Difference between revisions of "User:Tohline/Apps/MaclaurinSpheroidSequence"
(Created page with '<!-- __FORCETOC__ will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Maclaurin Spheroid Sequence= {{LSU_HBook_header}} ==Detailed Force …') |
|||
Line 8: | Line 8: | ||
==Detailed Force Balance Conditions== | ==Detailed Force Balance Conditions== | ||
The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 25: | Line 25: | ||
</table> | </table> | ||
which varies from | which varies from ''e = 0'' (spherical structure) to ''e = 1'' (infinitesimally thin disk). According to our [[User:Tohline/Apps/MaclaurinSpheroids#Maclaurin_Spheroids_.28axisymmetric_structure.29|accompanying derivation]], for a given choice of <math>~e</math>, the square of the system's equilibrium angular velocity is, | ||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
Line 85: | Line 85: | ||
</tr> | </tr> | ||
</table> | </table> | ||
=See Also= | =See Also= |
Revision as of 20:12, 25 July 2020
Maclaurin Spheroid Sequence
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Detailed Force Balance Conditions
The essential structural elements of each Maclaurin spheroid model are uniquely determined once we specify the system's axis ratio, <math>~c/a</math>, or by the system's meridional-plane eccentricity, <math>~e</math>, where
<math>~e</math> |
<math>~\equiv</math> |
<math>~\biggl[1 - \biggl(\frac{c}{a}\biggr)^2\biggr]^{1 / 2} \, ,</math> |
which varies from e = 0 (spherical structure) to e = 1 (infinitesimally thin disk). According to our accompanying derivation, for a given choice of <math>~e</math>, the square of the system's equilibrium angular velocity is,
<math> ~ \omega_0^2 </math> |
<math> ~= </math> |
<math> 2\pi G \rho \biggl[ A_1 - A_3 (1-e^2) \biggr] \, , </math> |
where,
<math> ~A_1 </math> |
<math> ~= </math> |
<math> \frac{1}{e^2} \biggl[\frac{\sin^{-1}e}{e} - (1-e^2)^{1/2} \biggr](1-e^2)^{1/2} \, , </math> |
<math> ~A_3 </math> |
<math> ~= </math> |
<math> \frac{2}{e^2} \biggl[(1-e^2)^{-1/2} -\frac{\sin^{-1}e}{e} \biggr](1-e^2)^{1/2} \, . </math> |
See Also
© 2014 - 2021 by Joel E. Tohline |