Difference between revisions of "User:Tohline/Appendix/Ramblings/DirectionCosines"

From VistrailsWiki
Jump to navigation Jump to search
 
(14 intermediate revisions by the same user not shown)
Line 4: Line 4:


Following [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>], a generalized coordinate system consists of a threefold family of surfaces whose equations in terms of Cartesian coordinates are, <math>~\xi_1(x,y,z) = </math> constant, <math>~\xi_2(x,y,z) = </math> constant, and <math>~\xi_3(x,y,z) =</math> constant.  The lines of intersection of these surfaces constitute three families of lines, in general curved.  At any point <math>~(x, y, z)</math> or <math>~(\xi_1, \xi_2, \xi_3)</math> we can place three unit vectors &#8212; <math>~(\hat\imath, \hat\jmath, \hat{k})</math> or <math>~(\hat{e}_1, \hat{e}_2, \hat{e}_3)</math>, respectively &#8212; each tangent to the corresponding coordinate line of the curvilinear system which goes through the point.
Following [<b>[[User:Tohline/Appendix/References#MF53|<font color="red">MF53</font>]]</b>], a generalized coordinate system consists of a threefold family of surfaces whose equations in terms of Cartesian coordinates are, <math>~\xi_1(x,y,z) = </math> constant, <math>~\xi_2(x,y,z) = </math> constant, and <math>~\xi_3(x,y,z) =</math> constant.  The lines of intersection of these surfaces constitute three families of lines, in general curved.  At any point <math>~(x, y, z)</math> or <math>~(\xi_1, \xi_2, \xi_3)</math> we can place three unit vectors &#8212; <math>~(\hat\imath, \hat\jmath, \hat{k})</math> or <math>~(\hat{e}_1, \hat{e}_2, \hat{e}_3)</math>, respectively &#8212; each tangent to the corresponding coordinate line of the curvilinear system which goes through the point.
The three angles measured between any one of these unit vectors, <math>~\hat{e}_n</math>, and the three unit vectors of the Cartesian coordinate system, <math>~\hat\imath, \hat\jmath, \hat{k}</math>, are referred to as the ''direction cosines'' of the unit vector, <math>~\hat{e}_n</math>.  Specifically,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~\gamma_{n1}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\hat{e}_n \cdot \hat\imath \, ,</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp;</td>
  <td align="right">
<math>~\gamma_{n2}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\hat{e}_n \cdot \hat\jmath \, ,</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; and, &nbsp; &nbsp; &nbsp;</td>
  <td align="right">
<math>~\gamma_{n3}</math>
  </td>
  <td align="center">
<math>~\equiv</math>
  </td>
  <td align="left">
<math>~\hat{e}_n \cdot \hat{k} \, .</math>
  </td>
</tr>
</table>


==Basic Definitions and Relations==
==Basic Definitions and Relations==
Here we follow the notation of MF53.
The three direction cosines that are associated with the unit vector, <math>~\hat{e}_n</math>, can be obtained from the defining functional relationship, <math>~\xi_n(x, y, z)</math>, and an associated "scale factor," <math>~h_n</math>, (discussed immediately below) via the expressions,


<div align="center">
<table border="0" cellpadding="5" align="center">
<math>
 
\gamma_{ni} = \frac{1}{h_n} \frac{\partial x_i}{\partial \xi_n} = h_n \frac{\partial\xi_n}{\partial x_i} .
<tr>
</math>
  <td align="right">
</div>
<math>~\gamma_{ni}</math>
This means that the following inverse relationship applies in general:
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~h_n \frac{\partial\xi_n}{\partial x_i} \, ;</math>
  </td>
<td align="center">&nbsp; &nbsp; &nbsp; or, &nbsp; &nbsp; &nbsp;</td>
  <td align="right">
<math>~\gamma_{ni}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~h_n \frac{\partial\xi_n}{\partial x_i} \, ;</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="7">[ [[User:Tohline/Appendix/References#MF53|MF53]], <font color="#00CC00">&sect;1.3, p. 25, Eq. (1.3.5)</font> ]</td>
</tr>
</table>
depending on whether the <math>~\xi</math>'s are given in terms of <math>~x, y, z</math> or ''visa versa''.  This means that the following inverse relationship applies in general:
<div align="center">
<div align="center">
<math>
<math>
Line 20: Line 78:
</div>
</div>


The coordinate system <math>(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following relation:
The coordinate system <math>~(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following &hellip;


<span id="DC.01"><table align="right" border="1" cellpadding="10" width="10%">
<span id="DC.01"><table align="right" border="1" cellpadding="10" width="10%">
<tr><th><font color="darkblue">DC.01</font></th></tr>
<tr><th><font color="darkblue">DC.01</font></th></tr>
</table></span>
</table></span>
<table align="center" border="1" cellpadding="10">
<table align="center" border="1" cellpadding="10" width="50%">
<tr>
<tr>
   <th align="center">
   <th align="center">
Line 35: Line 93:
<tr>
<tr>
   <td align="center">
   <td align="center">
<math>\sum_s \gamma_{ms}\gamma_{ns} = \delta_{mn} ,</math>
<table border="0" cellpadding="5" align="center">
 
<tr>
  <td align="right">
<math>~\sum_s \gamma_{ms}\gamma_{ns}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="right">
<math>~\sum_s \gamma_{sm}\gamma_{sn}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\delta_{mn} \, ,</math>
   </td>
   </td>
</tr>
<tr>
  <td align="center" colspan="5">[ [[User:Tohline/Appendix/References#MF53|MF53]], <font color="#00CC00">&sect;1.3, p. 23, Eq. (1.3.1)</font> ]</td>
</tr>
</tr>
</table>
</table>
where the ''[http://en.wikipedia.org/wiki/Kronecker_delta Kronecker delta function]'', <math>\delta_{mn}</math>, is defined such that <math>\delta_{mn} = 1</math> if <math>m = n</math> but <math>\delta_{mn}=0</math> if <math>m \ne n</math>.
  </td>
</tr>
</table>
 
where the ''[http://en.wikipedia.org/wiki/Kronecker_delta Kronecker delta function]'', <math>~\delta_{mn}</math>, is defined such that <math>~\delta_{mn} = 1</math> if <math>~m = n</math> but <math>~\delta_{mn}=0</math> if <math>~m \ne n</math>.


==Usage==
==Usage==


===Scale Factors===
===Scale Factors===
The above relations can be used to define the scale factors <math>(h_1, h_2, h_3)</math>.  For example,
The above relations can be used to define the scale factors <math>~(h_1, h_2, h_3)</math>.  For example,
<div align="center">
<table border="0" cellpadding="5" align="center">
<math>
 
\sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1
<tr>
</math><br />
  <td align="right">
<math>~\sum_s \gamma_{1s}\gamma_{1s}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1</math>
  </td>
</tr>


<math>
<tr>
\Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ;
  <td align="right">
</math>
<math>~\Rightarrow~~~ h_1^2</math>
</div>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ;</math>
  </td>
</tr>
</table>
or,
or,
<div align="center">
<table border="0" cellpadding="5" align="center">
<math>
 
\sum_s \gamma_{1s}\gamma_{1s} = \sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1
<tr>
</math><br />
  <td align="right">
<math>~\sum_s \gamma_{1s}\gamma_{1s}</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1</math>
  </td>
</tr>


<math>
<tr>
\Rightarrow ~~~~~ h_1^2 = \biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] .
  <td align="right">
</math>
<math>~\Rightarrow ~~~ h_1^2</math>
</div>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~\biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] \, .</math>
  </td>
</tr>
<tr>
  <td align="center" colspan="3">[ [[User:Tohline/Appendix/References#MF53|MF53]], <font color="#00CC00">&sect;1.3, p. 24, Eq. (1.3.4)</font> ]</td>
</tr>
</table>


===Unit Vectors===
===Unit Vectors===
Line 135: Line 253:
</tr>
</tr>
</table>
</table>
notice that we have liberally used the idea that, for orthogonal systems, <math>\gamma_{nm} = \gamma_{mn}</math>.
notice that we have liberally used the idea that, for orthogonal systems, <math>~\gamma_{nm} = \gamma_{mn}</math>.


===Orthogonality===
===Orthogonality===
Line 142: Line 260:
<math>
<math>
\hat{e}_m \cdot \hat{e}_n = \biggl[ \hat\imath \gamma_{m1} + \hat\jmath \gamma_{m2} + \hat{k}\gamma_{m3} \biggr] \cdot \biggl[ \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} \biggr] = \gamma_{m1}\gamma_{n1} + \gamma_{m2}\gamma_{n2} + \gamma_{m1}\gamma_{n2} = 0  
\hat{e}_m \cdot \hat{e}_n = \biggl[ \hat\imath \gamma_{m1} + \hat\jmath \gamma_{m2} + \hat{k}\gamma_{m3} \biggr] \cdot \biggl[ \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} \biggr] = \gamma_{m1}\gamma_{n1} + \gamma_{m2}\gamma_{n2} + \gamma_{m1}\gamma_{n2} = 0  
</math><br /><br />
</math><br />


<math>
<math>
\Rightarrow ~~~~~ \sum_{s=1,3} \gamma_{ms}\gamma_{ns} = 0 .
\Rightarrow ~~~~~ \sum_{s=1}^3 \gamma_{ms}\gamma_{ns} = 0 .
</math>
</math>
</div>
</div>
This is precisely the condition enforced on direction cosines in conjunction with their definition, shown above as [[User:Tohline/Appendix/Ramblings/DirectionCosines#DC.01|Equation DC.01]].  Notice as well that, when <math>m = n</math>, Equation DC.01 is equivalent to the statement, <math>\hat{e}_m\cdot \hat{e}_m = 1</math>.
This is precisely the condition enforced on direction cosines in conjunction with their definition, shown above as [[User:Tohline/Appendix/Ramblings/DirectionCosines#DC.01|Equation DC.01]].  Notice as well that, when <math>~m = n</math>, Equation DC.01 is equivalent to the statement, <math>~\hat{e}_m\cdot \hat{e}_m = 1</math>.


Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>(\varpi,z)</math> plane.  First, note that,
Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>~(\varpi,z)</math> plane.  First, note that,
<div align="center">
<div align="center">
<math>
<math>
Line 186: Line 304:
</div>
</div>


The relationship between the direction cosines when <math>m \ne n</math> gives a key orthogonality condition.  Take, for example, <math>m=1</math> and <math>n=2</math>:
The relationship between the direction cosines when <math>m \ne n</math> gives a key orthogonality condition.  Take, for example, <math>~m=1</math> and <math>~n=2</math>:
<div align="center">
<div align="center">
<math>\sum_s \gamma_{1s}\gamma_{2s} = 0 .</math>
<math>~\sum_s \gamma_{1s}\gamma_{2s} = 0 .</math>
</div>
</div>
This means that if <math>\xi_1</math> is orthogonal to <math>\xi_2</math>,
This means that if <math>~\xi_1</math> is orthogonal to <math>~\xi_2</math>,
<div align="center">
<div align="center">
<math>
<math>~
h_1 \frac{\partial\xi_1}{\partial x} \cdot h_2 \frac{\partial\xi_2}{\partial x} +  
h_1 \frac{\partial\xi_1}{\partial x} \cdot h_2 \frac{\partial\xi_2}{\partial x} +  
h_1 \frac{\partial\xi_1}{\partial y} \cdot h_2 \frac{\partial\xi_2}{\partial y} +  
h_1 \frac{\partial\xi_1}{\partial y} \cdot h_2 \frac{\partial\xi_2}{\partial y} +  
Line 282: Line 400:
</tr>
</tr>
</table>
</table>
=See Also=
<ul>
<li>[[User:Tohline/Appendix/Ramblings/EllipticCylinderCoordinates|Elliptic Cylinder Coordinates]]</li>
</ul>


{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Latest revision as of 15:51, 15 October 2020

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Direction Cosines

Following [MF53], a generalized coordinate system consists of a threefold family of surfaces whose equations in terms of Cartesian coordinates are, <math>~\xi_1(x,y,z) = </math> constant, <math>~\xi_2(x,y,z) = </math> constant, and <math>~\xi_3(x,y,z) =</math> constant. The lines of intersection of these surfaces constitute three families of lines, in general curved. At any point <math>~(x, y, z)</math> or <math>~(\xi_1, \xi_2, \xi_3)</math> we can place three unit vectors — <math>~(\hat\imath, \hat\jmath, \hat{k})</math> or <math>~(\hat{e}_1, \hat{e}_2, \hat{e}_3)</math>, respectively — each tangent to the corresponding coordinate line of the curvilinear system which goes through the point.

The three angles measured between any one of these unit vectors, <math>~\hat{e}_n</math>, and the three unit vectors of the Cartesian coordinate system, <math>~\hat\imath, \hat\jmath, \hat{k}</math>, are referred to as the direction cosines of the unit vector, <math>~\hat{e}_n</math>. Specifically,

<math>~\gamma_{n1}</math>

<math>~\equiv</math>

<math>~\hat{e}_n \cdot \hat\imath \, ,</math>

     

<math>~\gamma_{n2}</math>

<math>~\equiv</math>

<math>~\hat{e}_n \cdot \hat\jmath \, ,</math>

      and,      

<math>~\gamma_{n3}</math>

<math>~\equiv</math>

<math>~\hat{e}_n \cdot \hat{k} \, .</math>

Basic Definitions and Relations

The three direction cosines that are associated with the unit vector, <math>~\hat{e}_n</math>, can be obtained from the defining functional relationship, <math>~\xi_n(x, y, z)</math>, and an associated "scale factor," <math>~h_n</math>, (discussed immediately below) via the expressions,

<math>~\gamma_{ni}</math>

<math>~=</math>

<math>~h_n \frac{\partial\xi_n}{\partial x_i} \, ;</math>

      or,      

<math>~\gamma_{ni}</math>

<math>~=</math>

<math>~h_n \frac{\partial\xi_n}{\partial x_i} \, ;</math>

[ MF53, §1.3, p. 25, Eq. (1.3.5) ]

depending on whether the <math>~\xi</math>'s are given in terms of <math>~x, y, z</math> or visa versa. This means that the following inverse relationship applies in general:

<math> \frac{\partial x_i}{\partial \xi_n} = h_n^2 \frac{\partial\xi_n}{\partial x_i} . </math>

The coordinate system <math>~(\xi_1, \xi_2, \xi_3)</math> is orthogonal if all the direction cosines obey the following …

DC.01

General Orthogonality Condition

<math>~\sum_s \gamma_{ms}\gamma_{ns}</math>

<math>~=</math>

<math>~\sum_s \gamma_{sm}\gamma_{sn}</math>

<math>~=</math>

<math>~\delta_{mn} \, ,</math>

[ MF53, §1.3, p. 23, Eq. (1.3.1) ]

where the Kronecker delta function, <math>~\delta_{mn}</math>, is defined such that <math>~\delta_{mn} = 1</math> if <math>~m = n</math> but <math>~\delta_{mn}=0</math> if <math>~m \ne n</math>.

Usage

Scale Factors

The above relations can be used to define the scale factors <math>~(h_1, h_2, h_3)</math>. For example,

<math>~\sum_s \gamma_{1s}\gamma_{1s}</math>

<math>~=</math>

<math>~\sum_s \biggl( h_1 \frac{\partial\xi_1}{\partial x_s} \biggr)^2 = 1</math>

<math>~\Rightarrow~~~ h_1^2</math>

<math>~=</math>

<math>~\biggl[ \biggl(\frac{\partial\xi_1}{\partial x} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial y} \biggr)^2 + \biggl(\frac{\partial\xi_1}{\partial z} \biggr)^2 \biggr]^{-1} ;</math>

or,

<math>~\sum_s \gamma_{1s}\gamma_{1s}</math>

<math>~=</math>

<math>~\sum_s \biggl( \frac{1}{h_1} \frac{\partial x_s}{\partial\xi_1} \biggr)^2 = 1</math>

<math>~\Rightarrow ~~~ h_1^2</math>

<math>~=</math>

<math>~\biggl[ \biggl(\frac{\partial x}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial y}{\partial\xi_1} \biggr)^2 + \biggl(\frac{\partial z}{\partial\xi_1} \biggr)^2 \biggr] \, .</math>

[ MF53, §1.3, p. 24, Eq. (1.3.4) ]

Unit Vectors

Direction cosines can be used to switch between the basis vectors of different orthogonal coordinate systems. The defining expressions are:

<math> \hat{e}_n = \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} ; </math>

and,

<math> \hat\imath = \sum_{n=1,3}\hat{e}_n \gamma_{n1} ; ~~~~\mathrm{etc.} </math>

More explicitly, this last expression(s) implies,

<math> \hat\imath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31} ; </math>

<math> \hat\jmath </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32} ; </math>

<math> \hat{k} </math>

<math> = </math>

<math> \hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33} ; </math>

notice that we have liberally used the idea that, for orthogonal systems, <math>~\gamma_{nm} = \gamma_{mn}</math>.

Orthogonality

How can we check to make sure that the coordinate <math>\xi_1</math> is everywhere orthogonal to the coordinate <math>\xi_2</math>? Well, for an orthogonal system, the unit vectors should be everywhere perpendicular to one another, that is, the dot product of two (different) unit vectors should be zero at all coordinate positions. Drawing on the above unit-vector transformation expressions, this means that, for <math>m \ne n</math>,

<math> \hat{e}_m \cdot \hat{e}_n = \biggl[ \hat\imath \gamma_{m1} + \hat\jmath \gamma_{m2} + \hat{k}\gamma_{m3} \biggr] \cdot \biggl[ \hat\imath \gamma_{n1} + \hat\jmath \gamma_{n2} + \hat{k}\gamma_{n3} \biggr] = \gamma_{m1}\gamma_{n1} + \gamma_{m2}\gamma_{n2} + \gamma_{m1}\gamma_{n2} = 0 </math>

<math> \Rightarrow ~~~~~ \sum_{s=1}^3 \gamma_{ms}\gamma_{ns} = 0 . </math>

This is precisely the condition enforced on direction cosines in conjunction with their definition, shown above as Equation DC.01. Notice as well that, when <math>~m = n</math>, Equation DC.01 is equivalent to the statement, <math>~\hat{e}_m\cdot \hat{e}_m = 1</math>.

Here we'll illustrate how orthogonality can be checked for any axisymmetric coordinate system; that is, we'll examine behavior only in the <math>~(\varpi,z)</math> plane. First, note that,

<math> \frac{\partial\varpi}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{x}{\varpi} , </math>

and,

<math> \frac{\partial\varpi}{\partial y} = \frac{\partial}{\partial x} (x^2 + y^2)^{1/2} = \frac{y}{\varpi} , </math>

Hence,

<math> \frac{\partial\xi_i}{\partial x} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial x} = \biggl(\frac{x}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} , </math>

and,

<math> \frac{\partial\xi_i}{\partial y} = \frac{\partial\xi_i}{\partial \varpi}\frac{\partial\varpi}{\partial y} = \biggl(\frac{y}{\varpi}\biggr) \frac{\partial\xi_i}{\partial \varpi} . </math>

Therefore also,

<math> \biggl( \frac{\partial\xi_i}{\partial x} \biggr)^2 + \biggl( \frac{\partial\xi_i}{\partial y } \biggr)^2 = \biggl( \frac{\partial\xi_i}{\partial\varpi} \biggr)^2 </math>

<math> \Rightarrow ~~~~~ h_i^2 = \biggl[ \biggl(\frac{\partial\xi_i}{\partial \varpi} \biggr)^2 + \biggl(\frac{\partial\xi_i}{\partial z} \biggr)^2 \biggr]^{-1} . </math>

The relationship between the direction cosines when <math>m \ne n</math> gives a key orthogonality condition. Take, for example, <math>~m=1</math> and <math>~n=2</math>:

<math>~\sum_s \gamma_{1s}\gamma_{2s} = 0 .</math>

This means that if <math>~\xi_1</math> is orthogonal to <math>~\xi_2</math>,

<math>~ h_1 \frac{\partial\xi_1}{\partial x} \cdot h_2 \frac{\partial\xi_2}{\partial x} + h_1 \frac{\partial\xi_1}{\partial y} \cdot h_2 \frac{\partial\xi_2}{\partial y} + h_1 \frac{\partial\xi_1}{\partial z} \cdot h_2 \frac{\partial\xi_2}{\partial z}= 0 </math>

<math> \Rightarrow ~~~~~ h_1 h_2\biggl[ \biggl( \frac{x^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \biggl( \frac{y^2}{\varpi^2} \biggr) \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} + \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} \biggr] = 0 .

</math>

Hence,

DC.02

An Example Orthogonality Condition

<math> \frac{\partial\xi_1}{\partial \varpi} \cdot \frac{\partial\xi_2}{\partial \varpi} = - \frac{\partial\xi_1}{\partial z} \cdot \frac{\partial\xi_2}{\partial z} . </math>

Position Vector

Employing the unit-vector transformation relations tells us that in general the position vector is,

<math> \vec{x} </math>

<math> = </math>

<math> \hat\imath x + \hat\jmath y + \hat{k}z </math>

 

<math> = </math>

<math> (\hat{e}_1 \gamma_{11} + \hat{e}_2 \gamma_{21} + \hat{e}_3 \gamma_{31}) x + (\hat{e}_1 \gamma_{12} + \hat{e}_2 \gamma_{22} + \hat{e}_3 \gamma_{32})y + (\hat{e}_1 \gamma_{13} + \hat{e}_2 \gamma_{23} + \hat{e}_3 \gamma_{33})z </math>

 

<math> = </math>

<math> \hat{e}_1(x\gamma_{11} + y\gamma_{12} + z\gamma_{13} ) + \hat{e}_2(x\gamma_{21} + y\gamma_{22} + z\gamma_{23} ) + \hat{e}_3 (x\gamma_{31} + y\gamma_{32} + z \gamma_{33}) . </math>

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation