Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/Challenges"
Line 86: | Line 86: | ||
</tr> | </tr> | ||
</table> | </table> | ||
===2<sup>nd</sup>-Order TVE Expressions=== | ===2<sup>nd</sup>-Order TVE Expressions=== | ||
As we have discussed in detail in an [[User:Tohline/VE/RiemannEllipsoids#Riemann_S-Type_Ellipsoids|accompanying chapter]], the three diagonal elements of the <math>~(3 \times 3)</math> 2<sup>nd</sup>-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>. | As we have discussed in detail in an [[User:Tohline/VE/RiemannEllipsoids#Riemann_S-Type_Ellipsoids|accompanying chapter]], the three diagonal elements of the <math>~(3 \times 3)</math> 2<sup>nd</sup>-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>. | ||
<table border="1" align="center" cellpadding="5"> | <table border="1" align="center" cellpadding="5"> | ||
Line 239: | Line 236: | ||
</td></tr></table> | </td></tr></table> | ||
===Ou's (2006) Detailed Force Balance=== | |||
In a separate [[User:Tohline/ThreeDimensionalConfigurations/RiemannStype#Based_on_Detailed_Force_Balance|accompanying chapter]], we have described in detail how [https://ui.adsabs.harvard.edu/abs/2006ApJ...639..549O/abstract Ou(2006)] used, essentially, the HSCF technique to solve the detailed force-balance equations. Beginning with the, | |||
<div align="center"> | |||
<font color="#770000">'''Eulerian Representation'''</font><br /> | |||
of the Euler Equation <br /> | |||
<font color="#770000">'''as viewed from a Rotating Reference Frame'''</font> | |||
<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \Phi_\mathrm{grav} | |||
- {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} \, ,</math> </div> | |||
it can be shown that, for the velocity fields associated with all Riemann S-type ellipsoids, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
-\nabla \biggl[ \frac{1}{2} \lambda^2(x^2 + y^2) \biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~- {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x})</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+\nabla\biggl[\frac{1}{2} \Omega_f^2 (x^2 + y^2) \biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~- 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \nabla\biggl[ \Omega_f \lambda\biggl( \frac{b}{a} x^2 + \frac{a}{b}y^2 \biggr) \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<font color="orange">Hence, within the configuration the following Bernoulli's function must be uniform in space:</font> | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
H + \Phi_\mathrm{grav} - \frac{1}{2} \Omega_f^2(x^2 + y^2) | |||
- \frac{1}{2} \lambda^2(x^2 + y^2) | |||
+ \Omega_f \lambda \biggl(\frac{b}{a}x^2 + \frac{a}{b}y^2 \biggr) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
C_B \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
[https://ui.adsabs.harvard.edu/abs/2006ApJ...639..549O/abstract Ou(2006)], p. 550, §2, Eq. (6) | |||
</div> | |||
<font color="orange">where <math>~C_B</math> is a constant.</font> So, at the surface of the ellipsoid (where the enthalpy ''H = 0'') on each of its three principal axes, the equilibrium conditions demanded by the expression for detailed force balance become, respectively: | |||
<ol type="I"> | |||
<li>On the x-axis, where (x, y, z) = (a, 0, 0): | |||
<br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~2\biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(2\pi G \rho) A_1 - \Omega_f^2 - \lambda^2 + 2\Omega_f \lambda \biggl(\frac{b}{a} \biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</li> | |||
<li>On the y-axis, where (x, y, z) = (0, b, 0): | |||
<br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~2\biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT} \biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(2\pi G \rho) A_2 \biggl( \frac{b^2}{a^2}\biggr) | |||
- \Omega_f^2 \biggl( \frac{b^2}{a^2} \biggr) | |||
- \lambda^2\biggl( \frac{b^2}{a^2} \biggr) | |||
+ 2\Omega_f \lambda \biggl(\frac{b}{a}\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</li> | |||
<li>On the z-axis, where (x, y, z) = (0, 0, c): | |||
<br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ 2 \biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT}\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
(2\pi G \rho) A_3 \biggl( \frac{c^2}{a^2}\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</li> | |||
</ol> | |||
==Compressible Structures== | ==Compressible Structures== |
Revision as of 22:50, 11 September 2020
Challenges Constructing Ellipsoidal-Like Configurations
First, let's review the three different approaches that we have described for constructing Riemann S-type ellipsoids. Then let's see how these relate to the technique that has been used to construct infinitesimally thin, nonaxisymmetric disks.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Riemann S-type Ellipsoids
Usually, the density, <math>~\rho</math>, and the pair of axis ratios, <math>~b/a</math> and <math>~c/a</math>, are specified. Then, the Poisson equation is solved to obtain <math>~\Phi_\mathrm{grav}</math> in terms of <math>~A_1</math>, <math>~A_2</math>, and <math>~A_3</math>. The aim, then, is to determine the value of the central enthalpy, <math>~H_0</math> — alternatively, the thermal energy density, <math>~\Pi</math> — and the two parameters, <math>~\Omega_f</math> and <math>~\lambda</math>, that determine the magnitude of the velocity flow-field. Keep in mind that, as viewed from a frame of reference that is spinning with the ellipsoid (at angular frequency, <math>~\Omega_f</math>), the adopted (rotating-frame) velocity field is,
<math>~\bold{u}</math> |
<math>~=</math> |
<math>~\lambda \biggl[ \boldsymbol{\hat\imath} \biggl( \frac{a}{b}\biggr) y - \boldsymbol{\hat\jmath} \biggl( \frac{b}{a} \biggr) x \biggr] \, .</math> |
Hence, the inertial-frame velocity is given by the expression,
<math>~\bold{v}</math> |
<math>~=</math> |
<math>~\bold{u} + \bold{\hat{e}}_\varphi \Omega_f \varpi \, .</math> |
While we will fundamentally rely on the <math>~(\Omega_f, \lambda)</math> parameter pair to define the velocity flow-field, in discussions of Riemann S-type ellipsoids it is customary to also refer to the following two additional parameters: The (rotating-frame) vorticity,
<math>~\boldsymbol{\zeta} \equiv \boldsymbol{\nabla \times}\bold{u}</math> |
<math>~=</math> |
<math>~ \boldsymbol{\hat\imath} \biggl[ \frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z} \biggr] + \boldsymbol{\hat\jmath} \biggl[ \frac{\partial u_x}{\partial z} - \frac{\partial u_z}{\partial x} \biggr] + \bold{\hat{k}} \biggl[ \frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \biggr] </math> |
|
<math>~=</math> |
<math>~\bold{\hat{k}} \biggl[ - \lambda \biggl(\frac{b}{a} + \frac{a}{b}\biggr) \biggr] \, ;</math> |
and the dimensionless frequency ratio,
<math>~f</math> |
<math>~\equiv</math> |
<math>~\frac{ \zeta}{\Omega_f} \, .</math> |
2nd-Order TVE Expressions
As we have discussed in detail in an accompanying chapter, the three diagonal elements of the <math>~(3 \times 3)</math> 2nd-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.
Indices | 2nd-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids | ||||
<math>~i</math> | <math>~j</math> | ||||
<math>~1</math> | <math>~1</math> |
|
|||
<math>~2</math> | <math>~2</math> |
|
|||
<math>~3</math> | <math>~3</math> |
|
The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.
and,
|
Ou's (2006) Detailed Force Balance
In a separate accompanying chapter, we have described in detail how Ou(2006) used, essentially, the HSCF technique to solve the detailed force-balance equations. Beginning with the,
Eulerian Representation
of the Euler Equation
as viewed from a Rotating Reference Frame
<math>\biggl[\frac{\partial\vec{v}}{\partial t}\biggr]_{rot} + ({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}= - \frac{1}{\rho} \nabla P - \nabla \Phi_\mathrm{grav}
- {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x}) - 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} \, ,</math>
it can be shown that, for the velocity fields associated with all Riemann S-type ellipsoids,
<math>~({\vec{v}}_{rot}\cdot \nabla) {\vec{v}}_{rot}</math> |
<math>~=</math> |
<math>~ -\nabla \biggl[ \frac{1}{2} \lambda^2(x^2 + y^2) \biggr] \, ; </math> |
<math>~- {\vec{\Omega}}_f \times ({\vec{\Omega}}_f \times \vec{x})</math> |
<math>~=</math> |
<math>~ +\nabla\biggl[\frac{1}{2} \Omega_f^2 (x^2 + y^2) \biggr] \, ; </math> |
<math>~- 2{\vec{\Omega}}_f \times {\vec{v}}_{rot} </math> |
<math>~=</math> |
<math>~ - \nabla\biggl[ \Omega_f \lambda\biggl( \frac{b}{a} x^2 + \frac{a}{b}y^2 \biggr) \biggr] \, . </math> |
Hence, within the configuration the following Bernoulli's function must be uniform in space:
<math>~ H + \Phi_\mathrm{grav} - \frac{1}{2} \Omega_f^2(x^2 + y^2) - \frac{1}{2} \lambda^2(x^2 + y^2) + \Omega_f \lambda \biggl(\frac{b}{a}x^2 + \frac{a}{b}y^2 \biggr) </math> |
<math>~=</math> |
<math>~ C_B \, , </math> |
Ou(2006), p. 550, §2, Eq. (6)
where <math>~C_B</math> is a constant. So, at the surface of the ellipsoid (where the enthalpy H = 0) on each of its three principal axes, the equilibrium conditions demanded by the expression for detailed force balance become, respectively:
- On the x-axis, where (x, y, z) = (a, 0, 0):
<math>~2\biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT} \biggr]</math>
<math>~=</math>
<math>~ (2\pi G \rho) A_1 - \Omega_f^2 - \lambda^2 + 2\Omega_f \lambda \biggl(\frac{b}{a} \biggr) </math>
- On the y-axis, where (x, y, z) = (0, b, 0):
<math>~2\biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT} \biggr]</math>
<math>~=</math>
<math>~ (2\pi G \rho) A_2 \biggl( \frac{b^2}{a^2}\biggr) - \Omega_f^2 \biggl( \frac{b^2}{a^2} \biggr) - \lambda^2\biggl( \frac{b^2}{a^2} \biggr) + 2\Omega_f \lambda \biggl(\frac{b}{a}\biggr) </math>
- On the z-axis, where (x, y, z) = (0, 0, c):
<math>~\Rightarrow ~~~ 2 \biggl[ \frac{C_B}{a^2} + (\pi G\rho)I_\mathrm{BT}\biggr]</math>
<math>~=</math>
<math>~ (2\pi G \rho) A_3 \biggl( \frac{c^2}{a^2}\biggr) </math>
Compressible Structures
See Also
© 2014 - 2021 by Joel E. Tohline |