Difference between revisions of "User:Tohline/VE/RiemannEllipsoids"

From VistrailsWiki
Jump to navigation Jump to search
Line 8: Line 8:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


==Equilibrium Expressions==
Here we are only interested in determining the equilibrium conditions of uniform-density ellipsoids that have semi-axes, <math>~a_1, a_2, a_3</math>.
[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b> &sect;11(b), p. 22] <font color="#007700">Under conditions of a stationary state, [the tensor virial equation] gives,</font>
 
==General Coefficient Expressions==
 
As has been detailed in an [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Gravitational_Potential|accompanying chapter]], the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table align="center" border=0 cellpadding="3">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} </math>
<math>
~A_1
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~- \delta_{ij}\Pi \, .</math>
<math>~2\biggl(\frac{a_2}{a_1}\biggr)\biggl(\frac{a_3}{a_1}\biggr)
\biggl[  \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, ,
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
<font color="#007700">[This] provides six integral relations which must obtain whenever the conditions are stationary</font>.


When viewing the (generally ellipsoidal) configuration from a rotating frame of reference, the 2<sup>nd</sup>-order TVE takes on the more general form:
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~0</math>
<math>
~A_3
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~
<math>
2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi
~2\biggl(\frac{a_2}{a_1}\biggr) \biggl[  \frac{(a_2/a_1) \sin\theta - (a_3/a_1)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, ,
+ \Omega^2 I_{ij} - \Omega_i\Omega_k I_{kj} + 2\epsilon_{ilm}\Omega_m \int_V \rho u_lx_j dx
\, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 2, &sect;12, Eq. (64)</font> ]</td></tr>
</table>
EFE (p. 57) also shows that &hellip; <font color="#007700">The potential energy tensor &hellip; for a homogeneous ellipsoid is given by</font>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{\mathfrak{W}_{ij}}{\pi G\rho}</math>
<math>
~A_2
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~-2A_i I_{ij} \, ,</math>
<math>~2 - (A_1+A_3) \, ,</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;22, Eq. (128)</font> ]</td></tr>
 
</table>
</table>
<font color="#007700">where</font>
</div>
where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~I_{ij}</math>
<math>~\theta = \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~\tfrac{1}{5} Ma_i^2 \delta_{ij} \, ,</math>
<math>~k = \biggl[\frac{1 - (a_2/a_1)^2}{1 - (a_3/a_1)^2} \biggr]^{1/2} \, .</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;22, Eq. (129)</font> ]</td></tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;17, Eq. (32)</font> ]</td></tr>
</table>
</table>
 
</div>
<font color="#007700">is the moment of inertia tensor.</font>


==Adopted (Internal) Velocity Field==
==Adopted (Internal) Velocity Field==


EFE (p. 130) states that &hellip; <font color="#007700">The kinematical requirement, that the motion <math>~(\vec{u})</math>, associated with <math>~\vec{\zeta}</math>, preserves the ellipsoidal boundary, leads to the following expressions for its components:</font>
EFE (p. 130) states that the &hellip; <font color="#007700">kinematical requirement, that the motion <math>~(\vec{u})</math>, associated with <math>~\vec{\zeta}</math>, preserves the ellipsoidal boundary, leads to the following expressions for its components:</font>
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


Line 125: Line 131:
</table>
</table>


 
==Equilibrium Expressions==
==General Coefficient Expressions==
[<b>[[User:Tohline/Appendix/References#EFE|<font color="red">EFE</font>]]</b> &sect;11(b), p. 22] <font color="#007700">Under conditions of a stationary state, [the tensor virial equation] gives,</font>
 
As has been detailed in an [[User:Tohline/ThreeDimensionalConfigurations/HomogeneousEllipsoids#Gravitational_Potential|accompanying chapter]], the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3) ~\leftrightarrow~(a,b,c)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:
<div align="center">
<div align="center">
<table align="center" border=0 cellpadding="3">
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} </math>
~A_1
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>~=</math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2\biggl(\frac{b}{a}\biggr)\biggl(\frac{c}{a}\biggr)
<math>~- \delta_{ij}\Pi \, .</math>
\biggl[  \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, ,
</math>
   </td>
   </td>
</tr>
</tr>
</table>
</div>
<font color="#007700">[This] provides six integral relations which must obtain whenever the conditions are stationary</font>.


When viewing the (generally ellipsoidal) configuration from a rotating frame of reference, the 2<sup>nd</sup>-order TVE takes on the more general form:
<table border="0" cellpadding="5" align="center">
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>~0</math>
~A_3
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>~=</math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>
<math>~
~2\biggl(\frac{b}{a}\biggr) \biggl[  \frac{(b/a) \sin\theta - (c/a)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, ,
2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi
+ \Omega^2 I_{ij} - \Omega_i\Omega_k I_{kj} + 2\epsilon_{ilm}\Omega_m \int_V \rho u_lx_j dx
\, .
</math>
</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 2, &sect;12, Eq. (64)</font> ]</td></tr>
</table>
EFE (p. 57) also shows that &hellip; <font color="#007700">The potential energy tensor &hellip; for a homogeneous ellipsoid is given by</font>
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>
<math>~\frac{\mathfrak{W}_{ij}}{\pi G\rho}</math>
~A_2
</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>
<math>~=</math>
~=
</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~2 - (A_1+A_3) \, ,</math>
<math>~-2A_i I_{ij} \, ,</math>
   </td>
   </td>
</tr>
</tr>
 
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;22, Eq. (128)</font> ]</td></tr>
</table>
</table>
</div>
<font color="#007700">where</font>
where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">


<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\theta = \cos^{-1} \biggl(\frac{c}{a} \biggr)</math>
<math>~I_{ij}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
&nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp;
<math>~=</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~k = \biggl[\frac{1 - (b/a)^2}{1 - (c/a)^2} \biggr]^{1/2} \, .</math>
<math>~\tfrac{1}{5} Ma_i^2 \delta_{ij} \, ,</math>
   </td>
   </td>
</tr>
</tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;17, Eq. (32)</font> ]</td></tr>
<tr><td align="center" colspan="3">[ [[User:Tohline/Appendix/References#EFE|EFE]], <font color="#00CC00">Chapter 3, &sect;22, Eq. (129)</font> ]</td></tr>
</table>
</table>
</div>
 
<font color="#007700">is the moment of inertia tensor.</font>


=Various Degrees of Simplification=
=Various Degrees of Simplification=

Revision as of 16:20, 4 August 2020


Steady-State 2nd-Order Tensor Virial Equations

By satisfying all six — not necessarily unique — components of the Second-Order Tensor Virial Equation, the entire set of Riemann Ellipsoids can be determined.

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Here we are only interested in determining the equilibrium conditions of uniform-density ellipsoids that have semi-axes, <math>~a_1, a_2, a_3</math>.

General Coefficient Expressions

As has been detailed in an accompanying chapter, the gravitational potential anywhere inside or on the surface, <math>~(a_1,a_2,a_3)</math>, of an homogeneous ellipsoid may be given analytically in terms of the following three coefficient expressions:

<math> ~A_1 </math>

<math> ~= </math>

<math>~2\biggl(\frac{a_2}{a_1}\biggr)\biggl(\frac{a_3}{a_1}\biggr) \biggl[ \frac{F(\theta,k) - E(\theta,k)}{k^2 \sin^3\theta} \biggr] \, , </math>

<math> ~A_3 </math>

<math> ~= </math>

<math> ~2\biggl(\frac{a_2}{a_1}\biggr) \biggl[ \frac{(a_2/a_1) \sin\theta - (a_3/a_1)E(\theta,k)}{(1-k^2) \sin^3\theta} \biggr] \, , </math>

<math> ~A_2 </math>

<math> ~= </math>

<math>~2 - (A_1+A_3) \, ,</math>

where, <math>~F(\theta,k)</math> and <math>~E(\theta,k)</math> are incomplete elliptic integrals of the first and second kind, respectively, with arguments,

<math>~\theta = \cos^{-1} \biggl(\frac{a_3}{a_1} \biggr)</math>

      and      

<math>~k = \biggl[\frac{1 - (a_2/a_1)^2}{1 - (a_3/a_1)^2} \biggr]^{1/2} \, .</math>

[ EFE, Chapter 3, §17, Eq. (32) ]

Adopted (Internal) Velocity Field

EFE (p. 130) states that the … kinematical requirement, that the motion <math>~(\vec{u})</math>, associated with <math>~\vec{\zeta}</math>, preserves the ellipsoidal boundary, leads to the following expressions for its components:

<math>~u_1</math>

<math>~=</math>

<math>~- \biggl[ \frac{a_1^2}{a_1^2 + a_2^2}\biggr] \zeta_3 x_2 + \biggl[ \frac{a_1^2}{a_1^2+a_3^2}\biggr] \zeta_2 x_3 \, ,</math>

<math>~u_2</math>

<math>~=</math>

<math>~- \biggl[ \frac{a_2^2}{a_2^2 + a_3^2}\biggr] \zeta_1 x_3 + \biggl[ \frac{a_2^2}{a_2^2+a_1^2}\biggr] \zeta_3 x_1 \, ,</math>

<math>~u_3</math>

<math>~=</math>

<math>~- \biggl[ \frac{a_3^2}{a_3^2 + a_1^2}\biggr] \zeta_2 x_1 + \biggl[ \frac{a_3^2}{a_3^2+a_2^2}\biggr] \zeta_1 x_2 \, .</math>

[ EFE, Chapter 7, §47, Eq. (1) ]

Equilibrium Expressions

[EFE §11(b), p. 22] Under conditions of a stationary state, [the tensor virial equation] gives,

<math>~2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} </math>

<math>~=</math>

<math>~- \delta_{ij}\Pi \, .</math>

[This] provides six integral relations which must obtain whenever the conditions are stationary.

When viewing the (generally ellipsoidal) configuration from a rotating frame of reference, the 2nd-order TVE takes on the more general form:

<math>~0</math>

<math>~=</math>

<math>~ 2 \mathfrak{T}_{ij} + \mathfrak{W}_{ij} + \delta_{ij}\Pi + \Omega^2 I_{ij} - \Omega_i\Omega_k I_{kj} + 2\epsilon_{ilm}\Omega_m \int_V \rho u_lx_j dx \, . </math>

[ EFE, Chapter 2, §12, Eq. (64) ]

EFE (p. 57) also shows that … The potential energy tensor … for a homogeneous ellipsoid is given by

<math>~\frac{\mathfrak{W}_{ij}}{\pi G\rho}</math>

<math>~=</math>

<math>~-2A_i I_{ij} \, ,</math>

[ EFE, Chapter 3, §22, Eq. (128) ]

where

<math>~I_{ij}</math>

<math>~=</math>

<math>~\tfrac{1}{5} Ma_i^2 \delta_{ij} \, ,</math>

[ EFE, Chapter 3, §22, Eq. (129) ]

is the moment of inertia tensor.

Various Degrees of Simplification

Riemann S-Type Ellipsoids

Describe …

Jacobi and Dedekind Ellipsoids

Describe …

Maclaurin Spheroids

Describe …


See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation