Difference between revisions of "User:Tohline/ThreeDimensionalConfigurations/Challenges"
(Created page with '__FORCETOC__<!-- will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Challenges Constructing Ellipsoidal-Like Configurations= First, let's …') |
|||
Line 9: | Line 9: | ||
==Riemann S-type Ellipsoids== | ==Riemann S-type Ellipsoids== | ||
===2<sup>nd</sup>-Order TVE Expressions=== | |||
As we have discussed in detail in an [[User:Tohline/VE/RiemannEllipsoids#Riemann_S-Type_Ellipsoids|accompanying chapter]], the three diagonal elements of the <math>~(3 \times 3)</math> 2<sup>nd</sup>-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>. | |||
<table border="1" align="center" cellpadding="5"> | |||
<tr> | |||
<td align="center" colspan="2">Indices</td> | |||
<td align="center" rowspan="2">2<sup>nd</sup>-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids</td> | |||
</tr> | |||
<tr> | |||
<td align="center" width="5%"><math>~i</math></td> | |||
<td align="center" width="5%"><math>~j</math></td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~1</math></td> | |||
<td align="center"><math>~1</math></td> | |||
<td align="left"> | |||
<table align="left" border=0 cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{3\cdot 5}{2^2\pi a b c\rho} \biggr] \Pi | |||
+\biggl\{ | |||
\Omega_3^2 | |||
+ 2 \biggl[ \frac{b^2}{b^2+a^2}\biggr] \Omega_3 \zeta_3 | |||
~-~(2\pi G\rho) A_1 | |||
\biggr\} a^2 | |||
+ \biggl[ \frac{a^2}{a^2 + b^2}\biggr]^2 \zeta_3^2 b^2 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~2</math></td> | |||
<td align="center"><math>~2</math></td> | |||
<td align="left"> | |||
<table align="left" border=0 cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{3\cdot 5}{2^2\pi a b c \rho} \biggr]\Pi | |||
+ \biggl[ \frac{b^2}{b^2+a^2}\biggr]^2 \zeta_3^2 a^2 | |||
+ \biggl\{ | |||
\Omega_3^2 | |||
+ 2 \biggl[ \frac{a^2}{a^2 + b^2}\biggr] \Omega_3 \zeta_3 | |||
~-~( 2\pi G \rho) A_2 | |||
\biggr\}b^2 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center"><math>~3</math></td> | |||
<td align="center"><math>~3</math></td> | |||
<td align="left"> | |||
<table align="left" border=0 cellpadding="3"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \frac{3\cdot 5}{2^2\pi abc\rho} \biggr]\Pi | |||
- (2\pi G \rho)A_3 c^2 | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td> | |||
</tr> | |||
</table> | |||
The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>. | |||
<table border="1" align="center" cellpadding="10" width="80%"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl[ \frac{b^2 a^2}{b^2+a^2}\biggr] f \Omega_3^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\pi G\rho \biggl[ \frac{(A_1 - A_2)a^2b^2}{ b^2 - a^2} - A_3 c^2\biggr] \, ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 7, §48, Eq. (34)</font> ]</td></tr> | |||
</table> | |||
and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\Omega_3^2 \biggl\{1 | |||
+ \biggl[ \frac{a^2b^2}{(a^2 + b^2)^2}\biggr] f^2 \biggr\} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{2\pi G\rho}{ (a^2-b^2) } | |||
\biggl[ | |||
A_1 a^2 | |||
- A_2 b^2 | |||
\biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 7, §48, Eq. (33)</font> ]</td></tr> | |||
</table> | |||
</td></tr></table> | |||
==Compressible Structures== | ==Compressible Structures== |
Revision as of 19:06, 11 September 2020
Challenges Constructing Ellipsoidal-Like Configurations
First, let's review the three different approaches that we have described for constructing Riemann S-type ellipsoids. Then let's see how these relate to the technique that has been used to construct infinitesimally thin, nonaxisymmetric disks.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Riemann S-type Ellipsoids
2nd-Order TVE Expressions
As we have discussed in detail in an accompanying chapter, the three diagonal elements of the <math>~(3 \times 3)</math> 2nd-order tensor virial equation are sufficient to determine the equilibrium values of <math>~\Pi</math>, <math>~\Omega_3</math>, and <math>~\zeta_3</math>.
Indices | 2nd-Order TVE Expressions that are Relevant to Riemann S-Type Ellipsoids | ||||
<math>~i</math> | <math>~j</math> | ||||
<math>~1</math> | <math>~1</math> |
|
|||
<math>~2</math> | <math>~2</math> |
|
|||
<math>~3</math> | <math>~3</math> |
|
The <math>~(i, j) = (3, 3)</math> element gives <math>~\Pi</math> directly in terms of known parameters. The <math>~(1, 1)</math> and <math>~(2, 2)</math> elements can then be combined in a couple of different ways to obtain a coupled set of expressions that define <math>~\Omega_3</math> and <math>~f \equiv \zeta_3/\Omega_3</math>.
and,
|
Compressible Structures
See Also
© 2014 - 2021 by Joel E. Tohline |