20e^3 + 35e^4 - 56e^5 + \cdots) \, .</math>
  </td>
</tr>
</table>
 
<span id="Step03">Hence, we have,</span>
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + \frac{1}{2} k_0^2
+ \frac{11}{2^5} ~k_0^4
+ \frac{17}{2^6} ~ k_0^6
+ \frac{1787}{2^{13}} ~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4
~+~\frac{1}{2^5} ~ k_0^6
~+~ \frac{231}{2^{13}}~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- (1+e) \biggl[ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~
~-~\frac{1}{2^6} ~ k_0^6
~-~\frac{77}{2^{13}}~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + e (  1 - e +e^2 -e^3 )
+ \frac{11}{2^3} \cdot ~e^2(  1 - 2e  + 3e^2)
+ \frac{17}{2^6} ~\cdot 2^3 e^3 ( 1 - 3e)
+ \frac{1787}{2^{13}} \cdot 2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} \cdot~4e^2(  1 - 2e  + 3e^2)
~+~\frac{1}{2^5} ~ 2^3e^3 (1-3e)
~+~\frac{231}{2^{13}} \cdot 2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- (1+e) \biggl[ 1 - e ~(  1 - e +e^2 -e^3) ~
-~ \frac{1}{2^5} \cdot~ 4e^2(  1 - 2e  +3e^2) ~
~-~\frac{1}{2^6} ~ 2^3e^3(1 - 3e)
~-~\frac{77}{2^{13}}~2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^{-9}(1-e) \biggl[ 512 (1+  e - e^2 +e^3 -e^4 )
+ 704  \cdot ~(  e^2 - 2e^3  + 3e^4)
+ 1088 ~\cdot ( e^3 - 3e^4)
+ 1787 \cdot e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ (1+e^2) 2^{-9}\biggl[ 1024
~+~128 \cdot~(  e^2 - 2e^3  + 3e^4)
~+~256 ~ (e^3-3e^4)
~+~462 \cdot e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 2^{-9}(1+e) \biggl[ 512 ~(1  -e + e^2 -e^3 + e^4) ~
-~ 64 \cdot~ (  e^2 - 2e^3  +3e^4) ~
~-~64 ~ (e^3 - 3e^4)
~-~77~e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^{-9}(1-e) \biggl[
512 + 512e + 192e^2 + e^3(512 - 1408 + 1088) + e^4(704-512 - 3264 + 1787)
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2^{-9}(1+e^2) \biggl[
1024 + 128e^2 + e^3(-256 + 256  ) + e^4(384 -768 + 462)
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 2^{-9}(1+e) \biggl[
512 - 512e + e^2(512 - 64  ) + e^3(-512 +128 -64  ) + e^4(512 - 192 - 192 - 77)
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^{-9}(1-e) \biggl[
512 + 512e + 192e^2 + 192e^3 - 1285 e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2^{-9}(1+e^2) \biggl[
1024 + 128e^2 + 78e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 2^{-9}(1+e) \biggl[
512 - 512e + 448e^2 - 448 e^3 + 51e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{-9}\biggl[
(- 192+ 128 - 448)e^2 
+ (- 192 + 448) e^3
+ (1285 + 78- 51)e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2^{-9} e \biggl[
1024e + (192- 448)e^2 
+ (192+ 448) e^3 
+ \mathcal{O}(e^{4})
\biggr]
+ 2^{-9} e^2 \biggl[
1024 + 128e^2
+ \mathcal{O}(e^{3})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{-9} \biggl[
(- 192+ 128 - 448)e^2  + 2048 e^2
+ (1285 + 78- 51)e^4
+ (192+ 448) e^4 
+ 128e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^{-9} \biggl[
1536e^2 
+ 2080e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
3e^2 
+ \biggl[ \frac{5\cdot 13}{2^4}\biggr] e^4
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
 
Hence,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
[1 + \mathcal{O}(e^{2})]\cdot (1 - e^2)^{1 / 2}
\biggl\{
\frac{\boldsymbol{K}(k) }{ r_1 }  \biggr\}\Delta_0  \, ,
</math>
  </td>
</tr>
</table>
or, more precisely,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2}
\biggl\{
\frac{\boldsymbol{K}(k) }{ r_1 }  \biggr\}\Delta_0  \, .
</math>
  </td>
</tr>
</table>
 
====Next Factors====
 
 
Now,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Delta_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(\varpi_W + R_c)^2 + z_W^2 \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~r_1^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2  \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ r_1^2 - \Delta_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2  - \biggl[ (\varpi_W + R_c)^2 + z_W^2 \biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\varpi_W^2 + 2\varpi_W R_c (1 - e^2 )^{1 / 2} + R_c^2 (1 - e^2 ) + z_W^2  - [\varpi_W^2 +  2\varpi_W R_c + R_c^2 + z_W^2 ]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~2\varpi_W R_c [(1 - e^2 )^{1 / 2}  - 1]  -e^2 R_c^2 \, .  </math>
  </td>
</tr>
</table>
 
----
 
Again, drawing from the [[User:Tohline/Appendix/Ramblings/PowerSeriesExpressions#Binomial|binomial theorem]], we have,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~(1 -e^2)^{1 / 2}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 - \frac{1}{2}e^2 + \biggl[\frac{ \tfrac{1}{2}(-\tfrac{1}{2}) }{ 2 } \biggr]e^4 - \biggl[ \frac{ \tfrac{1}{2}(-\tfrac{1}{2} )(-\tfrac{3}{2} ) }{ 3! } \biggr]e^6
+ \biggl[ \frac{ \tfrac{1}{2} (-\tfrac{1}{2})(-\tfrac{3}{2})(-\tfrac{5}{2})  }{ 4! } \biggr]e^8 + \cdots
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 - \frac{1}{2}e^2 - \frac{1}{2^3} e^4 - \frac{1}{2^4}e^6 - \frac{5}{2^7} e^8 - \mathcal{O}(e^{10}) \, .
</math>
  </td>
</tr>
</table>
 
----
 
<div align="center" id="Step04">
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ r_1^2 - \Delta_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\varpi_W R_c \biggl[- e^2 - \frac{1}{2^2} e^4 - \frac{1}{2^3}e^6 - \frac{5}{2^6} e^8 - \mathcal{O}(e^{10})  \biggr]  -e^2 R_c^2  </math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\frac{ r_1^2}{\Delta_0^2} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1
-e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{\Delta_0^2}\biggr]
- \frac{\varpi_W R_c}{\Delta_0^2} \biggl[\frac{1}{2^2} e^4 + \frac{1}{2^3}e^6 + \frac{5}{2^6} e^8 + \mathcal{O}(e^{10})  \biggr] </math>
  </td>
</tr>
</table>
</div>
 
 
 
====Now Work on Elliptic Integral Expressions====
 
 
From a [[User:Tohline/2DStructure/ToroidalGreenFunction#Series_Expansions|separate discussion]] we can draw the series expansion of <math>~\boldsymbol{K}(k)</math>, specifically,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2K(k)}{\pi}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \biggl( \frac{1}{2} \biggr)^2k^2
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
+ \cdots
</math>
  </td>
</tr>
</table>
where,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{k^2}{4}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~
\frac{1}{4} \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]
= \biggl[ \frac{a\varpi}{r_1^2} \biggr]
= \biggl[ \frac{a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\varpi_W R_c(1-e^2)^{1 / 2}}{[ \varpi_W + R_c(1-e^2)^{1 / 2} ]^2 + z_W^2}  \, .
</math>
  </td>
</tr>
</table>
 
Also,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2K(k_H)}{\pi}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
1 + \biggl( \frac{1}{2} \biggr)^2k_H^2
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6
+ \cdots
</math>
  </td>
</tr>
</table>
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{k_H^2}{4}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{1}{\Delta^2}\biggl[ R (R_c + b\cos\theta_H) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\varpi_W (R_c + b\cos\theta_H)}{[\varpi_W + (R_c + b\cos\theta_H)]^2 + [z_W - b\sin\theta_H]^2}  \, .
</math>
  </td>
</tr>
</table>
What we want to do is write <math>~K(k)</math> in terms of <math>~K(k_H)</math>.  Let's try &hellip;
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2K(k)}{\pi}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\frac{2K(k_H)}{\pi} + \delta_K \, ,</math>
  </td>
</tr>
</table>
 
 
where,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\delta_K</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\frac{2K(k)}{\pi} - \frac{2K(k_H)}{\pi} </math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{1 + \frac{k^2}{4}
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6
+ \cdots
\biggr\}
- \biggl\{1 + \frac{k_H^2}{4}
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6
+ \cdots
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~\biggl\{1 + \frac{k^2}{4}
\biggr\}
- \biggl\{1 + \frac{k_H^2}{4}
\biggr\}
= \frac{k^2}{4} - \frac{k_H^2}{4}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{\varpi_W R_c(1-e^2)^{1 / 2}}{[ \varpi_W + R_c(1-e^2)^{1 / 2} ]^2 + z_W^2}
-
\frac{\varpi_W (R_c + b\cos\theta_H)}{[\varpi_W + (R_c + b\cos\theta_H)]^2 + [z_W - b\sin\theta_H]^2} 
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \varpi_W R_c(1-e^2)^{1 / 2} \biggr\} \biggl\{\varpi_W^2 +R_c^2 + z_W^2  + 2\varpi_W R_c(1-e^2)^{1 / 2} - R_c^2 e^2 \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-
\biggl\{ \varpi_W R_c (1 + e\cos\theta_H) \biggr\} \biggl\{[\varpi_W + R_c(1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2 \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \varpi_W R_c \biggl[ 1-\frac{1}{2} e^2 + \mathcal{O}(e^4)\biggr] \biggr\} \biggl\{\varpi_W^2 +R_c^2 + z_W^2  + 2\varpi_W R_c\biggl[ 1-\frac{1}{2} e^2 + \mathcal{O}(e^4)\biggr] - R_c^2 e^2 \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-
\biggl\{ \varpi_W R_c \biggl[ 1 + e\cos\theta_H \biggr] \biggr\}
\biggl\{\varpi_W^2 + 2\varpi_W R_c(1+e\cos\theta_H)
+ R_c^2(1 + 2e\cos\theta_H + e^2\cos^2\theta_H)  + z_W^2 - 2 z_W R_c e\sin\theta_H + R_c^2 e^2 \sin\theta^2_H  \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl\{\varpi_W R_c  -  e^2  \biggl[ \frac{\varpi_W R_c}{2} \biggr]  + \mathcal{O}(e^4) \biggr\}
\biggl\{ [ (\varpi_W +R_c)^2 + z_W^2 ] - e^2 \biggl[  \varpi_W R_c + R_c^2 \biggr]  + \mathcal{O}(e^4) \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-
\biggl\{ \varpi_W R_c  +  e \biggl[ \varpi_W R_c \cos\theta_H \biggr]\biggr\}
\biggl\{ [ (\varpi_W^2 + R_c)^2 + z_W^2 ]
+ 2R_c e(R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H) + R_c^2 e^2  \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \frac{\varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] } \biggl[1 - \frac{1}{2}e^2 \biggr]  \biggr\}
\biggl\{ 1 - e^2 \biggl[ \frac{ \varpi_W R_c + R_c^2  }{ (\varpi_W +R_c)^2 + z_W^2 } \biggr] \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~
\biggl\{ \frac{ \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ]  } \biggl[ 1 + e\cos\theta_H \biggr] \biggr\}
\biggl\{ 1
+ e\biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr]
+ e^2 \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr]  \biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\frac{\varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] } \biggl[1 - \frac{1}{2}e^2 \biggr] 
\biggl\{ 1 + e^2 \biggl[ \frac{ \varpi_W R_c + R_c^2  }{ (\varpi_W +R_c)^2 + z_W^2 } \biggr] \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~\frac{ \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ]  } \biggl[ 1 + e\cos\theta_H \biggr]
\biggl\{ 1
- e\biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr]
- e^2 \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr]  \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
-~\frac{ e\cdot \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ]  }
\biggl[ \cos\theta_H - \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~\frac{e^2 \cdot \varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] }
\biggl\{ \biggl[ \frac{ \varpi_W R_c + R_c^2  }{ (\varpi_W +R_c)^2 + z_W^2 } - \frac{1}{2} \biggr]
- \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr] 
- \cos\theta_H \biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr]
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
-~\frac{ e\cdot \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ]  [ (\varpi_W^2 + R_c)^2 + z_W^2 ] }
\biggl[ \cos\theta_H [(\varpi_W^2 + R_c)^2 + z_W^2 ]  -2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~\frac{\tfrac{1}{2}e^2 \cdot \varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ][ (\varpi_W^2 + R_c)^2 + z_W^2 ] }
\biggl\{ 2 (\varpi_W R_c + R_c^2 )  - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- 2R_c^2   
- 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
-~\frac{ e\cdot \varpi_W R_c }{ \Delta_0^2 }
\biggl[ \cos\theta_H  - \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{\Delta_0^2} \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~\frac{ e^2 \cdot \varpi_W R_c}{2 \Delta_0^4 }
\biggl\{ 2 (\varpi_W R_c + R_c^2 )  - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- 2R_c^2   
- 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
 
Let's subtract <math>~K([k_H]_0)</math> from the potential expression.  But first, let's adopt the shorthand notation &hellip;
 
<table border="1" width="80%" align="center" cellpadding="8"><tr><td align="left">
Given that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{
\boldsymbol{K}(k)  \biggr\} \frac{\Delta_0}{r_1}~\biggl( \frac{2^2}{3\pi^2} \biggr) \Upsilon_{W0}(\eta_0)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{ \boldsymbol{K}(k) \biggr\} \biggl[\frac{r_1^2 }{ \Delta_0^2 } \biggr]^{-1 / 2}
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{ \boldsymbol{K}(k) \biggr\} \biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \mathcal{O}(e^4)\biggr\}
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot \biggl[ 1 - \frac{1}{2}e^2  - \mathcal{O}(e^{4}) \biggr]
</math>
  </td>
</tr>
</table>
 
let's define the variable, <math>~\mathcal{A}</math>, such that,
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{\boldsymbol{K}(k)\biggr\} \{1 + e^2\mathcal{A}\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \{ 1 + e^2 \cdot \mathcal{A} \}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \mathcal{O}(e^4)\biggr\}
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot \biggl[ 1 - \frac{1}{2}e^2  - \mathcal{O}(e^{4}) \biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] \biggr\}
\biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2  \biggr] \biggl[ 1 - \frac{1}{2}e^2  \biggr]</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2  - \frac{1}{2}e^2 \biggr\}</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ 2\mathcal{A}</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \biggl( \frac{41}{2^3\cdot 3}\biggr) \, . </math>
  </td>
</tr>
</table>
 
</td></tr></table>
 
 
We can therefore write,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] - K([k_H]_0)</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~- K([k_H]_0) +
\biggl\{ K(k_H) + \frac{\pi}{2} \cdot \delta_K\biggr\}
\{ 1 + e^2 \cdot \mathcal{A} \}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~- K([k_H]_0)
+
K(k_H)
\{ 1 + e^2 \cdot \mathcal{A} \}
+
\frac{\pi}{2} \cdot \delta_K \, ,
</math>
  </td>
</tr>
</table>
where we should keep in mind that <math>~\delta_k</math> is <math>~\mathcal{O}(e^1)</math>.  So, let's examine the piece,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr]</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{1 + \frac{k_H^2}{4}
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6
+ \cdots
\biggr\} -
\biggl\{1 + \frac{k_H^2}{4}
+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4
+ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6
+ \cdots
\biggr\}_{e\rightarrow 0}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\frac{k_H^2}{4} - \biggl[ \frac{k_H^2}{4} \biggr]_{e\rightarrow 0}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\varpi_W R_c (1 + e\cos\theta_H)}{[\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2} \biggr]
-
\biggl[  \frac{\varpi_W R_c (1 + e\cos\theta_H)}{[\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2} \biggr]_{e\rightarrow 0}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\varpi_W R_c (1 + e\cos\theta_H)
\biggl\{ [\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2 \biggr\}^{-1}
-
\biggl[  \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\varpi_W R_c (1 + e\cos\theta_H)
\biggl\{
\varpi_W^2 + 2\varpi_W R_c(1 + e\cos\theta_H) + R_c^2(1 + 2e\cos\theta_H + e^2\cos^2\theta_H) + z_W^2 -2z_W R_c e\sin\theta_H + R_c^2 e^2\sin^2\theta_H
\biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-
\biggl[  \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
-\biggl[  \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr]
+ \biggl[ \frac{ \varpi_W R_c (1 + e\cos\theta_H)}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr]
\biggl\{1
+ \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{(\varpi_W + R_c)^2 + z_W^2}
+ \frac{e^2 [R_c^2\cos^2\theta_H  + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2}
\biggr\}^{-1}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
-\biggl[  \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr]
+\biggl[ \frac{ \varpi_W R_c (1 + e\cos\theta_H)}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr]
\biggl\{1
- \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{(\varpi_W + R_c)^2 + z_W^2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{e^2 [R_c^2\cos^2\theta_H  + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2}
+ \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{ [(\varpi_W + R_c)^2 + z_W^2]^2}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{ \varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr]
\biggl\{
- \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{(\varpi_W + R_c)^2 + z_W^2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{e^2 [R_c^2\cos^2\theta_H  + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2}
+ \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{ [(\varpi_W + R_c)^2 + z_W^2]^2}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+\biggl[ \frac{ \varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr]
\biggl\{ \frac{e\cos\theta_H [(\varpi_W + R_c)^2 + z_W^2] -e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{(\varpi_W + R_c)^2 + z_W^2}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{ \varpi_W R_c}{ \Delta_0^2 } \biggr]
\biggl\{
e\cos\theta_H
- \frac{ eR_c\cos\theta_H [2\varpi_W  + 2 R_c - 2z_W  \tan\theta_H]  }{ \Delta_0^2}
- \frac{e^2 R_c^2 }{ \Delta_0^2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{ \Delta_0^2}
+ \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{  \Delta_0^4}
\biggr\} \, .
</math>
  </td>
</tr>
</table>
 
Now we have,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] - K([k_H]_0)</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~- K([k_H]_0)
+
K(k_H)
\{ 1 + e^2 \cdot \mathcal{A} \}
+
\frac{\pi}{2} \cdot \delta_K
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ - \Delta_0 \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\frac{2}{\pi} K([k_H]_0)
+ \frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr]
+
\delta_K
+
\frac{2}{\pi} K(k_H) e^2 \cdot \mathcal{A} \, .
</math>
  </td>
</tr>
</table>
 
But, as we have just demonstrated,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr]+ \delta_K
</math>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{ \varpi_W R_c}{ \Delta_0^2 } \biggr]
\biggl\{
e\cos\theta_H
- \frac{ eR_c\cos\theta_H [2\varpi_W  + 2 R_c - 2z_W  \tan\theta_H]  }{ \Delta_0^2}
- \frac{e^2 R_c^2 }{ \Delta_0^2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- \frac{e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]  }{ \Delta_0^2}
+ \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{  \Delta_0^4}
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
-~\frac{ e\cdot \varpi_W R_c }{ \Delta_0^2 }
\biggl[ \cos\theta_H  - \frac{2R_c (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)}{\Delta_0^2} \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~\frac{ e^2 \cdot \varpi_W R_c}{2 \Delta_0^4 }
\biggl\{ 2 (\varpi_W R_c + R_c^2 )  - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- 2R_c^2   
- 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
\biggr\} \, .
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{e^2 \cdot  \varpi_W R_c}{ \Delta_0^4 } \biggr]
\biggl\{
- R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~(\varpi_W R_c + R_c^2 )  - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- R_c^2   
- 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{  [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{  \Delta_0^2}
\biggr\}
</math>
  </td>
</tr>
 
<tr><td align="center" colspan="3"><font color="red">TEMPORARY BREAK HERE</font></td></tr>
</table>
 
Hence,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~ - \frac{\pi  \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
K([k_H]_0)
+
K(k_H) e^2 \cdot \mathcal{A}
+~\frac{\pi}{2} \biggl[ \frac{e^2 \cdot  \varpi_W R_c}{ \Delta_0^4 } \biggr]
\biggl\{
- R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~(\varpi_W R_c + R_c^2 )  - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- R_c^2   
- 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{  [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{  \Delta_0^2}
\biggr\}
</math>
  </td>
</tr>
</table>
 
===Include Second Wong Term===
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \biggl( \frac{2^{3} }{3\pi^3} \biggr)
\Upsilon_{W1}(\eta_0) \times \cos\theta
\biggl\{ \frac{a}{r_2} \cdot
\boldsymbol{E}(k) \biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ - \frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W1}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl( \frac{2^{2} }{3\pi^2} \biggr)
\Upsilon_{W1}(\eta_0) \times \cos\theta
\biggl\{ \frac{\Delta_0}{r_2} \cdot
\boldsymbol{E}(k) \biggr\} \, ;
</math>
  </td>
</tr>
</table>
 
====Leading (Upsilon) Coefficient====
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Upsilon_{W1}(\eta_0)</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left" colspan="2">
<math>~\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] 
\biggl\{
K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)]
+~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)]
-~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)]
\biggr\}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow~~~ \biggl[ \frac{e^2}{ (1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left" colspan="2">
<math>~ 
- (1-e)K(k_0)\cdot K(k_0)
+~2(3-e^2)K(k_0)\cdot E(k_0) 
-~5(1+e) E(k_0)\cdot E(k_0)  \, .
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + \frac{1}{2} k_0^2
+ \frac{11}{2^5} ~k_0^4
+ \frac{17}{2^6} ~ k_0^6
+ \frac{1787}{2^{13}} ~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (3-e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4
~+~\frac{1}{2^5} ~ k_0^6
~+~ \frac{231}{2^{13}}~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 5(1+e) \biggl[ 1
- ~\frac{1}{2} ~k_0^2 ~
-~ \frac{1}{2^5} ~ k_0^4 ~
~-~\frac{1}{2^6} ~ k_0^6
~-~\frac{77}{2^{13}}~k_0^8
+ \mathcal{O}(k_0^{10})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- (1-e) \biggl[ 1 + \frac{1}{2} \cdot 2e(  1 - e +e^2 - e^3 )
+ \frac{11}{2^5} ~\cdot 4e^2(  1 - 2e + 3e^2 )
+ \frac{17}{2^6} ~ \cdot 2^3e^3(  1 - 3e  )
+ \frac{1787}{2^{13}} ~\cdot 2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2 (3-e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~\cdot 4e^2(  1 - 2e + 3e^2 )
~+~\frac{1}{2^5} ~ \cdot 2^3e^3(  1 - 3e  )
~+~ \frac{231}{2^{13}}~\cdot 2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 5(1+e) \biggl[ 1
- ~\frac{1}{2} ~\cdot 2e(  1 - e +e^2 - e^3 ) ~
-~ \frac{1}{2^5} ~ \cdot 4e^2(  1 - 2e + 3e^2 )
~-~\frac{1}{2^6} ~ \cdot 2^3e^3(  1 - 3e  )
~-~\frac{77}{2^{13}}~\cdot 2^4e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^{-9}(1-e) \biggl[ 2^9 + 2^9e(  1 - e +e^2 - e^3 )
+ 2^6 \cdot 11 ~\cdot e^2(  1 - 2e + 3e^2 )
+ 2^6\cdot 17 ~ \cdot e^3(  1 - 3e  )
+ 1787 ~\cdot e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2^{-9} (6- 2e^2) \biggl[ 2^9 ~+~2^6~\cdot e^2(  1 - 2e + 3e^2 )
~+~2^7 \cdot e^3(  1 - 3e  )
~+~ 231~\cdot e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
- 2^{-9}(5+ 5e) \biggl[ 2^9
- ~2^9 \cdot e(  1 - e +e^2 - e^3 ) ~
-~ 2^6 \cdot e^2(  1 - 2e + 3e^2 )
~-~2^6 \cdot e^3(  1 - 3e  )
~-~77~\cdot e^4
+ \mathcal{O}(e^{5})
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\frac{2^{11}}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^9 - 2^9e(  1 - e +e^2 - e^3 )
- 2^6 \cdot 11 ~\cdot e^2(  1 - 2e + 3e^2 )
- 2^6\cdot 17 ~ \cdot e^3(  1 - 3e  )
- 1787 ~\cdot e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 2^9e + 2^9e^2(  1 - e +e^2 )
+ 2^6 \cdot 11 ~\cdot e^3(  1 - 2e )
+ 2^6\cdot 17 ~ \cdot e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 6\biggl[ 2^9 ~+~2^6~\cdot e^2(  1 - 2e + 3e^2 )
~+~2^7 \cdot e^3(  1 - 3e  )
~+~ 231~\cdot e^4
\biggr]
-2^{10}e^2 ~-~2^7~\cdot e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 5 \biggl[ -2^9
+ ~2^9 \cdot e(  1 - e +e^2 - e^3 ) ~
+~ 2^6 \cdot e^2(  1 - 2e + 3e^2 )
~+~2^6 \cdot e^3(  1 - 3e  )
~+~77~\cdot e^4
\biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~5 \biggl[ -2^9e
+ ~2^9 \cdot e^2(  1 - e +e^2 ) ~
+~ 2^6 \cdot e^3(  1 - 2e )
~+~2^6 \cdot e^4
\biggr]
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^9( e^2 - e^3 + e^4 )
- 2^6 \cdot 11 ~(  e^2 - 2e^3 + 3e^4 )
- 2^6\cdot 17 ~(  e^3 - 3e^4  )
- 1787 ~e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+2^9 (  e^2 - e^3 +e^4 )
+ 2^6 \cdot 11 (  e^3 - 2e^4 )
+ 2^6\cdot 17 ~ e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~ 3\cdot 2^7~(  e^2 - 2e^3 + 3e^4 )
~+~3\cdot 2^8 (  e^3 - 3e^4  )
~+~ 2\cdot 3^2 \cdot 7\cdot 11~\cdot e^4
-2^{10}e^2 ~-~2^7~\cdot e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ 5\cdot 2^9 (  - e^2 +e^3 - e^4 ) ~
+~ 5\cdot 2^6 (  e^2 - 2e^3 + 3e^4 )
~+~5\cdot 2^6 (  e^3 - 3e^4  )
~+~5\cdot 77~e^4
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+5\cdot 2^9 (  e^2 - e^3 +e^4 ) ~
+~ 5\cdot 2^6 (  e^3 - 2e^4 )
~+~5\cdot 2^6 e^4
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
e^2 [ 2^9 - 2^6\cdot 11 + 2^9 + 3\cdot 2^7 -2^{10} -5\cdot 2^9 + 5\cdot 2^6 + 5\cdot 2^9 ]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ e^3 [ -2^9 - 2^7\cdot 11 - 2^6\cdot 17 - 2^9 +2^6\cdot 11 - 3\cdot 2^8+3\cdot 2^8  + 5\cdot 2^9-5\cdot 2^7 +5\cdot 2^6 -5\cdot 2^9 + 5\cdot 2^6]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ e^4 [ 2^9 - 3\cdot 11\cdot 2^6+3\cdot 17\cdot 2^6 - 1787 + 2^9 - 11\cdot 2^7 + 17\cdot 2^6 + 3^2\cdot 2^7 - 3^2\cdot 2^8+ 2\cdot 3^2\cdot 7\cdot 11 - 2^7
- 5\cdot 2^9 + 3\cdot 5\cdot 2^6 - 3\cdot 5\cdot 2^6 + 5\cdot 7\cdot 11  + 5\cdot 2^9 - 5\cdot 2^7 +5\cdot 2^6]
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
e^2 [ - 2^6\cdot 11  + 3\cdot 2^7  + 5\cdot 2^6  ]
+ e^3 [ -2^{10} - 2^7\cdot 11 - 2^6\cdot 17 +2^6\cdot 11  ]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ e^4 [ 2^{10}~-~ 1787~+~ 2\cdot 3^2\cdot 7\cdot 11~+~ 5\cdot 7\cdot 11 ~+~ 2^6\cdot (3\cdot 17 - 3\cdot 11 - 22 + 17 + 18 - 36 - 2 - 10 + 5)  ]
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
2^6 e^2 [ 0  ] ~- 2^8 \cdot 11 e^3 + e^4 [ 2^{10}~-~ 1787~+~ 7\cdot 11\cdot 23 ~-~ 2^8\cdot 3  ]
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- 2^8 \cdot 11 e^3 + 2^4\cdot 3\cdot 5e^4
+ \mathcal{O}(e^{5})
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~\Rightarrow ~~~\frac{2^{2}}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
- \frac{11}{2} e^3 + \frac{3\cdot 5}{2^5} e^4
+ \mathcal{O}(e^{5}) \, .
</math>
  </td>
</tr>
 
</table>
 
<table border="1" cellpadding="8" align="center" width="90%">
<tr>
  <td align="center" bgcolor="black"><font color="white">'''Floating Comparison Summary'''</font></td>
</tr>
<tr><td align="left">
As [[#Step01|shown above]], the first three terms of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Hur&eacute;, et al. (2020)] series expression may be written as,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~- \frac{\pi \Delta_0}{2} \biggl[ \frac{ \Psi_0 + \Psi_1 + \Psi_2 }{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\boldsymbol{K}([k_H]_0)
-
\frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H)
+  \frac{e^2}{2^4} \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr]  \boldsymbol{E}(k_H) \, .
</math>
  </td>
</tr>
</table>
 
Let's see how it compares to the first term of Wong's (1973) expression which, as [[#Step02|shown separately above]], can be written in the form,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\Delta_0 \biggl( \frac{2^{2} }{3\pi^2} \biggr)
\Upsilon_{W0}(\eta_0) \biggl\{
\frac{\boldsymbol{K}(k) }{ r_1 }  \biggr\}\, .
</math>
  </td>
</tr>
</table>
 
----
First, as [[#Step03|shown above]],
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[1 + \biggl(\frac{5\cdot 13}{2^4\cdot 3} \biggr)e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
Note that, in order to determine the functional form of the <math>~\mathcal{O}(e^{2})</math> term in this expression, we will have to include <math>~k_0^8</math> terms in the various expressions for products of elliptic integrals.  Second, [[#Step04|we have shown that]],
 
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\frac{ r_1^2}{\Delta_0^2} </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~1
-e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{\Delta_0^2}\biggr]
- \frac{\varpi_W R_c}{\Delta_0^2} \biggl[\frac{1}{2^2} e^4 + \frac{1}{2^3}e^6 + \frac{5}{2^6} e^8 + \mathcal{O}(e^{10})  \biggr] </math>
  </td>
</tr>
<tr>
  <td align="right">
<math>~\Rightarrow ~~~ \frac{\Delta_0}{r_1} </math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
1  + e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{2\Delta_0^2}\biggr]
\, ,</math> &nbsp; &nbsp; &nbsp; and we are defining <math>~\delta_K</math> such that,
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~K(k)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~K(k_H) + \frac{\pi}{2} \cdot \delta_K \, .</math>
  </td>
</tr>
</table>
 
----
 
Hence,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl\{ K(k_H) + \frac{\pi}{2} \cdot \delta_K\biggr\}
\biggl\{ 1  + e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{2\Delta_0^2}\biggr] \biggr\}\biggl[1 + \biggl(\frac{5\cdot 13}{2^4\cdot 3} \biggr)e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\boldsymbol{K}([k_H]_0)
+
\boldsymbol{K}(k_H) e^2 \cdot \mathcal{A}
+~\frac{\pi}{2} \biggl[ \frac{e^2 \cdot  \varpi_W R_c}{ \Delta_0^4 } \biggr]
\biggl\{
- R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+~(\varpi_W R_c + R_c^2 )  - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] 
- R_c^2   
- 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W  \cos\theta_H - z_W \sin\theta_H)
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
&nbsp;
  </td>
  <td align="left">
<math>~
+ \frac{  [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2  }{  \Delta_0^2}
\biggr\} \, ,
</math>
  </td>
</tr>
</table>
and,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\mathcal{A}</math>
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~\biggl[ \frac{R_c(R_c + \varpi_W)}{2\Delta_0^2}\biggr] + \biggl( \frac{41}{2^4\cdot 3}\biggr) \, . </math>
  </td>
</tr>
</table>
 
----
 
Second,
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~- \frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W1}}{GM} \biggr] </math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\boldsymbol{E}(k)
\biggl\{ \frac{\Delta_0 \cdot \cos\theta}{r_2} \biggr\}
\biggl[ \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W1}(\eta_0) \biggr]
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl\{ \boldsymbol{E}(k_H) + \frac{\pi}{2}\cdot \delta_E \biggr\}
\biggl\{ \frac{\Delta_0 \cdot \cos\theta}{r_2} \biggr\}
\biggl[- \biggl(\frac{11}{2\cdot 3} \biggr) e + \biggl(\frac{5}{2^5}\biggr) e^2 + \mathcal{O}(e^{5}) \biggr]\cdot (1 - e^2)^{1 / 2} \, .
</math>
  </td>
</tr>
</table>
 
</td></tr>
</table>
 
====Geometric Factor====
 
By definition,
 
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\Delta_0^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
(\varpi_W + R_c)^2 + z_W^2 \, ,
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~r_1^2</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2  \, ,</math>
  </td>
</tr>
 
<tr>
  <td align="right">
<math>~r_2^2</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,293: Line 7,198:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\biggl[ \varpi_W - R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2  \, ,</math>
5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \, ,
</math>
   </td>
   </td>
</tr>
</tr>
Line 1,301: Line 7,204:
<tr>
<tr>
   <td align="right">
   <td align="right">
Hence, <math>~Q^{2}_{+\tfrac{3}{2}} (3)</math>
<math>~\cos^2\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,307: Line 7,210:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>~\biggl[ \frac{r_1^2 + r_2^2 - 4R_c^2(1-e^2)}{2r_1 r_2} \biggr]^2  \, .</math>
0.132453829 \, .  
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>
 
Hence,
----
 
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\Rightarrow ~~~ C_1(3)</math>
<math>~r_2^2 - \Delta_0^2 \cdot \cos^2\theta</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 1,326: Line 7,225:
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~ \frac{3}{2}~Q_{+\frac{3}{2}}(3) \cdot Q_{+ \frac{1}{2}}^2(3)
<math>~</math>
+ \frac{1}{2}~ Q_{+ \frac{1}{2}}(3)\cdot Q^2_{+ \frac{3}{2}}(3)
= \, .
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</table>


</td></tr>
=See Also=
</table>
<ul>
<table border="0" cellpadding="5" align="center">
<li>Universit&eacute; de Bordeaux (Part 2): &nbsp;[[User:Tohline/Appendix/Ramblings/BordeauxSequences|Spheroid-Ring Sequences]]</li>
 
<li>Universit&eacute; de Bordeaux (Part 3): &nbsp;[[User:Tohline/Appendix/Ramblings/BordeauxPostDefense|Discussions Following Dissertation Defense]]</li>
<tr>
</ul>
  <td align="right">
<math>~C_1(\cosh\eta_0)</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0)
+ \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, .
</math>
  </td>
</tr>
</table>
 
 




{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 00:05, 17 December 2020

Université de Bordeaux (Part 1)

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Spheroid-Ring Systems

Through a research collaboration at the Université de Bordeaux, B. Basillais & J. -M. Huré (2019), MNRAS, 487, 4504-4509 have published a paper titled, Rigidly Rotating, Incompressible Spheroid-Ring Systems: New Bifurcations, Critical Rotations, and Degenerate States.

We discuss this topic in a separate, accompanying chapter.

Exterior Gravitational Potential of Toroids

J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838 have published a paper titled, The Exterior Gravitational Potential of Toroids. Here we examine how their work relates to the published work by C.-Y. Wong (1973, Annals of Physics, 77, 279), which we have separately discussed in detail.

Our Presentation of Wong's (1973) Result

Summary:  First three terms in Wong's (1973) expression for the gravitational potential at any point, P(ϖ, z), outside of a uniform-density torus.
Wong diagram

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \biggl( \frac{2^{3} }{3\pi^3} \biggr) \Upsilon_{W0}(\eta_0) \biggl\{ \frac{a}{ r_1 } \cdot \boldsymbol{K}(k) \biggr\}\, , </math>

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \biggl( \frac{2^{3} }{3\pi^3} \biggr) \Upsilon_{W1}(\eta_0) \times \cos\theta \biggl\{ \frac{a}{r_2} \cdot \boldsymbol{E}(k) \biggr\} \, , </math>

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\varpi, z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \biggl( \frac{2^{3} }{3\pi^3} \biggr)\Upsilon_{W2}(\eta_0) \times \cos(2\theta) \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} \, , </math>

where, once the major ( R ) and minor ( d ) radii of the torus — as well as the vertical location of its equatorial plane (Z0) — have been specified, we have,

<math>~a^2 </math>

<math>~\equiv</math>

<math>~ R^2 - d^2</math>       and,       <math>~\cosh\eta_0 \equiv \frac{R}{d} ~~~~\Rightarrow ~~~\sinh\eta_0 = \frac{a}{d} \, , </math>

<math>~r_1^2</math>

<math>~\equiv</math>

<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>

<math>~r_2^2</math>

<math>~\equiv</math>

<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>

<math>~\cos\theta</math>

<math>~\equiv</math>

<math>~\biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \, ,</math>

<math>~k</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, . </math>


  Leading Coefficient Expressions … … evaluated for:    <math>~\frac{R}{d} = \cosh\eta_0 = 3</math>

<math>~\Upsilon_{W0}(\eta_0)</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, , </math>

7.134677

<math>~\Upsilon_{W1}(\eta_0)</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] +~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] -~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] \biggr\} \, , </math>

0.130324

<math>~\Upsilon_{W2}(\eta_0)</math>

<math>~\equiv</math>

<math>~ \frac{2^{3 / 2}}{3^2} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13] + 2 K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ] </math>

 

 

 

<math>~ -~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ] \biggr\} \, , </math>

0.003153
where,

<math>~k_0</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, . </math>

0.707106781

NOTE: In evaluating these "leading coefficient expressions" for the case, <math>~R/d = 3</math>, we have used the complete elliptic integral evaluations, K(k0) = 1.854074677 and E(k0) = 1.350643881.

Setup

From our accompanying discussion of Wong's (1973) derivation, the exterior potential is given by the expression,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, , </math>

Wong (1973), §II.D, p. 294, Eqs. (2.59) & (2.61)

where,

<math>~D_0 </math>

<math>~\equiv</math>

<math>~ \frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] = \frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr] \, ,</math>

<math>~C_n(\cosh\eta_0)</math>

<math>~\equiv</math>

<math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0) - (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \, </math>

Wong (1973), §II.D, p. 294, Eq. (2.63)

and where, in terms of the major ( R ) and minor ( d ) radii of the torus — or their ratio, ε ≡ d/R,

<math>~\cosh\eta_0</math>

<math>~=</math>

<math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math>

<math>~\sinh\eta_0</math>

<math>~=</math>

<math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math>

These expressions incorporate a number of basic elements of a toroidal coordinate system. In what follows, we will also make use of the following relations:

Once the primary scale factor, <math>~a</math>, has been specified, the illustration shown at the bottom of this inset box — see also our accompanying set of similar figures used by other researchers — helps in explaining how transformations can be made between any two of the referenced coordinate pairs: <math>~(\varpi, z)</math>, <math>~(\eta, \theta)</math>, <math>~(r_1, r_2)</math>.

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{a\sinh\eta}{(\cosh\eta - \cos\theta)}</math>

     <math>~\Rightarrow ~</math>     

<math>~\cos\theta</math>

<math>~=</math>

<math>~\cosh\eta - \frac{a\sinh\eta}{\varpi}</math>

<math>~z - Z_0</math>

<math>~=</math>

<math>~\frac{a\sin\theta}{(\cosh\eta - \cos\theta)}</math>

     <math>~\Rightarrow ~</math>     

<math>~\sin\theta</math>

<math>~=</math>

<math>~\frac{(z - Z_0)}{\varpi} \cdot \sinh\eta </math>

Given that (sin2θ + cos2θ) = 1, we have,

<math>~1</math>

<math>~=</math>

<math>~ \biggl[ \frac{(z - Z_0)}{\varpi} \cdot \sinh\eta \biggr]^2 + \biggl[\cosh\eta - \frac{a\sinh\eta}{\varpi}\biggr]^2 </math>

<math>~\Rightarrow ~~~ \coth\eta</math>

<math>~=</math>

<math>~ \frac{1}{2a\varpi}\biggl[\varpi^2 + a^2 + (z - Z_0)^2 \biggr] \, . </math>

We deduce as well that,

<math>~\frac{2}{\coth\eta + 1}</math>

<math>~=</math>

<math>~ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \, , </math>        and,

<math>~\sinh\eta + \cosh\eta</math>

<math>~=</math>

<math>~ \frac{\varpi^2 + a^2 + (z - Z_0)^2}{(\varpi + a)^2 + (z - Z_0)^2} \, . </math>


Given the definitions,

<math>~r_1^2</math>

<math>~=</math>

<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>

<math>~r_2^2</math>

<math>~=</math>

<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>

we can use the transformations,

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{(r_1^2 - r_2^2)}{4a}</math>     and,

<math>~(z - Z_0)^2</math>

<math>~=</math>

<math>~r_2^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 - 4a^2 \biggr]^2 \, ,</math>     or,

<math>~(z - Z_0)^2</math>

<math>~=</math>

<math>~r_1^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 + 4a^2 \biggr]^2 \, .</math>

Or we can use the transformations,

<math>~\eta</math>

<math>~=</math>

<math>~\ln \biggl(\frac{r_1}{r_2}\biggr) \, ,</math>

<math>~\cos\theta</math>

<math>~=</math>

<math>~\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, .</math>


Additional potentially useful relations can be found in an accompanying chapter wherein we present a variety of basic elements of a toroidal coordinate system.

Wong diagram

Leading (n = 0) Term

Wong's Expression

Now, from our separate derivation we have,

<math>~P_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, . </math>

And if we make the function-argument substitution, <math>~z \rightarrow \coth\eta</math>, in the "Key Equation,"

LSU Key.png

<math>~Q_{-\frac{1}{2}}(z)</math>

<math>~=</math>

<math>~ \sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr) </math>

Abramowitz & Stegun (1995), p. 337, eq. (8.13.3)

we can write,

<math>~P_{-1 / 2}(\cosh\eta)</math>

<math>~=</math>

<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, , </math>

where, from above, we recognize that,

<math>~ k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, . </math>

So, the leading (n = 0) term gives,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta) </math>

 

<math>~=</math>

<math>~ -D_0~C_0(\cosh\eta_0) \biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) </math>

 

<math>~=</math>

<math>~ -\frac{D_0~C_0(\cosh\eta_0)}{\pi} \biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k) </math>

 

<math>~=</math>

<math>~ - C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math>

Thin-Ring Evaluation of C0

In an accompanying discussion of the thin-ring approximation, we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>

<math>~C_0(x)\biggr|_{x\rightarrow \infty}</math>

<math>~=</math>

<math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, . </math>

Hence, in this limit we can write,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math>

<math>~=</math>

<math>~ - \frac{2 }{\pi} \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 } \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math>

More General Evaluation of C0

NOTE of CAUTION: In our above evaluation of the toroidal function, <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>. Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion with the argument, <math>~z</math>.

Drawing from our accompanying tabulation of Toroidal Function Evaluations, we have more generally,

<math>~2C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr] + 3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\} </math>

 

 

<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0)

\biggr\} \, ,

</math>

where,

<math>~k_0</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math>

Looking back at our previous numerical evaluation of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,

Appendix Expression: <math>~Q_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~k_0 K(k_0)</math>

Hence MF53 value, <math>~Q_{-\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~1.311028777 ~~~\Rightarrow ~~~ K(k_0) = 1.854074677</math>

Appendix Expression: <math>~Q_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>

Hence MF53 value, <math>~Q_{+\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~0.1128885424 ~~~\Rightarrow~~~ E(k_0) = 1.350643881</math>

Appendix Expression: <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>

Hence, <math>~Q^2_{-\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~1.104816977</math>, which matches MF53 value

Additional derivation: <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~ -~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} </math>

Hence, <math>~Q^2_{+\tfrac{1}{2}}(3)</math>

<math>~=</math>

<math>~0.449302588</math>


<math>~\Rightarrow ~~~ C_0(3)</math>

<math>~=</math>

<math>~ \frac{1}{2}~Q_{+\frac{1}{2}}(3) \cdot Q_{- \frac{1}{2}}^2(3) + \frac{3}{2}~ Q_{- \frac{1}{2}}(3)\cdot Q^2_{+ \frac{1}{2}}(3) = 0.945933522 \, . </math>


Attempting to simplify this expression, we have,

<math>~2C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\} \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\} </math>

 

 

<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0)

\biggr\} 

</math>

<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ \biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\} \times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) \biggr\} </math>

 

 

<math>~ - 3 k_0 ~K ( k_0) \times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) k_0 E(k_0)

\biggr\} 

</math>

 

<math>~=</math>

<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr] </math>

 

 

<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2 + 2(\cosh\eta_0 ~-1) + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0 \biggr] </math>

<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr] </math>

 

 

<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 + \frac{2}{k_0^2}(\cosh\eta_0 ~-1) + 3 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2} \biggr] </math>

<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math>

<math>~=</math>

<math>~ K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0) \biggr] + 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0 + 1\biggr] - E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr] </math>

This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>. TERRIFIC!

Finally then, for any choice of <math>~\eta_0</math>,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) </math>

 

 

<math>~ \times \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, . </math>

Second (n = 1) Term

The second (n = 1) term in Wong's (1973) expression for the exterior potential is,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos\theta \cdot C_1(\cosh\eta_0)P_{+\frac{1}{2}}(\cosh\eta) \, , </math>

where, <math>~D_0</math> is the same as above, and,

<math>~C_1(\cosh\eta_0)</math>

<math>~\equiv</math>

<math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0) + \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, . </math>

Now, from our accompanying table of "Toroidal Function Evaluations", it appears as though,

<math>~P_{+\frac{1}{2}}(\cosh\eta)</math>

<math>~=</math>

<math>~\frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} E(k) \, ,</math>

where, as above,

<math>~k</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{2}{\coth\eta+1} \biggr]^{1 / 2} \, .</math>

Hence, we have,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \cos\theta \cdot (\cosh\eta - \cos\theta)^{1 / 2} (\sinh\eta)^{+1 / 2} \biggr] k^{-1} E(k) </math>

 

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \frac{a\sinh^2\eta}{\varpi} \cdot \frac{\coth\eta + 1}{2} \biggr\}^{1 / 2} E(k) </math>

 

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \biggl( \frac{a}{2\varpi} \biggr) \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} E(k) </math>

 

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \biggl( \frac{a}{2} \biggr)\biggl[ \frac{4a}{r_1^2 - r_2^2} \biggr] \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} E(k) </math>

 

<math>~=</math>

<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \frac{\cos\theta}{r_2} \biggr] E(k) = - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \frac{\cos\theta}{\sqrt{ (\varpi - a)^2 + (z-Z_0)^2 }} \biggr] E(k) </math>

 

<math>~=</math>

<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] \boldsymbol{E}(k) \, . </math>

 

From the above function tabulations & evaluations — for example, <math>~ K(k_0) = 1.854074677</math> and <math>~ E(k_0) = 1.350643881</math> — and a separate listing of Example Recurrence Relations, we have,

Appendix Expression: <math>~Q_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~k_0 K(k_0)</math>

Appendix Expression: <math>~Q_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math>

<math>~Q^0_{m-\tfrac{1}{2}}</math> recurrence with m = 2: <math>~Q_{+\tfrac{3}{2}}(z_0)</math>

<math>~=</math>

<math>~\frac{4}{3} z~Q_{+\tfrac{1}{2}}(z_0) - \frac{1}{3} Q_{-\tfrac{1}{2}}(z_0)</math>

 

<math>~=</math>

<math>~\frac{4}{3} z \{z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)\} - \frac{1}{3}k_0 K(k_0)</math>

 

<math>~=</math>

<math>~\frac{1}{3} \biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr] </math>

Hence, <math>~Q_{+\tfrac{3}{2}}(3)</math>

<math>~=</math>

<math>~0.014544576 \, .</math>


Appendix Expression: <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math>

Additional derivation: <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math>

<math>~=</math>

<math>~ -~\frac{1}{2^2} \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} </math>

Then, letting <math>~\mu \rightarrow 2</math> and, for all m ≥ 2, letting <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> in the "Key Equation,"

LSU Key.png

<math>~(\nu - \mu + 1)P^\mu_{\nu + 1} (z)</math>

<math>~=</math>

<math>~ (2\nu + 1)z P_\nu^\mu(z) - (\nu + \mu)P^\mu_{\nu-1}(z) </math>

Abramowitz & Stegun (1995), p. 334, eq. (8.5.3)

NOTE: <math>~Q_\nu^\mu</math>, as well as <math>~P_\nu^\mu</math>, satisfies this same recurrence relation.

we have,

<math>~(m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z)</math>

<math>~=</math>

<math>~ (2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \, . </math>

Therefore, specifically for m = 1, we obtain the recurrence relation,

<math>~Q^{2}_{+\tfrac{3}{2}} (z_0)</math>

<math>~=</math>

<math>~ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) </math>

 

<math>~=</math>

<math>~ 5 \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} + z \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} </math>

 

<math>~=</math>

<math>~ 2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} \biggl\{ [5 z] ~-~z (z^2+3) \biggr\} E(k_0) + \biggl\{ z^2 k_0~ - [(z-1)(z^2-1)]^{-1 / 2} [ 2^{-3 / 2} \cdot 5 (z-1)] \biggr\}K(k_0) </math>

 

<math>~=</math>

<math>~ 2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2 - 5 ]K(k_0) -~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z E(k_0) </math>

Hence, <math>~Q^{2}_{+\tfrac{3}{2}} (3)</math>

<math>~=</math>

<math>~ 0.132453829 \, . </math>


<math>~\Rightarrow ~~~ C_1(3)</math>

<math>~=</math>

<math>~ \frac{3}{2}~Q_{+\frac{3}{2}}(3) \cdot Q_{+ \frac{1}{2}}^2(3) + \frac{1}{2}~ Q_{+ \frac{1}{2}}(3)\cdot Q^2_{+ \frac{3}{2}}(3) = 0.017278633 \, . </math>


While keeping in mind that,

<math>~z_0</math>

<math>~=</math>

<math>~\cosh\eta_0 \, ,</math>

      and,      

<math>~k_0^2</math>

<math>~=</math>

<math>~\frac{2}{\cosh\eta_0 + 1} = \frac{2}{z_0 + 1} \, ,</math>

let's attempt to express this leading coefficient, <math>~C_1(\cosh\eta_0)</math>, entirely in terms of the pair of complete elliptic integral functions.

<math>~2C_1(z_0)</math>

<math>~=</math>

<math>~3 \biggl[ Q_{+\frac{3}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] + \biggl[ Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] </math>

 

<math>~=</math>

<math>~\biggl[3 Q_{+\frac{3}{2}}(z_0) -4z Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] + \biggl[ 5Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q^{2}_{- \tfrac{1}{2}}(z_0) \biggr] </math>

 

<math>~=</math>

<math>~-~\frac{1}{2^2}\biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) -4z \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \biggr\} \times \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) \biggr\} </math>

 

 

<math>~ + 5\biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} </math>

 

<math>~=</math>

<math>~\frac{1}{2^2} \cdot k_0 K(k_0) \times \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) \biggr\} </math>

 

 

<math>~ + 5[2^3(z-1)(z^2-1)]^{-1 / 2} \biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ 4zE(k_0) - (z-1)K(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~ K(k_0)\cdot K(k_0) \biggl\{ \frac{z k_0^2}{2^2} - 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot zk_0(z-1)\biggr\} + E(k_0)\cdot E(k_0) \biggl\{ -5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot 4z \biggr\} </math>

 

 

<math>~ +~K(k_0)\cdot E(k_0) \biggl\{ -~\frac{1}{2^2} \cdot k_0(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} + 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot 4z^2k_0 + 5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot (z-1) \biggr\} \, . </math>

Hence,

<math>~2[(z-1)(z^2-1)]^{1 / 2} C_1(z_0)</math>

<math>~=</math>

<math>~ z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[(z-1)(z^2-1) \biggr]^{1 / 2} - \frac{5(z-1)}{2^{3/2}} \biggr\} -~10 z(z+1)^{1 / 2} \cdot E(k_0)\cdot E(k_0) </math>

 

 

<math>~ +~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ k_0[19z^2 - 3 ] + 5(z-1) [2(z+1)]^{1 / 2} \biggr\} </math>

<math>~\Rightarrow ~~~2^{3/2}\biggl[ \frac{(z-1)}{k_0} \biggr] C_1(z_0)</math>

<math>~=</math>

<math>~ z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[\frac{2^{1 / 2}(z-1)}{k_0} \biggr] - \frac{5(z-1)}{2^{3/2}} \biggr\} -~\biggl[ \frac{2^{3 / 2} \cdot 5z}{k_0} \biggr] E(k_0)\cdot E(k_0) </math>

 

 

<math>~ +~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ k_0[19z^2 - 3 ] + \frac{10 (z-1)}{k_0} \biggr\} </math>

<math>~\Rightarrow ~~~C_1(z_0)</math>

<math>~=</math>

<math>~ \biggl[ \frac{2(3z^2 - 1)}{(z^2-1)} \biggr]K(k_0)\cdot E(k_0) -~\biggl[ \frac{z}{(z+1)} \biggr] K(k_0)\cdot K(k_0) -~\biggl[ \frac{ 5z}{(z-1)} \biggr] E(k_0)\cdot E(k_0) </math>

<math>~\Rightarrow ~~~(z_0^2-1)C_1(z_0)</math>

<math>~=</math>

<math>~ 2(3z^2 - 1) K(k_0)\cdot E(k_0) -~z_0(z_0-1) K(k_0)\cdot K(k_0) -~5z_0(z_0+1) E(k_0)\cdot E(k_0) \, . </math>

Hence, we have,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math>

<math>~=</math>

<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] \boldsymbol{E}(k) \, . </math>

Third (n = 2) Term

Part A

The third (n = 2) term in Wong's (1973) expression for the exterior potential is,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>

<math>~=</math>

<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos(2\theta) \cdot C_2(\cosh\eta_0)P_{+\frac{3}{2}}(\cosh\eta) \, , </math>

where, <math>~D_0</math> is the same as above, and,

<math>~C_2(\cosh\eta_0)</math>

<math>~\equiv</math>

<math>~\tfrac{5}{2}Q_{+\frac{5}{2}}(\cosh \eta_0) Q_{+\frac{3}{2}}^2(\cosh \eta_0) - \tfrac{1}{2} Q_{+\frac{3}{2}}(\cosh \eta_0)~Q^2_{+ \frac{5}{2}}(\cosh \eta_0) \, . </math>

In order to evaluate <math>~C_2(z)</math>, we will need the following pair of expressions in addition to the ones already used:

<math>~Q^0_{m-\tfrac{1}{2}}</math> recurrence with m = 3, gives:     <math>~Q_{+\tfrac{5}{2}}(z_0)</math>

<math>~=</math>

<math>~\frac{8}{5} z~Q_{+\tfrac{3}{2}}(z_0) - \frac{3}{5} Q_{+\tfrac{1}{2}}(z_0)</math>

<math>~\Rightarrow~~~15Q_{+\tfrac{5}{2}}(z_0)</math>

<math>~=</math>

<math>~8 z~\biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr] - 9 \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr]</math>

 

<math>~=</math>

<math>~ z~k_0 K(k_0) \biggl[ 8(4z^2 - 1 ) - 9 \biggr] + [2(z+1)]^{1 / 2} E(k_0) \biggl[-32z^2 + 9 \biggr] </math>

 

<math>~=</math>

<math>~ z~k_0 K(k_0) [ 32z^2 - 17 ] + [2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] \, . </math>

Hence,     <math>~Q_{+\frac{5}{2}}(3)</math>

<math>~=</math>

<math>~0.002080867 \, .</math>

And, setting m = 2 in the above recurrence relation for <math>~Q^2_{m+\frac{1}{2}}(z)</math> gives,

<math>~\biggl[ (m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z) \biggr]_{m=2}</math>

<math>~=</math>

<math>~ \biggl[ (2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \biggr]_{m=2} </math>

<math>~\Rightarrow ~~~ Q^{2}_{+\tfrac{5}{2}} (z) </math>

<math>~=</math>

<math>~ 8z Q_{+\tfrac{3}{2}}^{2}(z) - 7 Q^{2}_{+ \tfrac{1}{2}}(z) </math>

 

<math>~=</math>

<math>~ 8z \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] - 7 Q^{2}_{+ \tfrac{1}{2}}(z) </math>

 

<math>~=</math>

<math>~ 40z Q^{2}_{- \tfrac{1}{2}}(z_0) - [32z^2 +7]Q_{+\tfrac{1}{2}}^{2}(z_0) </math>

 

<math>~=</math>

<math>~ 40z \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} </math>

 

 

<math>~ + \frac{[32z^2 +7]}{4} \biggl\{

z k_0~K ( k_0 )  

~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) \biggr\} </math>

<math>~\Rightarrow ~~~ 4Q^{2}_{+\tfrac{5}{2}} (z) </math>

<math>~=</math>

<math>~ 2^5\cdot 5z \biggl\{ 2^{1 / 2} [(z-1)(z^2-1)]^{-1 / 2} [zE(k_0) ] - 2^{-3 / 2}[(z-1)(z^2-1)]^{-1 / 2} [(z-1)K(k_0)] \biggr\} </math>

 

 

<math>~ + [32z^2 +7] \biggl\{

z k_0~K ( k_0 )  

~-~2^{1 / 2}(z^2+3) [ (z-1)(z^2-1) ]^{-1 / 2} E(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl\{ 2^{11 / 2}\cdot 5 [z^2 ] - 2^{1 / 2} [32z^2 +7] (z^2+3) \biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0) </math>

 

 

<math>~ -~2^{7 / 2}\cdot 5 \biggl\{ [(z-1)(z^2-1)]^{-1 / 2} (z-1) \biggr\} z K(k_0) + [32z^2 +7] \biggl\{ 2^{1 / 2}[z + 1]^{-1 / 2} \biggr\} z K ( k_0 ) </math>

 

<math>~=</math>

<math>~ 2^{1 / 2}\biggl\{ 32z^2 - 33 \biggr\} z [z + 1]^{-1 / 2} K ( k_0 ) -~2^{1 / 2} \biggl\{ 32z^4 - 57 z^2 + 21 \biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0) </math>

 

<math>~=</math>

<math>~ 2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33) z (z-1) K ( k_0 ) -~(32z^4 - 57 z^2 + 21)E(k_0) \biggr] \, . </math>

Hence,     <math>~Q^2_{+\frac{5}{2}}(3)</math>

<math>~=</math>

<math>~0.03377378 \, .</math>

Part B

Let's evaluate <math>~C_2(z)</math> specifically for the case where <math>~z = \cosh\eta_0 = 3</math>, using the already separately evaluated values of the four relevant toroidal functions. We find,

<math>~2C_2(3)</math>

<math>~=</math>

<math>~5Q_{+\frac{5}{2}}(3) Q_{+\frac{3}{2}}^2(3) - Q_{+\frac{3}{2}}(3)~Q^2_{+ \frac{5}{2}}(3) </math>

 

<math>~=</math>

<math>~ 5\cdot ( 0.002080867 ) \times ( 0.132453829 ) - ( 0.014544576 ) \times (0.03377378 ) </math>

 

<math>~=</math>

<math>~ 8.868687\times 10^{-4} \, . </math>

Next, let's develop a consolidated expression for <math>~C_2(z_0)</math> that replaces all the toroidal functions with complete elliptic integrals of the first and second kind.

<math>~2C_2(z_0)</math>

<math>~=</math>

<math>~5Q_{+\frac{5}{2}}(z_0) Q_{+\frac{3}{2}}^2(z_0) - Q_{+\frac{3}{2}}(z_0)~Q^2_{+ \frac{5}{2}}(z_0) </math>

 

<math>~=</math>

<math>~ \frac{1}{3}\biggl\{ z~k_0 K(k_0) [ 32z^2 - 17 ] + [2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] \biggr\} \times \biggl\{ 2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2 - 5 ]K(k_0) -~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z E(k_0) \biggr\} </math>

 

 

<math>~ - \frac{1}{2^2\cdot 3} \biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr\} \times \biggl\{ 2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33) z (z-1) K ( k_0 ) -~(32z^4 - 57 z^2 + 21)E(k_0) \biggr] \biggr\} </math>

<math>~\Rightarrow ~~~ 2^{2} \cdot 3 (z^2-1) C_2(z_0)</math>

<math>~=</math>

<math>~ \biggl\{ K(k_0) z[ 32z^2 - 17 ] + (z+1) E(k_0) [9 -32z^2 ] \biggr\} \times \biggl\{ (z-1) [4 z^2 - 5 ]K(k_0) -~4 (z^2 - 2)z E(k_0) \biggr\} </math>

 

 

<math>~ - ~ \biggl\{ (4z^2 - 1 ) K(k_0) - 4 z(z+1) E(k_0) \biggr\} \times \biggl\{ (32z^2 - 33) z (z-1) K ( k_0 ) -~(32z^4 - 57 z^2 + 21)E(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl\{ (z-1)[ 32z^2 - 17 ] [4 z^2 - 5 ]z K(k_0) \cdot K(k_0) -~4 (z^2 - 2)z^2 [ 32z^2 - 17 ] K(k_0) \cdot E(k_0) \biggr\} </math>

 

 

<math>~ + \biggl\{ (z-1) (z+1) [9 -32z^2 ] [4 z^2 - 5 ]K(k_0) \cdot E(k_0) -~4 (z^2 - 2)z (z+1) [9 -32z^2 ] E(k_0) \cdot E(k_0) \biggr\} </math>

 

 

<math>~ + ~ \biggl\{ (32z^4 - 57 z^2 + 21)(4z^2 - 1 ) K(k_0) \cdot E(k_0) -~(32z^2 - 33) z (z-1)(4z^2 - 1 ) K ( k_0 ) \cdot K(k_0) \biggr\} </math>

 

 

<math>~ + ~ \biggl\{ 4 z(z+1)(32z^2 - 33) z (z-1) K ( k_0 ) \cdot E(k_0) -~4 z(z+1)(32z^4 - 57 z^2 + 21)E(k_0) \cdot E(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~(z-1)\biggl\{ \biggl[ ( 32z^2 - 17 ) (4 z^2 - 5 )z \biggr] -~\biggl[ (32z^2 - 33) z (4z^2 - 1 ) \biggr] \biggr\} K ( k_0 ) \cdot K(k_0) </math>

 

 

<math>~ + \biggl\{ \biggl[ (z-1) (z+1) (9 -32z^2 ) (4 z^2 - 5 )\biggr] -~\biggl[ 4 (z^2 - 2)z^2 ( 32z^2 - 17 ) \biggr] </math>

 

 

<math>~ + ~ \biggl[ (32z^4 - 57 z^2 + 21)(4z^2 - 1 ) \biggr] + ~ \biggl[ 4 z(z+1)(32z^2 - 33) z (z-1)\biggr]\biggr\} K ( k_0 ) \cdot E(k_0) </math>

 

 

<math>~ -~2z(z+1) \biggl\{ \biggl[ 2 (32z^4 - 57 z^2 + 21) \biggr] +~2\biggl[ (z^2 - 2) (9 -32z^2 )\biggr] \biggr\} E(k_0) \cdot E(k_0) </math>

 

<math>~=</math>

<math>~ z(z-1)\biggl\{[ 52 - 64z^2 ] \biggr\} K ( k_0 ) \cdot K(k_0) -~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) </math>

 

 

<math>~ + \biggl\{ \biggl[ 5(32z^4 - 41z^2 + 9 ) \biggr] - \biggl[ (32z^4 - 57 z^2 + 21)\biggr] </math>

 

 

<math>~ + ~ 4z^2\biggl[ (32z^4 - 57 z^2 + 21) + (32z^4 - 65z^2 + 33) + (-32z^4 + 41z^2 -9 ) +~( -32z^4 + 81z^2 - 34 )

\biggr]\biggr\}  K ( k_0 ) \cdot E(k_0)

</math>

 

<math>~=</math>

<math>~ 4z(z-1)\biggl\{ 13 - 16z^2 \biggr\} K ( k_0 ) \cdot K(k_0) -~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) + 8\biggl\{ 16z^4 -13z^2 + 3 \biggr\} K ( k_0 ) \cdot E(k_0) \, . </math>

Finally, let's evaluate this consolidated expression for the specific case of <math>~z_0 = \cosh\eta_0 = 3</math>, remembering that in this specific case <math>~k_0 = 2^{-1 / 2}</math>, <math>~K(k_0) = 1.854074677</math>, and <math>~E(k_0) = 1.350643881</math>. We find,

<math>~2C_2(z_0)</math>

<math>~=</math>

<math>~ [2 \cdot 3 (z^2-1) ]^{-1} \biggl\{ 4z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) -~4z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) + 8[ 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~ [48 ]^{-1} \biggl\{ -24[ 131 ] K ( k_0 ) \cdot K(k_0) -~48 [ 147] E(k_0) \cdot E(k_0) + 8[ 1182 ] K ( k_0 ) \cdot E(k_0) \biggr\} </math>

 

<math>~=</math>

<math>~ 8.8708 \times 10^{-4} \, . </math>

This matches the numerically evaluated expression, from above (6/30/2020). There is a tremendous amount of cancellation between the three key terms in this expression, so the match is only to three significant digits.

Part C

Next …

Useful Relations from Above

<math>~\cosh\eta</math>

<math>~=</math>

<math>~\frac{r_1^2 + r_2^2}{2r_1 r_2} \, ;</math>

<math>~\sinh\eta</math>

<math>~=</math>

<math>~\frac{r_1^2 - r_2^2}{2r_1 r_2} \, ;</math>

<math>~\varpi</math>

<math>~=</math>

<math>~\frac{r_1^2 - r_2^2}{2a} \, ;</math>

<math>~\cosh\eta - \cos\theta</math>

<math>~=</math>

<math>~\frac{2a^2}{r_1 r_2} \, ;</math>

<math>~ \cos\theta</math>

<math>~=</math>

<math>~\frac{r_1^2 + r_2^2-4a^2}{2r_1 r_2} \, ;</math>

<math>~\frac{2}{\coth\eta + 1}</math>

<math>~=</math>

<math>~\frac{4a\varpi}{r_1^2} \, .</math>


Now, from our tabulation of example recurrence relations, we see that,

<math>~ P_{+\frac{3}{2}}(\cosh\eta)</math>

<math>~=</math>

<math>~\frac{4}{3} \cdot \cosh\eta ~P_{+\frac{1}{2}}(\cosh\eta) - \frac{1}{3} ~ P_{-\frac{1}{2}}(\cosh\eta) </math>

 

<math>~=</math>

<math>~\frac{4}{3} \cdot \cosh\eta \biggl[ \frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) \biggr] - \frac{1}{3} ~ \biggl[ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr]</math>

 

<math>~=</math>

<math>~\frac{2^{1 / 2}}{3\pi} \biggl[ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) - (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr] \, ,</math>

where, as above,

<math>~ k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} \, . </math>

So we have,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>

<math>~=</math>

<math>~ -\frac{2^{5/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta) \biggl\{ (\cosh\eta - \cos\theta)^{1 / 2}P_{+\frac{3}{2}}(\cosh\eta) \biggr\} </math>

 

<math>~=</math>

<math>~ -\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} \biggl\{ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) - (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \biggr\} </math>

 

<math>~=</math>

<math>~ -\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} </math>

 

 

<math>~ \times \biggl\{ 4 \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \biggl[\frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{+1 / 2} \biggl[ \frac{4a}{r_1^2} \biggl( \frac{r_1^2 - r_2^2}{2a} \biggr)\biggr]^{-1 / 2} \boldsymbol{E}(k) - \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{-1 / 2} ~\biggl[ \frac{4a}{r_1^2}\biggl( \frac{r_1^2 - r_2^2}{2a} \biggr) \biggr]^{1 / 2} \boldsymbol{K}(k) \biggr\} </math>

 

<math>~=</math>

<math>~ -\frac{2^{9/2} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta) \times \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} \, . </math>

Finally, inserting the expression for <math>~\sinh^2\eta_0~ C_2(\cosh\eta_0) = (z_0^2-1)C_2(z_0)</math> that we have derived, above, gives,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>

<math>~=</math>

<math>~ -\frac{2^{9/2} }{3^3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \times \cos(2\theta) \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} </math>

 

 

<math>~ \times \biggl\{ z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) -~z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) + 2 [ 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) \biggr\} \, . </math>

Summary

Once the major ( R ) and minor ( d ) radii of the torus have been specified, two key model parameters can be immediately determined, namely,

<math>~a^2 \equiv R^2 - d^2\, ,</math>       and,       <math>~\cosh\eta_0 \equiv \frac{R}{d} \, ,</math>

in which case also, <math>~\sinh\eta_0 = a/d \, .</math> Once the mass-density ( ρ0 ) of the torus has been specified, the torus mass is given by the expression,

<math>~M = 2\pi^2 \rho_0 d^2 R \, .</math>

In addition to the principal pair of meridional-plane coordinates, <math>~(\varpi, z)</math>, it is useful to define the pair of distances,

<math>~r_1^2</math>

<math>~\equiv</math>

<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math>

<math>~r_2^2</math>

<math>~\equiv</math>

<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math>

where, the equatorial plane of the torus is located at <math>~z = Z_0</math>. As we have shown above, the leading (n = 0) term in Wong's (1973) series-expression for the gravitational potential anywhere outside the torus is,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ r_1 } \cdot \boldsymbol{K}(k) </math>

 

 

<math>~ \times \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, . </math>

where, the two distinctly different arguments — one with, and one without a zero subscript — of the complete elliptic-integral functions are,

<math>~k</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} = \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} \, , </math>

<math>~k_0</math>

<math>~\equiv</math>

<math>~ \biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, . </math>

As we also have shown above, the second (n = 1) term in Wong's (1973) series-expression for the exterior gravitational potential is,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) </math>

 

 

<math>~\times \biggl\{ K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] +~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] -~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] \biggr\} \, . </math>

Note that a transformation from the <math>~(r_1, r_2)</math> coordinate pair to the toroidal-coordinate pair <math>~(\eta, \theta)</math> includes the expression,

<math>~\cos\theta</math>

<math>~=</math>

<math>~ \frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, . </math>

So this (n = 1) term's explicit dependence on "cos(nθ)" is clear. Finally, the third (n = 2) term in Wong's (1973) series-expression for the exterior gravitational potential is,

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math>

<math>~=</math>

<math>~ -\frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \times \cos(2\theta) \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} </math>

 

 

<math>~ \times \frac{2^{3 / 2}}{3^2}\biggl\{ K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13] + 2 K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ] </math>

 

 

<math>~ -~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ] \biggr\} \, . </math>

The Huré, et al (2020) Presentation


Work-in-progress.png

Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
|   Go Home   |


Notation

In Huré, et al. (2020), the major and minor radii of the torus surface ("shell") are labeled, respectively, Rc and b, and their ratio is denoted,

<math>~e \equiv \frac{b}{R_c} \, .</math>

Huré, et al. (2020), §2, p. 5826, Eq. (1)

The authors work in cylindrical coordinates, <math>~(R, Z)</math>, whereas we refer to this same coordinate-pair as, <math>~(\varpi_W, z_W)</math>. The quantity,

<math>~\Delta^2</math>

<math>~\equiv</math>

<math>~ [R + (R_c + b\cos\theta_H)]^2 + [Z - b\sin\theta_H]^2 \, . </math>

Huré, et al. (2020), §2, p. 5826, Eqs. (5) & (7)

We have affixed the subscript "H" to their meridional-plane angle, θ, to clarify that it has a different coordinate-base definition from the meridional-plane angle, θ, that appears in our above discussion of Wong's (1973) work. In their paper, the subscript "0" is used in the case of an infinitesimally thin hoop <math>~(b \rightarrow 0)</math>, that is to say,

<math>~\Delta_0^2</math>

<math>~=</math>

<math>~ [R + R_c]^2 + Z^2 \, . </math>

Huré, et al. (2020), §3, p. 5827, Eq. (13)

Generally, the argument (modulus) of the complete elliptic integral functions is,

<math>~k_H</math>

<math>~=</math>

<math>~ \frac{2}{\Delta}\biggl[ R (R_c + b\cos\theta_H) \biggr]^{1 / 2} \, , </math>

Huré, et al. (2020), §2, p. 5826, Eq. (4)

and, as stated in the first sentence of their §3, reference may also be made to the complementary modulus,

<math>~k'_H</math>

<math>~\equiv</math>

<math>~[1 - k_H^2]^{1 / 2} \, .</math>

(Again, we have affixed the subscript "H" in order to differentiate from the modulus employed by Wong (1973).) And in the case of an infinitesimally thin hoop <math>~(b\rightarrow 0)</math>,

<math>~[k^2_H]_0</math>

<math>~=</math>

<math>~ \frac{4R R_c}{\Delta_0^2} \, . </math>

Huré, et al. (2020), §3, p. 5827, Eq. (12)

Key Finding

On an initial reading, it appears as though the most relevant section of the Huré, et al. (2020) paper is §8 titled, The Solid Torus. They write the gravitational potential in terms of the series expansion,

<math>~\Psi_\mathrm{grav}(\vec{r})</math>

<math>~\approx</math>

<math>~ \Psi_0 + \sum\limits_{n=1}^N \Psi_n \, , </math>

Huré, et al. (2020), §7, p. 5831, Eq. (42)

where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,

<math>~\Psi_0 </math>

<math>~=</math>

<math>~ - \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}([k_H]_0) \biggr] </math>

Huré, et al. (2020), §8, p. 5832, Eqs. (52) & (53)

and,

<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math>

<math>~=</math>

<math>~ - \frac{G\pi \rho_0 R_c b^2}{4 (k'_H)^2 \Delta_0^3} \biggl\{ [\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k_H) - (k'_H)^2 \Delta_0^2 \boldsymbol{K}(k_H) \biggr\} \, . </math>

Huré, et al. (2020), §8, p. 5832, Eq. (54)

Rewriting this last expression in a form that can more readily be compared with Wong's work, we obtain,

<math>~\frac{2^3\pi}{e^2} \biggl[ \frac{ \Psi_1 + \Psi_2 }{GM} \biggr]</math>

<math>~=</math>

<math>~ - \frac{ 1 }{(k'_H)^2 \Delta_0^3}\biggl\{ [\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k_H) - (k'_H)^2 \Delta_0^2 \boldsymbol{K}(k_H) \biggr\} </math>

 

<math>~=</math>

<math>~ - \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \frac{\boldsymbol{E}(k_H)}{\Delta_0} + \frac{\boldsymbol{K}(k_H)}{\Delta_0} \, . </math>

Hence, also,

<math>~ \frac{ \Psi_0 }{GM} + \biggl[ \frac{ \Psi_1 + \Psi_2 }{GM} \biggr]</math>

<math>~=</math>

<math>~- \frac{2}{\pi}\biggl\{ \frac{\boldsymbol{K}([k_H]_0)}{\Delta_0} \biggr\} + \frac{e^2}{2^3\pi}\biggl\{ \frac{\boldsymbol{K}(k_H)}{\Delta_0} - \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \frac{\boldsymbol{E}(k_H)}{\Delta_0} \biggr\} </math>

 

<math>~=</math>

<math>~- \frac{2}{\pi \Delta_0}\biggl\{ \boldsymbol{K}([k_H]_0) - \frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H) \biggr\} - \frac{2}{\pi\Delta_0} \cdot \frac{e^2}{2^4}\biggl\{\biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \biggr\} \boldsymbol{E}(k_H) </math>

<math>~\Rightarrow ~~~- \frac{\pi \Delta_0}{2} \biggl[ \frac{ \Psi_0 + \Psi_1 + \Psi_2 }{GM} \biggr] </math>

<math>~=</math>

<math>~ \boldsymbol{K}([k_H]_0) - \frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H) + \frac{e^2}{2^4} \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \boldsymbol{E}(k_H) \, . </math>

Compare First Terms

Rewriting the first term in the Huré, et al. (2020) series expression for the potential, we have,

<math>~\frac{\Psi_0}{GM} </math>

<math>~=</math>

<math>~ - \frac{2}{\pi} \biggl\{ \frac{\boldsymbol{K}([k_H]_0) }{[ (\varpi_W + R_c)^2 + z_W^2]^{1 / 2}} \biggr\} \, , </math>

where,

<math>~[k_H]_0</math>

<math>~=</math>

<math>~ \biggl[ \frac{4\varpi_W R_c}{\Delta_0^2} \biggr]^{1 / 2} = \biggl\{ \frac{4\varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2} \biggr\}^{1 / 2} \, . </math>

For comparison, the first term in Wong's expression is,

<math>~\frac{\Phi_\mathrm{W0}}{GM} </math>

<math>~=</math>

<math>~ - \biggl( \frac{2^{3} }{3\pi^3} \biggr) \Upsilon_{W0}(\eta_0) \biggl\{ \frac{\boldsymbol{K}(k) }{ r_1 } \biggr\}\, , </math>

where,

<math>~a^2 </math>

<math>~\equiv</math>

<math>~ R^2 - d^2 ~~~\Rightarrow ~~~ a = R_c(1 - e^2)^{1 / 2} \, , </math>

<math>~r_1^2</math>

<math>~\equiv</math>

<math>~\biggl[ \varpi + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + \biggl[z - Z_0 \biggr]^2 \, ,</math>

<math>~k</math>

<math>~\equiv</math>

<math>~ \biggl\{ \frac{4\varpi R_c(1-e^2)^{1 / 2}}{[\varpi + R_c(1-e^2)^{1 / 2}]^2 + [z - Z_0]^2} \biggr\}^{1 / 2} \, , </math>

<math>~\Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ \frac{\sinh\eta_0}{\cosh\eta_0}\biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, , </math>

 

<math>~=</math>

<math>~ \frac{(1-e^2)^{1 / 2}}{e^2} \biggl\{ - K(k_0)\cdot K(k_0) (1-e) + 2K(k_0)\cdot E(k_0) (1+e^2) - E(k_0)\cdot E(k_0) (1+e) \biggr\} \, , </math>

<math>~k_0</math>

<math>~=</math>

<math>~ \biggl[ \frac{2}{1+1/e} \biggr]^{1 / 2} = \biggl[ \frac{2e}{1+e} \biggr]^{1 / 2} \, . </math>

This expression is correct for any value of the aspect ratio, <math>~e</math>. But let's set <math>~Z_0 = 0</math> — as Huré, et al. (2020) have done — then see how the expression simplifies for an infinitesimally thin hoop, that is, if we let <math>~e \rightarrow 0</math>. First we note that,

<math>~k\biggr|_{e\rightarrow 0}</math>

<math>~=</math>

<math>~ \biggl\{ \frac{4\varpi R_c}{[\varpi + R_c]^2 + z^2} \biggr\}^{1 / 2} \, , </math>

so in this limit the modulus of the complete elliptic integral of the first kind becomes identical to the modulus used by Huré, et al. (2020), <math>~[k_H]_0</math>. Next, we note that,

<math>~r_1\biggr|_{e\rightarrow 0}</math>

<math>~=</math>

<math>~[( \varpi + R_c )^2 + z^2]^{1 / 2} \, .</math>

As a result, we can write,

<math>~\frac{\Phi_\mathrm{W0}}{GM} \biggr|_{e\rightarrow 0}</math>

<math>~=</math>

<math>~ \frac{\Psi_0}{GM} \cdot \biggl[ \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W0}(\eta_0) \biggr]_{e\rightarrow 0} \, . </math>

Now let's evaluate the coefficient, <math>~\Upsilon_{W0}</math>, in the limit of <math>~e \rightarrow 0</math>.


<math>~\Upsilon_{W0}</math>, in the limit of <math>~e \rightarrow 0</math>.

First, drawing from our separate examination of the behavior of complete elliptic integral functions, we appreciate that,

<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot E(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 ~+~\frac{1}{2^5} ~k_0^4 ~+~\frac{1}{2^5} ~ k_0^6 + \mathcal{O}(k_0^{8}) \, , </math>

<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot K(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 + \frac{1}{2} k_0^2 + \frac{11}{2^5} ~k_0^4 + \frac{17}{2^6} ~ k_0^6 + \mathcal{O}(k_0^{8}) \, , </math>

<math>~\frac{2^2}{\pi^2} \biggl[E(k_0) \cdot E(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~-~\frac{1}{2^6} ~ k_0^6 + \mathcal{O}(k_0^{8}) \, . </math>

Next, employing the binomial expansion, we find that,

<math>~k_0^2</math>

<math>~=</math>

<math>~2e(1+e)^{-1}</math>

 

<math>~=</math>

<math>~2e( 1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) \, ;</math>

and,

<math>~k_0^4</math>

<math>~=</math>

<math>~4e^2(1+e)^{-2}</math>

 

<math>~=</math>

<math>~4e^2( 1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) \, .</math>

Hence, we have,

<math>~\frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + \frac{1}{2} k_0^2 + \frac{11}{2^5} ~k_0^4 + \mathcal{O}(k_0^{6})

\biggr]

</math>

 

 

<math>~ + 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4 + \mathcal{O}(k_0^{6})

\biggr]

</math>

 

 

<math>~ - (1+e) \biggl[ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~ + \mathcal{O}(k_0^{6}) \biggr] </math>

 

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + e ( 1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) + \frac{11}{2^3} \cdot ~e^2( 1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) + \mathcal{O}(e^{3})

\biggr]

</math>

 

 

<math>~ + 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2( 1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) + \mathcal{O}(e^{3})

\biggr]

</math>

 

 

<math>~ - (1+e) \biggl[ 1 - e ~( 1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) ~ -~ \frac{1}{2^3} \cdot~ e^2( 1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) ~ + \mathcal{O}(e^{3}) \biggr] </math>

 

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + e ( 1 - e ) + \frac{11}{2^3} \cdot ~e^2

\biggr]

+ 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2

\biggr]

- (1+e) \biggl[ 1 - e ~( 1 - e ) ~ -~ \frac{1}{2^3} \cdot~ e^2 ~ \biggr] + \mathcal{O}(e^{3}) </math>

 

<math>~=</math>

<math>~ - \biggl[ 1 + e ( 1 - e ) + \frac{11}{2^3} \cdot ~e^2

\biggr]

+e \biggl[ 1 + e \biggr] + 2 \biggl[ 1 ~+~\frac{1}{2^3} \cdot~e^2

\biggr]

+ 2 e^2 - \biggl[ 1 - e ~( 1 - e ) ~ -~ \frac{1}{2^3} \cdot~ e^2 ~ \biggr] - e \biggl[ 1 - e \biggr] + \mathcal{O}(e^{3}) </math>

 

<math>~=</math>

<math>~ -1 - e + e^2 - \frac{11}{2^3} \cdot ~e^2 + e + e^2 + 2 ~+~\frac{1}{2^2} \cdot~e^2 + 2 e^2 -1 + e - e^2 ~ +~ \frac{1}{2^3} \cdot~ e^2 ~ - e +e^2 + \mathcal{O}(e^{3}) </math>

 

<math>~=</math>

<math>~\frac{e^2}{2^3} \biggl[ 2^5 - 11~ ~+~3 \biggr]~ + \mathcal{O}(e^{3}) </math>

 

<math>~=</math>

<math>~ 3e^2 + \mathcal{O}(e^{3}) </math>

<math>~\Rightarrow ~~~ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ [1 + \mathcal{O}(e^{1})]\cdot (1 - e^2)^{1 / 2} </math>

<math>~\Rightarrow ~~~ \biggl[ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0) \biggr]_{e\rightarrow 0}</math>

<math>~=</math>

<math>~ 1 \, .</math>

Given that,

<math>~ \biggl[ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0) \biggr]_{e\rightarrow 0}</math>

<math>~=</math>

<math>~ 1 \, ,</math>

we conclude that,

<math>~\frac{\Phi_\mathrm{W0}}{GM} \biggr|_{e\rightarrow 0}</math>

<math>~=</math>

<math>~ \frac{\Psi_0}{GM} \, , </math>

that is, we conclude that <math>~\Psi_0</math> matches <math>~\Phi_{W0}</math> in the limit of, <math>~e\rightarrow 0</math>.

Go to Higher Order

Let's keep higher order terms in Wong's n = 0 component, and let's examine contributions to the same order that come from Wong's n = 1 and (if necessary) n = 2 components.

First, note that,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \Delta_0 \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W0}(\eta_0) \biggl\{ \frac{\boldsymbol{K}(k) }{ r_1 } \biggr\}\, . </math>


Keeping Higher Order in Wong's First Component

<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot E(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 ~+~\frac{1}{2^5} ~k_0^4 ~+~\frac{1}{2^5} ~ k_0^6 ~+~\frac{231}{2^{13}} ~ k_0^8 + \mathcal{O}(k_0^{10}) \, , </math>

<math>~\frac{2^2}{\pi^2} \biggl[K(k_0) \cdot K(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 + \frac{1}{2} k_0^2 + \frac{11}{2^5} ~k_0^4 + \frac{17}{2^6} ~ k_0^6 + \frac{1787}{2^{13}} ~k^8 + \mathcal{O}(k_0^{10}) \, , </math>

<math>~\frac{2^2}{\pi^2} \biggl[E(k_0) \cdot E(k_0) \biggr]</math>

<math>~=</math>

<math>~ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~-~\frac{1}{2^6} ~ k_0^6 ~-~\frac{77}{2^{13}} ~ k_0^8 + \mathcal{O}(k_0^{10}) \, . </math>

Add One Additional Term

<math>~\frac{2^2}{\pi^2} \biggl[K(k) \cdot E(k) \biggr]</math>

<math>~=</math>

<math>~ \biggl\{ 1 + \biggl( \frac{1}{2} \biggr)^2k^2 + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 + \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8 + \cdots + \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n} + \cdots \biggr\} </math>

 

 

<math>~ \times~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 - \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5} - \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7} ~-~ \cdots

\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}

~-~ \cdots \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 - \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5} - \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7} \biggr\} ~+~ \biggl\{ \biggl( \frac{1}{2} \biggr)^2k^2 \biggr\} \times~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 - \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5} \biggr\} </math>

 

 

<math>~+~ \biggl\{ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 \biggr\} \times~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 \biggr\} ~+~ \biggl\{ \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 \biggr\}\times \biggl\{1 - \frac{1}{2^2} ~k^2 \biggr\} + \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8 + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \biggl(\frac{5}{2^8}\biggr)~k^6 - \biggl( \frac{5^2 \cdot 7}{2^{14}}\biggr)~k^8 \biggr\} ~+~ \biggl\{ \biggl( \frac{1}{2^2} \biggr)k^2 - \frac{1}{2^4} ~k^4 - \frac{3}{2^8}~ k^6 -\frac{5}{2^{10}} ~k^8 \biggr\} </math>

 

 

<math>~ ~+~ \biggl( \frac{3^2}{2^6}\biggr) k^4 ~-~ \biggl( \frac{3^2}{2^8}\biggr) k^6 ~-~ \biggl(\frac{3^3}{2^{12}}\biggr) ~k^8 ~+~ \biggl( \frac{5^2}{2^8}\biggr) k^6 ~-~\biggl(\frac{5^2}{2^{10}}\biggr) ~k^8 ~+~\biggl(\frac{5^2\cdot 7^2}{2^{14}}\biggr) ~k^8 + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ 1 ~+~\biggl[ \frac{1}{2^2} - \frac{1}{2^2} \biggr] ~k^2 ~+~\biggl[ \frac{3^2}{2^6} - \frac{3}{2^6} - \frac{1}{2^4} \biggr]~k^4 ~+~\biggl[ \frac{5^2}{2^8} - \frac{5}{2^8} - \frac{3}{2^8} ~-~\frac{3^2}{2^8} \biggr]~ k^6 + \biggl[ \biggl(\frac{5^2\cdot 7^2}{2^{14}}\biggr) - \biggl(\frac{5^2}{2^{10}}\biggr) - \biggl(\frac{3^3}{2^{12}}\biggr) - \frac{5}{2^{10}} - \biggl( \frac{5^2 \cdot 7}{2^{14}}\biggr) \biggr]~k^8 + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ 1 ~+~\frac{1}{2^5} ~k^4 ~+~\frac{1}{2^5} ~ k^6 ~+~\frac{231}{2^{13}} ~ k^8 + \mathcal{O}(k^{10}) </math>

<math>~\frac{2^2}{\pi^2} \biggl[K(k) \cdot K(k) \biggr]</math>

<math>~=</math>

<math>~ \biggl\{ 1 + \biggl( \frac{1}{2} \biggr)^2k^2 + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 + \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8 + \cdots + \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n} + \cdots \biggr\} </math>

 

 

<math>~ \times~ \biggl\{ 1 + \biggl( \frac{1}{2} \biggr)^2k^2 + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 + \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 k^8 + \cdots + \biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 k^{2n} + \cdots \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 + \frac{5^2}{2^8} k^6 + \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} \times~ \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 + \frac{5^2}{2^8} k^6 + \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 + \frac{5^2}{2^8} k^6 + \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} ~+~\frac{1}{2^2} k^2 \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 + \frac{5^2}{2^8} k^6 \biggr\} ~+~\frac{3^2}{2^6} k^4 \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 \biggr\} ~+~ \biggl\{ \frac{5^2}{2^8} k^6 \biggr\} \biggl\{ 1 + \frac{1}{2^2} k^2 \biggr\} ~+~ \biggl\{ \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 + \frac{1}{2^2} k^2 + \frac{3^2}{2^6} k^4 + \frac{5^2}{2^8} k^6 + \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} ~+~ \biggl\{ \frac{1}{2^2} k^2 + \frac{1}{2^4} k^4 + \frac{3^2}{2^8} k^6 + \frac{5^2}{2^{10}} k^8 \biggr\} ~+~ \biggl\{ \frac{3^2}{2^6} k^4 ~+~\frac{3^2}{2^8} k^6 ~+~\frac{3^4}{2^{12}} k^8 \biggr\} ~+~ \biggl\{ \frac{5^2}{2^8} k^6 ~+~\frac{5^2}{2^{10}} k^8 \biggr\} ~+~ \biggl\{ \frac{5^2 \cdot 7^2}{2^{14}} k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ 1 + \biggl[ \frac{1}{2^2} ~+~ \frac{1}{2^2} \biggr] ~k^2 + \biggl[ \frac{3^2}{2^6} + \frac{1}{2^4} ~+~\frac{3^2}{2^6} \biggr]~k^4 + \biggl[ \frac{5^2}{2^8} + \frac{3^2}{2^8} ~+~\frac{3^2}{2^8} ~+~\frac{5^2}{2^8} \biggr]~ k^6 ~+~\biggl[ \frac{5^2 \cdot 7^2}{2^{14}}+ \frac{5^2}{2^{10}} ~+~\frac{3^4}{2^{12}} ~+~\frac{5^2}{2^{10}} ~+~\frac{5^2 \cdot 7^2}{2^{14}} \biggr]k^8 + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ 1 + \frac{1}{2} k^2 + \frac{11}{2^5} ~k^4 + \frac{17}{2^6} ~ k^6 + \frac{1787}{2^{13}} ~k^{8} + \mathcal{O}(k^{10}) </math>


<math>~\frac{2^2}{\pi^2} \biggl[E(k) \cdot E(k) \biggr]</math>

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 - \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5} - \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7} ~-~ \cdots

\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}

~-~ \cdots \biggr\} </math>

 

 

<math>~ \times~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{1^2\cdot 3}{2^2\cdot 4^2}~ k^4 - \biggl(\frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2~\frac{ k^6 }{5} - \biggl( \frac{1\cdot 3\cdot 5 \cdot 7}{2^7 \cdot 3}\biggr)^2 \frac{k^8}{7} ~-~ \cdots

\biggl[ \frac{(2n-1)!!}{2^n n!} \biggr]^2 \frac{k^{2n}}{2n-1}

~-~ \cdots \biggr\} </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \frac{5}{2^8}~ k^6 - \frac{5^2\cdot 7}{2^{14}} ~k^8 \biggr\} \times \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \frac{5}{2^8}~ k^6 - \frac{5^2\cdot 7}{2^{14}} ~k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \frac{5}{2^8}~ k^6 - \frac{5^2\cdot 7}{2^{14}} ~k^8 \biggr\} ~+~ \biggl\{- \frac{1}{2^2} ~k^2 \biggr\} \times \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \frac{5}{2^8}~ k^6 \biggr\} </math>

 

 

<math>~ ~+~ \biggl\{ - \frac{3}{2^6}~ k^4 \biggr\} \times \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 \biggr\} ~+~ \biggl\{ - \frac{5}{2^8}~ k^6 \biggr\} \times \biggl\{ 1 - \frac{1}{2^2} ~k^2 \biggr\} ~+~ \biggl\{ - \frac{5^2\cdot 7}{2^{14}}k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ \biggl\{ 1 - \frac{1}{2^2} ~k^2 - \frac{3}{2^6}~ k^4 - \frac{5}{2^8}~ k^6 - \frac{5^2\cdot 7}{2^{14}} ~k^8 \biggr\} ~+~ \biggl\{ - \frac{1}{2^2} ~k^2 + \frac{1}{2^4} ~k^4 + \frac{3}{2^8}~ k^6 + \frac{5}{2^{10}}~k^8 \biggr\} </math>

 

 

<math>~ ~+~ \biggl\{ ~-~ \frac{3}{2^6}~ k^4 ~+~ \frac{3}{2^8}~ k^6 + \frac{3^2}{2^{12}}~k^8 \biggr\} ~+~ \biggl\{ ~-~\frac{5}{2^8}~ k^6 + \frac{5}{2^{10}}~k^8 \biggr\} ~+~ \biggl\{ ~-~ \frac{5^2\cdot 7}{2^{14}}k^8 \biggr\} + \mathcal{O}(k^{10}) </math>

<math>~</math>

<math>~=</math>

<math>~ 1 + \biggl[ - \frac{1}{2^2}- \frac{1}{2^2} \biggr]k^2 + \biggl[ - \frac{3}{2^6}+ \frac{1}{2^4}~-~ \frac{3}{2^6} \biggr] k^4 + \biggl[ - \frac{5}{2^8}+ \frac{3}{2^8}~+~ \frac{3}{2^8}~-~\frac{5}{2^8} \biggr] k^6 + \biggl[ - \frac{5^2\cdot 7}{2^{14}} + \frac{5}{2^{10}}+ \frac{3^2}{2^{12}}+ \frac{5}{2^{10}}~-~ \frac{5^2\cdot 7}{2^{14}} \biggr] k^8 + \mathcal{O}(k^{10}) </math>

<math>~</math>

<math>~=</math>

<math>~ 1 + \biggl[ - \frac{2}{2^2} \biggr]k^2 + \biggl[ - \frac{3}{2^5}+ \frac{2}{2^5} \biggr] k^4 + \biggl[ - \frac{5}{2^7}+ \frac{3}{2^7} \biggr] k^6 + \biggl[ - \frac{5^2\cdot 7}{2^{13}} + \frac{5\cdot 2^4}{2^{13}}+ \frac{2 \cdot 3^2}{2^{13}}\biggr] k^8 + \mathcal{O}(k^{10}) </math>

 

<math>~=</math>

<math>~ 1 - \frac{1}{2} ~k^2 ~-~ \frac{1}{2^5} ~ k^4 ~-~\frac{1}{2^6} ~ k^6 ~-~\frac{77}{2^{13}} ~ k^8 + \mathcal{O}(k^{10}) </math>


Next, employing the binomial expansion, we find that,

<math>~k_0^2</math>

<math>~=</math>

<math>~2e(1+e)^{-1}</math>

 

<math>~=</math>

<math>~2e( 1 - e +e^2 - e^3 + e^4 - e^5 + \cdots ) \, ;</math>

<math>~k_0^4</math>

<math>~=</math>

<math>~4e^2(1+e)^{-2}</math>

 

<math>~=</math>

<math>~4e^2( 1 - 2e + 3e^2 - 4e^3 + 5e^4 - 6e^5 + \cdots ) \, ;</math>

<math>~k_0^6</math>

<math>~=</math>

<math>~2^3e^3(1+e)^{-3}</math>

 

<math>~=</math>

<math>~2^3e^3( 1 - 3e + 6e^2 - 10e^3 + 15e^4 - 21e^5 + \cdots ) \, ;</math>

<math>~k_0^8</math>

<math>~=</math>

<math>~2^4e^4(1+e)^{-4}</math>

 

<math>~=</math>

<math>~2^4e^4(1 - 4e + 10 e^2 - 20e^3 + 35e^4 - 56e^5 + \cdots) \, .</math>

Hence, we have,

<math>~\frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + \frac{1}{2} k_0^2 + \frac{11}{2^5} ~k_0^4 + \frac{17}{2^6} ~ k_0^6 + \frac{1787}{2^{13}} ~k_0^8 + \mathcal{O}(k_0^{10})

\biggr]

</math>

 

 

<math>~ + 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4 ~+~\frac{1}{2^5} ~ k_0^6 ~+~ \frac{231}{2^{13}}~k_0^8 + \mathcal{O}(k_0^{10})

\biggr]

</math>

 

 

<math>~ - (1+e) \biggl[ 1 - \frac{1}{2} ~k_0^2 ~-~ \frac{1}{2^5} ~ k_0^4 ~ ~-~\frac{1}{2^6} ~ k_0^6 ~-~\frac{77}{2^{13}}~k_0^8 + \mathcal{O}(k_0^{10}) \biggr] </math>

 

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + e ( 1 - e +e^2 -e^3 ) + \frac{11}{2^3} \cdot ~e^2( 1 - 2e + 3e^2) + \frac{17}{2^6} ~\cdot 2^3 e^3 ( 1 - 3e) + \frac{1787}{2^{13}} \cdot 2^4e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ + 2 (1+e^2) \biggl[ 1 ~+~\frac{1}{2^5} \cdot~4e^2( 1 - 2e + 3e^2) ~+~\frac{1}{2^5} ~ 2^3e^3 (1-3e) ~+~\frac{231}{2^{13}} \cdot 2^4e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ - (1+e) \biggl[ 1 - e ~( 1 - e +e^2 -e^3) ~ -~ \frac{1}{2^5} \cdot~ 4e^2( 1 - 2e +3e^2) ~ ~-~\frac{1}{2^6} ~ 2^3e^3(1 - 3e) ~-~\frac{77}{2^{13}}~2^4e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ - 2^{-9}(1-e) \biggl[ 512 (1+ e - e^2 +e^3 -e^4 ) + 704 \cdot ~( e^2 - 2e^3 + 3e^4) + 1088 ~\cdot ( e^3 - 3e^4) + 1787 \cdot e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ + (1+e^2) 2^{-9}\biggl[ 1024 ~+~128 \cdot~( e^2 - 2e^3 + 3e^4) ~+~256 ~ (e^3-3e^4) ~+~462 \cdot e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ - 2^{-9}(1+e) \biggl[ 512 ~(1 -e + e^2 -e^3 + e^4) ~ -~ 64 \cdot~ ( e^2 - 2e^3 +3e^4) ~ ~-~64 ~ (e^3 - 3e^4) ~-~77~e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ - 2^{-9}(1-e) \biggl[ 512 + 512e + 192e^2 + e^3(512 - 1408 + 1088) + e^4(704-512 - 3264 + 1787) + \mathcal{O}(e^{5}) \biggr] </math>

 

 

<math>~ + 2^{-9}(1+e^2) \biggl[ 1024 + 128e^2 + e^3(-256 + 256 ) + e^4(384 -768 + 462) + \mathcal{O}(e^{5}) \biggr] </math>

 

 

<math>~ - 2^{-9}(1+e) \biggl[ 512 - 512e + e^2(512 - 64 ) + e^3(-512 +128 -64 ) + e^4(512 - 192 - 192 - 77) + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ - 2^{-9}(1-e) \biggl[ 512 + 512e + 192e^2 + 192e^3 - 1285 e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

 

<math>~ + 2^{-9}(1+e^2) \biggl[ 1024 + 128e^2 + 78e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

 

<math>~ - 2^{-9}(1+e) \biggl[ 512 - 512e + 448e^2 - 448 e^3 + 51e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ 2^{-9}\biggl[ (- 192+ 128 - 448)e^2 + (- 192 + 448) e^3 + (1285 + 78- 51)e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

 

<math>~ + 2^{-9} e \biggl[ 1024e + (192- 448)e^2 + (192+ 448) e^3 + \mathcal{O}(e^{4}) \biggr] + 2^{-9} e^2 \biggl[ 1024 + 128e^2 + \mathcal{O}(e^{3}) \biggr] </math>

 

<math>~=</math>

<math>~ 2^{-9} \biggl[ (- 192+ 128 - 448)e^2 + 2048 e^2 + (1285 + 78- 51)e^4 + (192+ 448) e^4 + 128e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ 2^{-9} \biggl[ 1536e^2 + 2080e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ 3e^2 + \biggl[ \frac{5\cdot 13}{2^4}\biggr] e^4 + \mathcal{O}(e^{5}) </math>

<math>~\Rightarrow ~~~ \frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} \, . </math>

Hence,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ [1 + \mathcal{O}(e^{2})]\cdot (1 - e^2)^{1 / 2} \biggl\{ \frac{\boldsymbol{K}(k) }{ r_1 } \biggr\}\Delta_0 \, , </math>

or, more precisely,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} \biggl\{ \frac{\boldsymbol{K}(k) }{ r_1 } \biggr\}\Delta_0 \, . </math>

Next Factors

Now,

<math>~\Delta_0^2</math>

<math>~=</math>

<math>~ (\varpi_W + R_c)^2 + z_W^2 \, , </math>

<math>~r_1^2</math>

<math>~=</math>

<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2 \, ,</math>

<math>~\Rightarrow ~~~ r_1^2 - \Delta_0^2</math>

<math>~=</math>

<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2 - \biggl[ (\varpi_W + R_c)^2 + z_W^2 \biggr]</math>

 

<math>~=</math>

<math>~\varpi_W^2 + 2\varpi_W R_c (1 - e^2 )^{1 / 2} + R_c^2 (1 - e^2 ) + z_W^2 - [\varpi_W^2 + 2\varpi_W R_c + R_c^2 + z_W^2 ]</math>

 

<math>~=</math>

<math>~2\varpi_W R_c [(1 - e^2 )^{1 / 2} - 1] -e^2 R_c^2 \, . </math>


Again, drawing from the binomial theorem, we have,

<math>~(1 -e^2)^{1 / 2}</math>

<math>~=</math>

<math>~ 1 - \frac{1}{2}e^2 + \biggl[\frac{ \tfrac{1}{2}(-\tfrac{1}{2}) }{ 2 } \biggr]e^4 - \biggl[ \frac{ \tfrac{1}{2}(-\tfrac{1}{2} )(-\tfrac{3}{2} ) }{ 3! } \biggr]e^6 + \biggl[ \frac{ \tfrac{1}{2} (-\tfrac{1}{2})(-\tfrac{3}{2})(-\tfrac{5}{2}) }{ 4! } \biggr]e^8 + \cdots </math>

 

<math>~=</math>

<math>~ 1 - \frac{1}{2}e^2 - \frac{1}{2^3} e^4 - \frac{1}{2^4}e^6 - \frac{5}{2^7} e^8 - \mathcal{O}(e^{10}) \, . </math>


<math>~\Rightarrow ~~~ r_1^2 - \Delta_0^2</math>

<math>~=</math>

<math>~\varpi_W R_c \biggl[- e^2 - \frac{1}{2^2} e^4 - \frac{1}{2^3}e^6 - \frac{5}{2^6} e^8 - \mathcal{O}(e^{10}) \biggr] -e^2 R_c^2 </math>

<math>~\Rightarrow ~~~\frac{ r_1^2}{\Delta_0^2} </math>

<math>~=</math>

<math>~1

-e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{\Delta_0^2}\biggr]

- \frac{\varpi_W R_c}{\Delta_0^2} \biggl[\frac{1}{2^2} e^4 + \frac{1}{2^3}e^6 + \frac{5}{2^6} e^8 + \mathcal{O}(e^{10}) \biggr] </math>


Now Work on Elliptic Integral Expressions

From a separate discussion we can draw the series expansion of <math>~\boldsymbol{K}(k)</math>, specifically,

<math>~\frac{2K(k)}{\pi}</math>

<math>~=</math>

<math>~ 1 + \biggl( \frac{1}{2} \biggr)^2k^2 + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 + \cdots </math>

where,

<math>~\frac{k^2}{4}</math>

<math>~\equiv</math>

<math>~ \frac{1}{4} \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr] = \biggl[ \frac{a\varpi}{r_1^2} \biggr] = \biggl[ \frac{a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr] </math>

 

<math>~=</math>

<math>~ \frac{\varpi_W R_c(1-e^2)^{1 / 2}}{[ \varpi_W + R_c(1-e^2)^{1 / 2} ]^2 + z_W^2} \, . </math>

Also,

<math>~\frac{2K(k_H)}{\pi}</math>

<math>~=</math>

<math>~ 1 + \biggl( \frac{1}{2} \biggr)^2k_H^2 + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6 + \cdots </math>

where,

<math>~\frac{k_H^2}{4}</math>

<math>~=</math>

<math>~ \frac{1}{\Delta^2}\biggl[ R (R_c + b\cos\theta_H) \biggr] </math>

 

<math>~=</math>

<math>~ \frac{\varpi_W (R_c + b\cos\theta_H)}{[\varpi_W + (R_c + b\cos\theta_H)]^2 + [z_W - b\sin\theta_H]^2} \, . </math>

What we want to do is write <math>~K(k)</math> in terms of <math>~K(k_H)</math>. Let's try …

<math>~\frac{2K(k)}{\pi}</math>

<math>~=</math>

<math>~\frac{2K(k_H)}{\pi} + \delta_K \, ,</math>


where,

<math>~\delta_K</math>

<math>~\equiv</math>

<math>~\frac{2K(k)}{\pi} - \frac{2K(k_H)}{\pi} </math>

 

<math>~=</math>

<math>~\biggl\{1 + \frac{k^2}{4} + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k^6 + \cdots \biggr\} - \biggl\{1 + \frac{k_H^2}{4} + \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6 + \cdots \biggr\} </math>

 

<math>~\approx</math>

<math>~\biggl\{1 + \frac{k^2}{4} \biggr\} - \biggl\{1 + \frac{k_H^2}{4} \biggr\} = \frac{k^2}{4} - \frac{k_H^2}{4} </math>

 

<math>~=</math>

<math>~ \frac{\varpi_W R_c(1-e^2)^{1 / 2}}{[ \varpi_W + R_c(1-e^2)^{1 / 2} ]^2 + z_W^2} - \frac{\varpi_W (R_c + b\cos\theta_H)}{[\varpi_W + (R_c + b\cos\theta_H)]^2 + [z_W - b\sin\theta_H]^2} </math>

 

<math>~=</math>

<math>~ \biggl\{ \varpi_W R_c(1-e^2)^{1 / 2} \biggr\} \biggl\{\varpi_W^2 +R_c^2 + z_W^2 + 2\varpi_W R_c(1-e^2)^{1 / 2} - R_c^2 e^2 \biggr\}^{-1} </math>

 

 

<math>~ - \biggl\{ \varpi_W R_c (1 + e\cos\theta_H) \biggr\} \biggl\{[\varpi_W + R_c(1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2 \biggr\}^{-1} </math>

 

<math>~\approx</math>

<math>~ \biggl\{ \varpi_W R_c \biggl[ 1-\frac{1}{2} e^2 + \mathcal{O}(e^4)\biggr] \biggr\} \biggl\{\varpi_W^2 +R_c^2 + z_W^2 + 2\varpi_W R_c\biggl[ 1-\frac{1}{2} e^2 + \mathcal{O}(e^4)\biggr] - R_c^2 e^2 \biggr\}^{-1} </math>

 

 

<math>~ - \biggl\{ \varpi_W R_c \biggl[ 1 + e\cos\theta_H \biggr] \biggr\} \biggl\{\varpi_W^2 + 2\varpi_W R_c(1+e\cos\theta_H) + R_c^2(1 + 2e\cos\theta_H + e^2\cos^2\theta_H) + z_W^2 - 2 z_W R_c e\sin\theta_H + R_c^2 e^2 \sin\theta^2_H \biggr\}^{-1} </math>

 

<math>~\approx</math>

<math>~ \biggl\{\varpi_W R_c - e^2 \biggl[ \frac{\varpi_W R_c}{2} \biggr] + \mathcal{O}(e^4) \biggr\} \biggl\{ [ (\varpi_W +R_c)^2 + z_W^2 ] - e^2 \biggl[ \varpi_W R_c + R_c^2 \biggr] + \mathcal{O}(e^4) \biggr\}^{-1} </math>

 

 

<math>~ - \biggl\{ \varpi_W R_c + e \biggl[ \varpi_W R_c \cos\theta_H \biggr]\biggr\} \biggl\{ [ (\varpi_W^2 + R_c)^2 + z_W^2 ] + 2R_c e(R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) + R_c^2 e^2 \biggr\}^{-1} </math>

 

<math>~\approx</math>

<math>~ \biggl\{ \frac{\varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] } \biggl[1 - \frac{1}{2}e^2 \biggr] \biggr\} \biggl\{ 1 - e^2 \biggl[ \frac{ \varpi_W R_c + R_c^2 }{ (\varpi_W +R_c)^2 + z_W^2 } \biggr] \biggr\}^{-1} </math>

 

 

<math>~ -~ \biggl\{ \frac{ \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ] } \biggl[ 1 + e\cos\theta_H \biggr] \biggr\} \biggl\{ 1 + e\biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr] + e^2 \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr] \biggr\}^{-1} </math>

 

<math>~\approx</math>

<math>~ \frac{\varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] } \biggl[1 - \frac{1}{2}e^2 \biggr] \biggl\{ 1 + e^2 \biggl[ \frac{ \varpi_W R_c + R_c^2 }{ (\varpi_W +R_c)^2 + z_W^2 } \biggr] \biggr\} </math>

 

 

<math>~ -~\frac{ \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ] } \biggl[ 1 + e\cos\theta_H \biggr] \biggl\{ 1 - e\biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr] - e^2 \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr] \biggr\} </math>

 

<math>~\approx</math>

<math>~ -~\frac{ e\cdot \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ] } \biggl[ \cos\theta_H - \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr] </math>

 

 

<math>~ +~\frac{e^2 \cdot \varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ] } \biggl\{ \biggl[ \frac{ \varpi_W R_c + R_c^2 }{ (\varpi_W +R_c)^2 + z_W^2 } - \frac{1}{2} \biggr] - \biggl[ \frac{R_c^2 }{ (\varpi_W^2 + R_c)^2 + z_W^2 } \biggr] - \cos\theta_H \biggl[ \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{ (\varpi_W^2 + R_c)^2 + z_W^2 }\biggr] \biggr\} </math>

 

<math>~\approx</math>

<math>~ -~\frac{ e\cdot \varpi_W R_c }{ [(\varpi_W^2 + R_c)^2 + z_W^2 ] [ (\varpi_W^2 + R_c)^2 + z_W^2 ] } \biggl[ \cos\theta_H [(\varpi_W^2 + R_c)^2 + z_W^2 ] -2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) \biggr] </math>

 

 

<math>~ +~\frac{\tfrac{1}{2}e^2 \cdot \varpi_W R_c}{ [ (\varpi_W +R_c)^2 + z_W^2 ][ (\varpi_W^2 + R_c)^2 + z_W^2 ] } \biggl\{ 2 (\varpi_W R_c + R_c^2 ) - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] - 2R_c^2 - 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) \biggr\} </math>

 

<math>~\approx</math>

<math>~ -~\frac{ e\cdot \varpi_W R_c }{ \Delta_0^2 } \biggl[ \cos\theta_H - \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{\Delta_0^2} \biggr] </math>

 

 

<math>~ +~\frac{ e^2 \cdot \varpi_W R_c}{2 \Delta_0^4 } \biggl\{ 2 (\varpi_W R_c + R_c^2 ) - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] - 2R_c^2 - 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) \biggr\} \, . </math>


Let's subtract <math>~K([k_H]_0)</math> from the potential expression. But first, let's adopt the shorthand notation …

Given that,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \biggl\{ \boldsymbol{K}(k) \biggr\} \frac{\Delta_0}{r_1}~\biggl( \frac{2^2}{3\pi^2} \biggr) \Upsilon_{W0}(\eta_0) </math>

 

<math>~=</math>

<math>~\biggl\{ \boldsymbol{K}(k) \biggr\} \biggl[\frac{r_1^2 }{ \Delta_0^2 } \biggr]^{-1 / 2} \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} </math>

 

<math>~=</math>

<math>~\biggl\{ \boldsymbol{K}(k) \biggr\} \biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \mathcal{O}(e^4)\biggr\} \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot \biggl[ 1 - \frac{1}{2}e^2 - \mathcal{O}(e^{4}) \biggr] </math>

let's define the variable, <math>~\mathcal{A}</math>, such that,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \biggl\{\boldsymbol{K}(k)\biggr\} \{1 + e^2\mathcal{A}\} </math>

<math>~\Rightarrow ~~~ \{ 1 + e^2 \cdot \mathcal{A} \}</math>

<math>~=</math>

<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \mathcal{O}(e^4)\biggr\} \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 + \mathcal{O}(e^{3}) \biggr]\cdot \biggl[ 1 - \frac{1}{2}e^2 - \mathcal{O}(e^{4}) \biggr]</math>

 

<math>~\approx</math>

<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] \biggr\} \biggl[1 + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 \biggr] \biggl[ 1 - \frac{1}{2}e^2 \biggr]</math>

 

<math>~\approx</math>

<math>~\biggl\{1 + \frac{e^2}{2} \biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \biggl( \frac{5\cdot 13}{2^4\cdot 3}\biggr) e^2 - \frac{1}{2}e^2 \biggr\}</math>

<math>~\Rightarrow ~~~ 2\mathcal{A}</math>

<math>~\approx</math>

<math>~\biggl[ \frac{R_c(R_c + \varpi_W)}{\Delta_0^2}\biggr] + \biggl( \frac{41}{2^3\cdot 3}\biggr) \, . </math>


We can therefore write,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] - K([k_H]_0)</math>

<math>~\approx</math>

<math>~- K([k_H]_0) + \biggl\{ K(k_H) + \frac{\pi}{2} \cdot \delta_K\biggr\} \{ 1 + e^2 \cdot \mathcal{A} \} </math>

 

<math>~\approx</math>

<math>~- K([k_H]_0) + K(k_H) \{ 1 + e^2 \cdot \mathcal{A} \} + \frac{\pi}{2} \cdot \delta_K \, , </math>

where we should keep in mind that <math>~\delta_k</math> is <math>~\mathcal{O}(e^1)</math>. So, let's examine the piece,

<math>~\frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr]</math>

<math>~=</math>

<math>~

\biggl\{1 + \frac{k_H^2}{4} 

+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6 + \cdots \biggr\} -

\biggl\{1 + \frac{k_H^2}{4} 

+ \biggl( \frac{1\cdot 3}{2\cdot 4}\biggr)^2 k_H^4 + \biggl( \frac{1\cdot 3\cdot 5}{2^4\cdot 3}\biggr)^2 k_H^6 + \cdots \biggr\}_{e\rightarrow 0} </math>

 

<math>~\approx</math>

<math>~ \frac{k_H^2}{4} - \biggl[ \frac{k_H^2}{4} \biggr]_{e\rightarrow 0} </math>

 

<math>~=</math>

<math>~ \biggl[ \frac{\varpi_W R_c (1 + e\cos\theta_H)}{[\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2} \biggr] - \biggl[ \frac{\varpi_W R_c (1 + e\cos\theta_H)}{[\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2} \biggr]_{e\rightarrow 0} </math>

 

<math>~=</math>

<math>~\varpi_W R_c (1 + e\cos\theta_H) \biggl\{ [\varpi_W + R_c (1 + e\cos\theta_H)]^2 + [z_W - R_c e\sin\theta_H]^2 \biggr\}^{-1} - \biggl[ \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr] </math>

 

<math>~=</math>

<math>~\varpi_W R_c (1 + e\cos\theta_H) \biggl\{ \varpi_W^2 + 2\varpi_W R_c(1 + e\cos\theta_H) + R_c^2(1 + 2e\cos\theta_H + e^2\cos^2\theta_H) + z_W^2 -2z_W R_c e\sin\theta_H + R_c^2 e^2\sin^2\theta_H \biggr\}^{-1} </math>

 

 

<math>~ - \biggl[ \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr] </math>

 

<math>~=</math>

<math>~ -\biggl[ \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr] + \biggl[ \frac{ \varpi_W R_c (1 + e\cos\theta_H)}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr] \biggl\{1 + \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{(\varpi_W + R_c)^2 + z_W^2} + \frac{e^2 [R_c^2\cos^2\theta_H + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2} \biggr\}^{-1} </math>

 

<math>~\approx</math>

<math>~ -\biggl[ \frac{\varpi_W R_c }{(\varpi_W + R_c )^2 + z_W^2} \biggr] +\biggl[ \frac{ \varpi_W R_c (1 + e\cos\theta_H)}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr] \biggl\{1 - \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{(\varpi_W + R_c)^2 + z_W^2} </math>

 

 

<math>~ - \frac{e^2 [R_c^2\cos^2\theta_H + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2} + \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ [(\varpi_W + R_c)^2 + z_W^2]^2} \biggr\} </math>

 

<math>~\approx</math>

<math>~ \biggl[ \frac{ \varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr] \biggl\{ - \frac{ e [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{(\varpi_W + R_c)^2 + z_W^2} </math>

 

 

<math>~ - \frac{e^2 [R_c^2\cos^2\theta_H + R_c^2 \sin^2\theta_H ] }{(\varpi_W + R_c)^2 + z_W^2} + \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ [(\varpi_W + R_c)^2 + z_W^2]^2} \biggr\} </math>

 

 

<math>~ +\biggl[ \frac{ \varpi_W R_c}{ (\varpi_W + R_c)^2 + z_W^2 } \biggr] \biggl\{ \frac{e\cos\theta_H [(\varpi_W + R_c)^2 + z_W^2] -e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{(\varpi_W + R_c)^2 + z_W^2} \biggr\} </math>

 

<math>~\approx</math>

<math>~ \biggl[ \frac{ \varpi_W R_c}{ \Delta_0^2 } \biggr] \biggl\{ e\cos\theta_H - \frac{ eR_c\cos\theta_H [2\varpi_W + 2 R_c - 2z_W \tan\theta_H] }{ \Delta_0^2} - \frac{e^2 R_c^2 }{ \Delta_0^2} </math>

 

 

<math>~ - \frac{e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{ \Delta_0^2} + \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ \Delta_0^4} \biggr\} \, . </math>

Now we have,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] - K([k_H]_0)</math>

<math>~\approx</math>

<math>~- K([k_H]_0) + K(k_H) \{ 1 + e^2 \cdot \mathcal{A} \} + \frac{\pi}{2} \cdot \delta_K </math>

<math>~\Rightarrow ~~~ - \Delta_0 \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~\approx</math>

<math>~ \frac{2}{\pi} K([k_H]_0) + \frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr] + \delta_K + \frac{2}{\pi} K(k_H) e^2 \cdot \mathcal{A} \, . </math>

But, as we have just demonstrated,

<math>~\frac{2}{\pi} \biggl[ K(k_H) - K([k_H]_0) \biggr]+ \delta_K </math>

<math>~\approx</math>

<math>~ \biggl[ \frac{ \varpi_W R_c}{ \Delta_0^2 } \biggr] \biggl\{ e\cos\theta_H - \frac{ eR_c\cos\theta_H [2\varpi_W + 2 R_c - 2z_W \tan\theta_H] }{ \Delta_0^2} - \frac{e^2 R_c^2 }{ \Delta_0^2} </math>

 

 

<math>~ - \frac{e^2\cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] }{ \Delta_0^2} + \frac{ e^2 [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ \Delta_0^4} \biggr\} </math>

 

 

<math>~ -~\frac{ e\cdot \varpi_W R_c }{ \Delta_0^2 } \biggl[ \cos\theta_H - \frac{2R_c (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H)}{\Delta_0^2} \biggr] </math>

 

 

<math>~ +~\frac{ e^2 \cdot \varpi_W R_c}{2 \Delta_0^4 } \biggl\{ 2 (\varpi_W R_c + R_c^2 ) - [ (\varpi_W^2 + R_c)^2 + z_W^2 ] - 2R_c^2 - 4R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) \biggr\} \, . </math>

 

<math>~\approx</math>

<math>~ \biggl[ \frac{e^2 \cdot \varpi_W R_c}{ \Delta_0^4 } \biggr] \biggl\{ - R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] </math>

 

 

<math>~ +~(\varpi_W R_c + R_c^2 ) - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] - R_c^2 - 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) </math>

 

 

<math>~ + \frac{ [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ \Delta_0^2} \biggr\} </math>

TEMPORARY BREAK HERE

Hence,

<math>~ - \frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~\approx</math>

<math>~ K([k_H]_0) + K(k_H) e^2 \cdot \mathcal{A} +~\frac{\pi}{2} \biggl[ \frac{e^2 \cdot \varpi_W R_c}{ \Delta_0^4 } \biggr] \biggl\{ - R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] </math>

 

 

<math>~ +~(\varpi_W R_c + R_c^2 ) - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] - R_c^2 - 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) </math>

 

 

<math>~ + \frac{ [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ \Delta_0^2} \biggr\} </math>

Include Second Wong Term

<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math>

<math>~=</math>

<math>~ - \biggl( \frac{2^{3} }{3\pi^3} \biggr) \Upsilon_{W1}(\eta_0) \times \cos\theta \biggl\{ \frac{a}{r_2} \cdot \boldsymbol{E}(k) \biggr\} </math>

<math>~\Rightarrow ~~~ - \frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W1}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W1}(\eta_0) \times \cos\theta \biggl\{ \frac{\Delta_0}{r_2} \cdot \boldsymbol{E}(k) \biggr\} \, ; </math>

Leading (Upsilon) Coefficient

<math>~\Upsilon_{W1}(\eta_0)</math>

<math>~\equiv</math>

<math>~\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] +~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] -~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] \biggr\} </math>

<math>~\Rightarrow~~~ \biggl[ \frac{e^2}{ (1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>

<math>~=</math>

<math>~ - (1-e)K(k_0)\cdot K(k_0) +~2(3-e^2)K(k_0)\cdot E(k_0) -~5(1+e) E(k_0)\cdot E(k_0) \, . </math>

<math>~\Rightarrow ~~~ \frac{2^2}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + \frac{1}{2} k_0^2 + \frac{11}{2^5} ~k_0^4 + \frac{17}{2^6} ~ k_0^6 + \frac{1787}{2^{13}} ~k_0^8 + \mathcal{O}(k_0^{10})

\biggr]

</math>

 

 

<math>~ + 2 (3-e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~k_0^4 ~+~\frac{1}{2^5} ~ k_0^6 ~+~ \frac{231}{2^{13}}~k_0^8 + \mathcal{O}(k_0^{10})

\biggr]

</math>

 

 

<math>~ - 5(1+e) \biggl[ 1 - ~\frac{1}{2} ~k_0^2 ~ -~ \frac{1}{2^5} ~ k_0^4 ~ ~-~\frac{1}{2^6} ~ k_0^6 ~-~\frac{77}{2^{13}}~k_0^8 + \mathcal{O}(k_0^{10}) \biggr] </math>

 

<math>~=</math>

<math>~ - (1-e) \biggl[ 1 + \frac{1}{2} \cdot 2e( 1 - e +e^2 - e^3 ) + \frac{11}{2^5} ~\cdot 4e^2( 1 - 2e + 3e^2 ) + \frac{17}{2^6} ~ \cdot 2^3e^3( 1 - 3e ) + \frac{1787}{2^{13}} ~\cdot 2^4e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ + 2 (3-e^2) \biggl[ 1 ~+~\frac{1}{2^5} ~\cdot 4e^2( 1 - 2e + 3e^2 ) ~+~\frac{1}{2^5} ~ \cdot 2^3e^3( 1 - 3e ) ~+~ \frac{231}{2^{13}}~\cdot 2^4e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ - 5(1+e) \biggl[ 1 - ~\frac{1}{2} ~\cdot 2e( 1 - e +e^2 - e^3 ) ~ -~ \frac{1}{2^5} ~ \cdot 4e^2( 1 - 2e + 3e^2 ) ~-~\frac{1}{2^6} ~ \cdot 2^3e^3( 1 - 3e ) ~-~\frac{77}{2^{13}}~\cdot 2^4e^4 + \mathcal{O}(e^{5}) \biggr] </math>

 

<math>~=</math>

<math>~ - 2^{-9}(1-e) \biggl[ 2^9 + 2^9e( 1 - e +e^2 - e^3 ) + 2^6 \cdot 11 ~\cdot e^2( 1 - 2e + 3e^2 ) + 2^6\cdot 17 ~ \cdot e^3( 1 - 3e ) + 1787 ~\cdot e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ + 2^{-9} (6- 2e^2) \biggl[ 2^9 ~+~2^6~\cdot e^2( 1 - 2e + 3e^2 ) ~+~2^7 \cdot e^3( 1 - 3e ) ~+~ 231~\cdot e^4 + \mathcal{O}(e^{5})

\biggr]

</math>

 

 

<math>~ - 2^{-9}(5+ 5e) \biggl[ 2^9 - ~2^9 \cdot e( 1 - e +e^2 - e^3 ) ~ -~ 2^6 \cdot e^2( 1 - 2e + 3e^2 ) ~-~2^6 \cdot e^3( 1 - 3e ) ~-~77~\cdot e^4 + \mathcal{O}(e^{5}) \biggr] </math>

<math>~\Rightarrow ~~~\frac{2^{11}}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>

<math>~=</math>

<math>~ - 2^9 - 2^9e( 1 - e +e^2 - e^3 ) - 2^6 \cdot 11 ~\cdot e^2( 1 - 2e + 3e^2 ) - 2^6\cdot 17 ~ \cdot e^3( 1 - 3e ) - 1787 ~\cdot e^4 </math>

 

 

<math>~ + 2^9e + 2^9e^2( 1 - e +e^2 ) + 2^6 \cdot 11 ~\cdot e^3( 1 - 2e ) + 2^6\cdot 17 ~ \cdot e^4 </math>

 

 

<math>~ + 6\biggl[ 2^9 ~+~2^6~\cdot e^2( 1 - 2e + 3e^2 ) ~+~2^7 \cdot e^3( 1 - 3e ) ~+~ 231~\cdot e^4

\biggr]

-2^{10}e^2 ~-~2^7~\cdot e^4 </math>

 

 

<math>~ + 5 \biggl[ -2^9 + ~2^9 \cdot e( 1 - e +e^2 - e^3 ) ~ +~ 2^6 \cdot e^2( 1 - 2e + 3e^2 ) ~+~2^6 \cdot e^3( 1 - 3e ) ~+~77~\cdot e^4 \biggr] </math>

 

 

<math>~ +~5 \biggl[ -2^9e + ~2^9 \cdot e^2( 1 - e +e^2 ) ~ +~ 2^6 \cdot e^3( 1 - 2e ) ~+~2^6 \cdot e^4 \biggr] + \mathcal{O}(e^{5}) </math>

 

<math>~=</math>

<math>~ 2^9( e^2 - e^3 + e^4 ) - 2^6 \cdot 11 ~( e^2 - 2e^3 + 3e^4 ) - 2^6\cdot 17 ~( e^3 - 3e^4 ) - 1787 ~e^4 </math>

 

 

<math>~ +2^9 ( e^2 - e^3 +e^4 ) + 2^6 \cdot 11 ( e^3 - 2e^4 ) + 2^6\cdot 17 ~ e^4 </math>

 

 

<math>~ +~ 3\cdot 2^7~( e^2 - 2e^3 + 3e^4 ) ~+~3\cdot 2^8 ( e^3 - 3e^4 ) ~+~ 2\cdot 3^2 \cdot 7\cdot 11~\cdot e^4 -2^{10}e^2 ~-~2^7~\cdot e^4 </math>

 

 

<math>~ + 5\cdot 2^9 ( - e^2 +e^3 - e^4 ) ~ +~ 5\cdot 2^6 ( e^2 - 2e^3 + 3e^4 ) ~+~5\cdot 2^6 ( e^3 - 3e^4 ) ~+~5\cdot 77~e^4 </math>

 

 

<math>~ +5\cdot 2^9 ( e^2 - e^3 +e^4 ) ~ +~ 5\cdot 2^6 ( e^3 - 2e^4 ) ~+~5\cdot 2^6 e^4 + \mathcal{O}(e^{5}) </math>

 

<math>~=</math>

<math>~ e^2 [ 2^9 - 2^6\cdot 11 + 2^9 + 3\cdot 2^7 -2^{10} -5\cdot 2^9 + 5\cdot 2^6 + 5\cdot 2^9 ] </math>

 

 

<math>~ + e^3 [ -2^9 - 2^7\cdot 11 - 2^6\cdot 17 - 2^9 +2^6\cdot 11 - 3\cdot 2^8+3\cdot 2^8 + 5\cdot 2^9-5\cdot 2^7 +5\cdot 2^6 -5\cdot 2^9 + 5\cdot 2^6] </math>

 

 

<math>~ + e^4 [ 2^9 - 3\cdot 11\cdot 2^6+3\cdot 17\cdot 2^6 - 1787 + 2^9 - 11\cdot 2^7 + 17\cdot 2^6 + 3^2\cdot 2^7 - 3^2\cdot 2^8+ 2\cdot 3^2\cdot 7\cdot 11 - 2^7 - 5\cdot 2^9 + 3\cdot 5\cdot 2^6 - 3\cdot 5\cdot 2^6 + 5\cdot 7\cdot 11 + 5\cdot 2^9 - 5\cdot 2^7 +5\cdot 2^6] + \mathcal{O}(e^{5}) </math>

 

<math>~=</math>

<math>~ e^2 [ - 2^6\cdot 11 + 3\cdot 2^7 + 5\cdot 2^6 ] + e^3 [ -2^{10} - 2^7\cdot 11 - 2^6\cdot 17 +2^6\cdot 11 ] </math>

 

 

<math>~ + e^4 [ 2^{10}~-~ 1787~+~ 2\cdot 3^2\cdot 7\cdot 11~+~ 5\cdot 7\cdot 11 ~+~ 2^6\cdot (3\cdot 17 - 3\cdot 11 - 22 + 17 + 18 - 36 - 2 - 10 + 5) ] + \mathcal{O}(e^{5}) </math>

 

<math>~=</math>

<math>~ 2^6 e^2 [ 0 ] ~- 2^8 \cdot 11 e^3 + e^4 [ 2^{10}~-~ 1787~+~ 7\cdot 11\cdot 23 ~-~ 2^8\cdot 3 ] + \mathcal{O}(e^{5}) </math>

 

<math>~=</math>

<math>~ - 2^8 \cdot 11 e^3 + 2^4\cdot 3\cdot 5e^4 + \mathcal{O}(e^{5}) </math>

<math>~\Rightarrow ~~~\frac{2^{2}}{\pi^2} \biggl[ \frac{e^2}{(1 - e^2)^{1 / 2}} \biggr] \Upsilon_{W1}(\eta_0)</math>

<math>~=</math>

<math>~ - \frac{11}{2} e^3 + \frac{3\cdot 5}{2^5} e^4 + \mathcal{O}(e^{5}) \, . </math>

Floating Comparison Summary

As shown above, the first three terms of the Huré, et al. (2020) series expression may be written as,

<math>~- \frac{\pi \Delta_0}{2} \biggl[ \frac{ \Psi_0 + \Psi_1 + \Psi_2 }{GM} \biggr] </math>

<math>~=</math>

<math>~ \boldsymbol{K}([k_H]_0) - \frac{e^2}{2^4} \cdot \boldsymbol{K}(k_H) + \frac{e^2}{2^4} \biggl[ \frac{ \Delta_0^2 - 2R_c(R_c + R)}{(1 - k_H^2) \Delta_0^2} \biggr] \boldsymbol{E}(k_H) \, . </math>

Let's see how it compares to the first term of Wong's (1973) expression which, as shown separately above, can be written in the form,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \Delta_0 \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W0}(\eta_0) \biggl\{ \frac{\boldsymbol{K}(k) }{ r_1 } \biggr\}\, . </math>


First, as shown above,

<math>~\frac{2^2}{3\pi^2} \Upsilon_{W0}(\eta_0)</math>

<math>~=</math>

<math>~ \biggl[1 + \biggl(\frac{5\cdot 13}{2^4\cdot 3} \biggr)e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} \, . </math>

Note that, in order to determine the functional form of the <math>~\mathcal{O}(e^{2})</math> term in this expression, we will have to include <math>~k_0^8</math> terms in the various expressions for products of elliptic integrals. Second, we have shown that,

<math>~\frac{ r_1^2}{\Delta_0^2} </math>

<math>~=</math>

<math>~1

-e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{\Delta_0^2}\biggr]

- \frac{\varpi_W R_c}{\Delta_0^2} \biggl[\frac{1}{2^2} e^4 + \frac{1}{2^3}e^6 + \frac{5}{2^6} e^8 + \mathcal{O}(e^{10}) \biggr] </math>

<math>~\Rightarrow ~~~ \frac{\Delta_0}{r_1} </math>

<math>~\approx</math>

<math>~ 1 + e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{2\Delta_0^2}\biggr]

\, ,</math>       and we are defining <math>~\delta_K</math> such that,

<math>~K(k)</math>

<math>~=</math>

<math>~K(k_H) + \frac{\pi}{2} \cdot \delta_K \, .</math>


Hence,

<math>~-\frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W0}}{GM} \biggr] </math>

<math>~\approx</math>

<math>~ \biggl\{ K(k_H) + \frac{\pi}{2} \cdot \delta_K\biggr\} \biggl\{ 1 + e^2 \biggl[ \frac{R_c(R_c + \varpi_W) }{2\Delta_0^2}\biggr] \biggr\}\biggl[1 + \biggl(\frac{5\cdot 13}{2^4\cdot 3} \biggr)e^2 + \mathcal{O}(e^{3}) \biggr]\cdot (1 - e^2)^{1 / 2} </math>

 

<math>~\approx</math>

<math>~ \boldsymbol{K}([k_H]_0) + \boldsymbol{K}(k_H) e^2 \cdot \mathcal{A} +~\frac{\pi}{2} \biggl[ \frac{e^2 \cdot \varpi_W R_c}{ \Delta_0^4 } \biggr] \biggl\{ - R_c^2 - \cos\theta_H [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H] </math>

 

 

<math>~ +~(\varpi_W R_c + R_c^2 ) - \frac{1}{2}[ (\varpi_W^2 + R_c)^2 + z_W^2 ] - R_c^2 - 2R_c\cos\theta_H (R_c \cos\theta_H+ \varpi_W \cos\theta_H - z_W \sin\theta_H) </math>

 

 

<math>~ + \frac{ [2\varpi_W R_c \cos\theta_H + 2 R_c^2 \cos\theta_H - 2z_W R_c \sin\theta_H]^2 }{ \Delta_0^2} \biggr\} \, , </math>

and,

<math>~\mathcal{A}</math>

<math>~\approx</math>

<math>~\biggl[ \frac{R_c(R_c + \varpi_W)}{2\Delta_0^2}\biggr] + \biggl( \frac{41}{2^4\cdot 3}\biggr) \, . </math>


Second,

<math>~- \frac{\pi \Delta_0}{2} \biggl[ \frac{\Phi_\mathrm{W1}}{GM} \biggr] </math>

<math>~=</math>

<math>~ \boldsymbol{E}(k) \biggl\{ \frac{\Delta_0 \cdot \cos\theta}{r_2} \biggr\} \biggl[ \biggl( \frac{2^{2} }{3\pi^2} \biggr) \Upsilon_{W1}(\eta_0) \biggr] </math>

 

<math>~=</math>

<math>~ \biggl\{ \boldsymbol{E}(k_H) + \frac{\pi}{2}\cdot \delta_E \biggr\} \biggl\{ \frac{\Delta_0 \cdot \cos\theta}{r_2} \biggr\} \biggl[- \biggl(\frac{11}{2\cdot 3} \biggr) e + \biggl(\frac{5}{2^5}\biggr) e^2 + \mathcal{O}(e^{5}) \biggr]\cdot (1 - e^2)^{1 / 2} \, . </math>

Geometric Factor

By definition,

<math>~\Delta_0^2</math>

<math>~=</math>

<math>~ (\varpi_W + R_c)^2 + z_W^2 \, , </math>

<math>~r_1^2</math>

<math>~=</math>

<math>~\biggl[ \varpi_W + R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2 \, ,</math>

<math>~r_2^2</math>

<math>~=</math>

<math>~\biggl[ \varpi_W - R_c (1 - e^2 )^{1 / 2}\biggr]^2 + z_W^2 \, ,</math>

<math>~\cos^2\theta</math>

<math>~=</math>

<math>~\biggl[ \frac{r_1^2 + r_2^2 - 4R_c^2(1-e^2)}{2r_1 r_2} \biggr]^2 \, .</math>

Hence,

<math>~r_2^2 - \Delta_0^2 \cdot \cos^2\theta</math>

<math>~=</math>

<math>~</math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation