Difference between revisions of "User:Tohline/Appendix/Ramblings/Bordeaux"
Line 12: | Line 12: | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.'' Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]]. | [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838] have published a paper titled, ''The Exterior Gravitational Potential of Toroids.'' Here we examine how their work relates to the published work by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W C.-Y. Wong (1973, Annals of Physics, 77, 279)], which we have separately [[User:Tohline/Apps/Wong1973Potential#Wong.27s_.281973.29_Analytic_Potential|discussed in detail]]. | ||
=== | ===Our Presentation of Wong's (1973) Result=== | ||
<table border="1" cellpadding="8" align="center" width="80%"> | |||
<tr><td align="center">'''Summary:''' First three terms in [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] expression for the gravitational potential at any point, P(ϖ, z), outside of a uniform-density torus.</td></tr> | |||
<tr><td align="left"> | |||
[[File:WongTorusIllustration02.png|500px|center|Wong diagram]] | |||
---- | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl( \frac{2^{3} }{3\pi^3} \biggr) | |||
\Upsilon_{W0}(\eta_0) \biggl\{ | |||
\frac{a}{ r_1 } \cdot \boldsymbol{K}(k) \biggr\}\, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 56: | Line 48: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \biggl( \frac{2^{3} }{3\pi^3} \biggr) | |||
</math> | \Upsilon_{W1}(\eta_0) \times \cos\theta | ||
\biggl\{ \frac{a}{r_2} \cdot | |||
\boldsymbol{E}(k) \biggr\} \, , | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\varpi, z)\biggr|_\mathrm{exterior}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 77: | Line 65: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{2}{\ | - \biggl( \frac{2^{3} }{3\pi^3} \biggr)\Upsilon_{W2}(\eta_0) | ||
\times \cos(2\theta) | |||
\biggl\{ | |||
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) | |||
- | |||
\frac{a}{r_1} \cdot \boldsymbol{K}(k) | |||
\biggr\} \, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
where, once the major ( R ) and minor ( d ) radii of the torus — as well as the vertical location of its equatorial plane (Z<sub>0</sub>) — have been specified, we have, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~a^2 </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | R^2 - d^2</math> | ||
and, | |||
<math>~\cosh\eta_0 \equiv \frac{R}{d} ~~~~\Rightarrow ~~~\sinh\eta_0 = \frac{a}{d} | |||
\, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r_1^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math> | ||
\ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r_2^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math> | ||
- | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
</ | <td align="right"> | ||
<math>~\cos\theta</math> | |||
< | </td> | ||
< | <td align="center"> | ||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \, ,</math> | |||
</td> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} | |||
= \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} | |||
= \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 169: | Line 151: | ||
</table> | </table> | ||
---- | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | |||
<td align="left" colspan="2"> </td> | |||
<td align="left" colspan="1">Leading Coefficient Expressions …</td> | |||
<td align="right" colspan="1" width="30%">… evaluated for: </td> | |||
<td align="center" colspan="1"><math>~\frac{R}{d} = \cosh\eta_0 = 3</math> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Upsilon_{W0}(\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\equiv</math> | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" colspan="2"> | ||
<math>~ | <math>~ | ||
\frac{ | \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ | ||
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] | |||
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] | |||
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] | |||
\biggr\} \, , | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"><font color="red">7.134677</font></td> | ||
</tr> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Upsilon_{W1}(\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\equiv</math> | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" colspan="2"> | ||
<math>~ | <math>~\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | ||
\biggl[ ( | \biggl\{ | ||
K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] | |||
+~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] | |||
-~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] | |||
\biggr\} | |||
\, , | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"><font color="red">0.130324</font></td> | |||
</tr> | </tr> | ||
<tr> | |||
< | <td align="right"> | ||
<math>~\Upsilon_{W2}(\eta_0)</math> | |||
</td> | |||
<td align="center"> | |||
< | <math>~\equiv</math> | ||
< | </td> | ||
<td align="left" colspan="2"> | |||
<math>~ | |||
\frac{2^{3 / 2}}{3^2} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl\{ | |||
K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13] | |||
+ 2 K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ] | |||
</math> | |||
</td> | |||
<td align="center"> </td> | |||
</tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left" colspan="2"> | ||
<math>~ | <math>~ | ||
- \ | -~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ] | ||
\ | \biggr\} \, , | ||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"><font color="red">0.003153</font></td> | |||
</tr> | </tr> | ||
<tr><td align="left" colspan="5">where,</td></tr> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left" colspan="2"> | ||
<math>~ | <math>~ | ||
\biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, . | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
<td align="center"><font color="red">0.707106781</font></td> | |||
</tr> | </tr> | ||
</table> | |||
NOTE: In evaluating these "leading coefficient expressions" for the case, <math>~R/d = 3</math>, we have used the complete elliptic integral evaluations, '''K'''(k<sub>0</sub>) = <font color="red">1.854074677</font> and '''E'''(k<sub>0</sub>) = <font color="red">1.350643881</font>. | |||
</td></tr> | |||
</table> | |||
====Setup==== | |||
From our [[User:Tohline/Apps/Wong1973Potential#D0andCn|accompanying discussion of Wong's (1973) derivation]], the exterior potential is given by the expression, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 258: | Line 267: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | -D_0 | ||
(\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, , | |||
\ | |||
- | |||
\frac{ | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], §II.D, p. 294, Eqs. (2.59) & (2.61) | |||
</div> | |||
where, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~D_0 </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 282: | Line 288: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
= | |||
\frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr] | |||
\, , | \, ,</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 292: | Line 297: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~C_n(\cosh\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 298: | Line 303: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~(\ | <math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0) | ||
- (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \, | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
[http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)], §II.D, p. 294, Eq. (2.63) | |||
</div> | |||
and where, in terms of the major ( R ) and minor ( d ) radii of the torus — or their ratio, ε ≡ d/R, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\cosh\eta_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 316: | Line 328: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\sinh\eta_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<tr> | These expressions incorporate a number of [[User:Tohline/2DStructure/ToroidalGreenFunction#Basic_Elements_of_a_Toroidal_Coordinate_System|basic elements of a toroidal coordinate system]]. In what follows, we will also make use of the following relations: | ||
<td align="right"> | |||
<math>~ | <table border="1" width="80%" cellpadding="8" align="center"><tr><td align="left"> | ||
Once the primary scale factor, <math>~a</math>, has been specified, the illustration shown at the bottom of this inset box — see also our [[User:Tohline/Apps/DysonWongTori#Self-Gravitating.2C_Incompressible_.28Dyson-Wong.29_Tori|accompanying set of similar figures]] used by other researchers — helps in explaining how transformations can be made between any two of the referenced coordinate pairs: <math>~(\varpi, z)</math>, <math>~(\eta, \theta)</math>, <math>~(r_1, r_2)</math>. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\varpi</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{a\sinh\eta}{(\cosh\eta - \cos\theta)}</math> | ||
</math> | |||
</td> | </td> | ||
< | <td align="center"> <math>~\Rightarrow ~</math> </td> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\cos\theta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\cosh\eta - \frac{a\sinh\eta}{\varpi}</math> | ||
\ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~z - Z_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\frac{a\sin\theta}{(\cosh\eta - \cos\theta)}</math> | ||
</math> | |||
</td> | </td> | ||
<td align="center"> <math>~\Rightarrow ~</math> </td> | |||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\sin\theta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~\frac{(z - Z_0)}{\varpi} \cdot \sinh\eta </math> | ||
\frac{ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Given that (sin<sup>2</sup>θ + cos<sup>2</sup>θ) = 1, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~1</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~ | ||
- | \biggl[ \frac{(z - Z_0)}{\varpi} \cdot \sinh\eta \biggr]^2 + \biggl[\cosh\eta - \frac{a\sinh\eta}{\varpi}\biggr]^2 | ||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Rightarrow ~~~ \coth\eta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{1}{2a\varpi}\biggl[\varpi^2 + a^2 + (z - Z_0)^2 \biggr] \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
We deduce as well that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\frac{2}{\coth\eta + 1}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 460: | Line 434: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \, , | |||
</math> and, | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\sinh\eta + \cosh\eta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | \frac{\varpi^2 + a^2 + (z - Z_0)^2}{(\varpi + a)^2 + (z - Z_0)^2} \, . | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
---- | |||
Given the definitions, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r_1^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~( | <math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r_2^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 515: | Line 478: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
we can use the transformations, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\varpi</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 527: | Line 494: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\frac{(r_1^2 - r_2^2)}{4a}</math> and, | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(z - Z_0)^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 547: | Line 506: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~r_2^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 - 4a^2 \biggr]^2 \, ,</math> or, | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~(z - Z_0)^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 557: | Line 518: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~r_1^2 - \frac{1}{16a^2}\biggl[ r_1^2 - r_2^2 + 4a^2 \biggr]^2 \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Or we can use the transformations, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\eta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 569: | Line 534: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\ln \biggl(\frac{r_1}{r_2}\biggr) \, ,</math> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\cos\theta</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 579: | Line 546: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, .</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
---- | |||
Additional potentially useful relations can be found in an [[User:Tohline/2DStructure/ToroidalGreenFunction#Using_Toroidal_Coordinates_to_Determine_the_Gravitational_Potential|accompanying chapter wherein we present a variety of basic elements of a toroidal coordinate system]]. | |||
[[File:WongTorusIllustration02.png|400px|center|Wong diagram]] | |||
</td></tr></table> | |||
====Leading (n = 0) Term==== | |||
=====Wong's Expression===== | |||
Now, from our [[User:Tohline/Apps/Wong1973Potential#Attempt_.232|separate derivation]] we have, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~1</math> | <math>~P_{-1 / 2}(\cosh\eta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 595: | Line 573: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, . | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<span id="KeyEquation">And if we make the function-argument substitution,</span> <math>~z \rightarrow \coth\eta</math>, in the "[[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|Key Equation]]," | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | |||
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations]] | |||
</td> | |||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~Q_{-\frac{1}{2}}(z)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 609: | Line 594: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{1} | \sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr) | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="center" colspan="4"> | |||
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz & Stegun (1995)], p. 337, eq. (8.13.3) | |||
</td> | |||
</table> | </table> | ||
we can write, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~P_{-1 / 2}(\cosh\eta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 627: | Line 615: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{ | \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, , | ||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 647: | Line 621: | ||
</table> | </table> | ||
- | where, from above, we recognize that, | ||
<div align="center"> | |||
<math>~ | |||
k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} | |||
= | |||
\biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, . | |||
</math> | |||
</div> | |||
So, the leading (n = 0) term gives, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 659: | Line 641: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~(\ | <math>~ | ||
-D_0 | |||
(\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 665: | Line 650: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 671: | Line 656: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~(\varpi | <math>~ | ||
-D_0~C_0(\cosh\eta_0) | |||
\biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 687: | Line 671: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{( | <math>~ | ||
-\frac{D_0~C_0(\cosh\eta_0)}{\pi} | |||
\biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 693: | Line 680: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 699: | Line 686: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
=====Thin-Ring Evaluation of C<sub>0</sub>===== | |||
In an [[User:Tohline/Apps/Wong1973Potential#Thin_Ring_Approximation|accompanying discussion of the thin-ring approximation]], we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~( | <math>~C_0(x)\biggr|_{x\rightarrow \infty}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 711: | Line 706: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, . | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Hence, in this limit we can write, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 721: | Line 717: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\eta</math> | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 727: | Line 723: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
- \frac{2 }{\pi} \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 } | |||
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
=====More General Evaluation of C<sub>0</sub>===== | |||
<table border="1" align="center" cellpadding="10" width="80%"><tr><td align="left"> | |||
<font color="red">NOTE of CAUTION:</font> In our [[#KeyEquation|above evaluation of the toroidal function]], <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>. Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion with the argument, <math>~z</math>. | |||
</td></tr></table> | |||
Drawing from our [[User:Tohline/Appendix/Equation_templates#Analytic_Expressions_.26_Plots|accompanying tabulation of ''Toroidal Function Evaluations'']], we have more generally, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~2C_0(\cosh\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 739: | Line 748: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
\biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr] | |||
\biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr] | |||
+ | |||
3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr] | |||
\biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 766: | Line 767: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr] | ||
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | |||
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] | |||
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) | |||
~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0) | |||
\biggr\} \, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<span id="FirstEvaluations">where,</span> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math> | ||
\frac | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<table border="1" align="center" width="80%" cellpadding="10"> | |||
< | <tr><td align="left"> | ||
<math>~ | Looking back at our [[User:Tohline/Apps/Wong1973Potential#Exterior_Solution_.28n_.3D_0.29|previous numerical evaluation]] of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that, | ||
= | |||
</math> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 834: | Line 820: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~k_0 K(k_0)</math> | ||
( | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 843: | Line 826: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{-\tfrac{1}{2}}(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 849: | Line 832: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1.311028777 ~~~\Rightarrow ~~~ K(k_0) = 1.854074677</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 858: | Line 838: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 864: | Line 844: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 873: | Line 850: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Hence [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]], <math>~Q_{+\tfrac{1}{2}}(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 879: | Line 856: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0.1128885424 ~~~\Rightarrow~~~ E(k_0) = 1.350643881</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 899: | Line 868: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
<math>~\ | Hence, <math>~Q^2_{-\tfrac{1}{2}}(3)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 916: | Line 880: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~1.104816977</math>, which matches [[User:Tohline/Appendix/Equation_templates#Comparison_with_Table_IX_from_MF53|MF53 value]] | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | [[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 942: | Line 893: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-~\frac{1}{2^2}\biggl\{ z k_0~K ( k_0 ) | |||
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} | |||
+ | |||
3 \biggl[ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 953: | Line 901: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Hence, <math>~Q^2_{+\tfrac{1}{2}}(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 959: | Line 907: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0.449302588</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
---- | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ C_0(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ \frac{1}{2}~Q_{+\frac{1}{2}}(3) \cdot Q_{- \frac{1}{2}}^2(3) | ||
+ \frac{3}{2}~ Q_{- \frac{1}{2}}(3)\cdot Q^2_{+ \frac{1}{2}}(3) | |||
\frac{ | = | ||
0.945933522 \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
< | |||
</td></tr> | |||
</table> | |||
Attempting to simplify this expression, we have, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~2C_0(\cosh\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\biggl | <math>~ | ||
\biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\} | |||
\times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<tr> | |||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~k_0 K(k_0)</math> | <math>~ | ||
- | |||
\frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] | |||
\times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) | |||
~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,019: | Line 975: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,025: | Line 981: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\} | |||
\times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) \biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,031: | Line 990: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | |||
3 k_0 ~K ( k_0) | |||
\times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 ) | |||
~-~(\cosh^2\eta_0+3) k_0 E(k_0) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,043: | Line 1,008: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,049: | Line 1,014: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,055: | Line 1,022: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~[2^ | <math>~ | ||
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2 + 2(\cosh\eta_0 ~-1) + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr] | |||
- E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0 \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,067: | Line 1,037: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,073: | Line 1,043: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~1 | <math>~ | ||
-~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,079: | Line 1,051: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 + \frac{2}{k_0^2}(\cosh\eta_0 ~-1) + 3 (\cosh^2\eta_0 ~ + 3)\biggr] | |||
- E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2} \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,094: | Line 1,066: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,100: | Line 1,072: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0) \biggr] | |||
+ 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0 + 1\biggr] | |||
- E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr] | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>. <font color="red">TERRIFIC!</font> | |||
Finally then, for any choice of <math>~\eta_0</math>, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,117: | Line 1,094: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ \frac{ | <math>~ | ||
- \frac{2^{3} }{3\pi^3} | |||
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | |||
\frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ \cosh\eta_0 | \times \biggl\{ | ||
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] | |||
+ 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] | |||
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] | |||
\biggr\} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
====Second (n = 1) Term==== | |||
The second (n = 1) term in [[User:Tohline/Apps/Wong1973Potential#D0andCn|Wong's (1973) expression for the exterior potential]] is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | -D_0 | ||
\ | (\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos\theta \cdot C_1(\cosh\eta_0)P_{+\frac{1}{2}}(\cosh\eta) \, , | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
where, <math>~D_0</math> is the same as [[#Setup|above]], and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~C_1(\cosh\eta_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0) | ||
\ | + \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, . | ||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Now, from our [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|accompanying table of "Toroidal Function Evaluations"]], it appears as though, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~P_{+\frac{1}{2}}(\cosh\eta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} E(k) \, ,</math> | ||
\ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
where, as above, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~k</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl[ \frac{2}{\coth\eta+1} \biggr]^{1 / 2} \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Hence, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) | |||
- E( | \biggl[ \cos\theta \cdot (\cosh\eta - \cos\theta)^{1 / 2} (\sinh\eta)^{+1 / 2} \biggr] | ||
k^{-1} E(k) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,230: | Line 1,209: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,237: | Line 1,216: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta | ||
\biggl\{ \frac{a\sinh^2\eta}{\varpi} \cdot \frac{\coth\eta + 1}{2} \biggr\}^{1 / 2} | |||
E(k) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,247: | Line 1,228: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta | |||
\biggl\{ \biggl( \frac{a}{2\varpi} \biggr) \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} | |||
E(k) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,259: | Line 1,241: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,266: | Line 1,248: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta | |||
\biggl\{ \biggl( \frac{a}{2} \biggr)\biggl[ \frac{4a}{r_1^2 - r_2^2} \biggr] \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} | |||
E(k) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,288: | Line 1,264: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{2^{3} }{3\pi^3} | - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) | ||
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | \biggl[ \frac{\cos\theta}{r_2} \biggr] | ||
\frac{a}{ [ (\varpi | E(k) | ||
= | |||
- \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) | |||
\biggl[ \frac{\cos\theta}{\sqrt{ (\varpi - a)^2 + (z-Z_0)^2 }} \biggr] | |||
E(k) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,300: | Line 1,280: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] | ||
\boldsymbol{E}(k) \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,314: | Line 1,291: | ||
</table> | </table> | ||
== | <span id="Qrecurrence"> </span> | ||
<table border="1" align="center" width="80%" cellpadding="10"> | |||
<tr><td align="left"> | |||
From the [[#FirstEvaluations|above function tabulations & evaluations]] — for example, <math>~ K(k_0) = 1.854074677</math> and <math>~ E(k_0) = 1.350643881</math> — and a [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|separate listing of ''Example Recurrence Relations'']], we have, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{-\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,326: | Line 1,305: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~k_0 K(k_0)</math> | ||
( | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | [[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q_{+\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~Q^0_{m-\tfrac{1}{2}}</math> [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|recurrence]] with m = 2: | ||
<math>~Q_{+\tfrac{3}{2}}(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,361: | Line 1,330: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{\ | <math>~\frac{4}{3} z~Q_{+\tfrac{1}{2}}(z_0) - \frac{1}{3} Q_{-\tfrac{1}{2}}(z_0)</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{4}{3} z \{z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0)\} - \frac{1}{3}k_0 K(k_0)</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,392: | Line 1,354: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{1}{3} \biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr] </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,402: | Line 1,360: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Hence, <math>~Q_{+\tfrac{3}{2}}(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,408: | Line 1,366: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0.014544576 \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
---- | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
[[User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations|Appendix Expression:]] <math>~Q^2_{-\tfrac{1}{2}}(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,424: | Line 1,382: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)]</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,434: | Line 1,388: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
[[User:Tohline/Appendix/Mathematics/ToroidalSynopsis01#Evaluating_Q2.CE.BD|Additional derivation:]] <math>~Q^2_{+\tfrac{1}{2}}(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,441: | Line 1,395: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{ | -~\frac{1}{2^2} | ||
\biggl\{ z k_0~K ( k_0 ) | |||
E( | ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Then, letting <math>~\mu \rightarrow 2</math> and, for all m ≥ 2, letting <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> in the "Key Equation," | |||
{{ User:Tohline/Math/EQ_Toroidal04 }} | |||
we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~(m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,457: | Line 1,419: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \ | (2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \, . | ||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Therefore, specifically for m = 1, we obtain the recurrence relation, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~Q^{2}_{+\tfrac{3}{2}} (z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,477: | Line 1,438: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
<td align="right"> | |||
| |||
<tr> | |||
<td align="right"> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,498: | Line 1,451: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~k_0 K(k_0)</math> | <math>~ | ||
5 \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} | |||
+ z \biggl\{ z k_0~K ( k_0 ) | |||
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0)\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,504: | Line 1,461: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,510: | Line 1,467: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~z~ | <math>~ | ||
2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} \biggl\{ [5 z] | |||
~-~z (z^2+3) \biggr\} E(k_0) | |||
+ \biggl\{ z^2 k_0~ | |||
- [(z-1)(z^2-1)]^{-1 / 2} [ 2^{-3 / 2} \cdot 5 (z-1)] \biggr\}K(k_0) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,516: | Line 1,478: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,523: | Line 1,484: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2 - 5 ]K(k_0) | |||
-~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z E(k_0) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,529: | Line 1,493: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Hence, <math>~Q^{2}_{+\tfrac{3}{2}} (3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,535: | Line 1,499: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
0.132453829 \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
---- | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ C_1(3)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,547: | Line 1,518: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ \frac{3}{2}~Q_{+\frac{3}{2}}(3) \cdot Q_{+ \frac{1}{2}}^2(3) | ||
+ \frac{1}{2}~ Q_{+ \frac{1}{2}}(3)\cdot Q^2_{+ \frac{3}{2}}(3) | |||
= 0.017278633 \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</td></tr> | |||
</table> | |||
While keeping in mind that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~z_0</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,559: | Line 1,541: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\cosh\eta_0 \, ,</math> | ||
</td> | </td> | ||
< | <td align="center"> and, </td> | ||
< | |||
<td align="right"> | <td align="right"> | ||
<math>~k_0^2</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,575: | Line 1,551: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{2}{\cosh\eta_0 + 1} | ||
= | |||
\frac{2}{z_0 + 1} | |||
\, ,</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
let's attempt to express this leading coefficient, <math>~C_1(\cosh\eta_0)</math>, entirely in terms of the pair of complete elliptic integral functions. | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~2C_1(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,587: | Line 1,570: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~3 \biggl[ Q_{+\frac{3}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] | ||
+ \biggl[ Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] | |||
\biggl\{ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,611: | Line 1,584: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\biggl[3 Q_{+\frac{3}{2}}(z_0) -4z Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] | ||
( | + \biggl[ 5Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q^{2}_{- \tfrac{1}{2}}(z_0) \biggr] | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,630: | Line 1,598: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~-~\frac{1}{2^2}\biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) | ||
-4z \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \biggr\} | |||
\times | |||
\biggl\{ z k_0~K ( k_0 ) | |||
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,641: | Line 1,613: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
5 \biggl | + 5\biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] | ||
\times | |||
\biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,660: | Line 1,632: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{1}{2^2} \cdot k_0 K(k_0) | ||
\times | |||
~-~ | \biggl\{ z k_0~K ( k_0 ) | ||
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,674: | Line 1,646: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2^ | + 5[2^3(z-1)(z^2-1)]^{-1 / 2} \biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] | ||
- | \times | ||
\biggl\{ 4zE(k_0) - (z-1)K(k_0) \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,686: | Line 1,659: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,693: | Line 1,666: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
K(k_0)\cdot K(k_0) \biggl\{ \frac{z k_0^2}{2^2} - 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot zk_0(z-1)\biggr\} | |||
+ | |||
E(k_0)\cdot E(k_0) \biggl\{ -5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot 4z \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ \ | <math>~ | ||
+~K(k_0)\cdot E(k_0) \biggl\{ | |||
-~\frac{1}{2^2} \cdot k_0(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} | |||
+ 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot 4z^2k_0 | |||
+ 5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot (z-1) | |||
\biggr\} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,719: | Line 1,692: | ||
</table> | </table> | ||
Hence, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~z_0</math> | <math>~2[(z-1)(z^2-1)]^{1 / 2} C_1(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,734: | Line 1,703: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[(z-1)(z^2-1) \biggr]^{1 / 2} - \frac{5(z-1)}{2^{3/2}} \biggr\} | |||
-~10 z(z+1)^{1 / 2} \cdot E(k_0)\cdot E(k_0) | |||
</math> | |||
</td> | </td> | ||
< | </tr> | ||
<tr> | |||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ | |||
k_0[19z^2 - 3 ] | |||
\ | + 5(z-1) [2(z+1)]^{1 / 2} | ||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Rightarrow ~~~2^{3/2}\biggl[ \frac{(z-1)}{k_0} \biggr] C_1(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,763: | Line 1,735: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[\frac{2^{1 / 2}(z-1)}{k_0} \biggr] - \frac{5(z-1)}{2^{3/2}} \biggr\} | |||
-~\biggl[ \frac{2^{3 / 2} \cdot 5z}{k_0} \biggr] E(k_0)\cdot E(k_0) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,774: | Line 1,747: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ | |||
k_0[19z^2 - 3 ] | |||
+ \frac{10 (z-1)}{k_0} | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,785: | Line 1,761: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~C_1(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,791: | Line 1,767: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | \biggl[ \frac{2(3z^2 - 1)}{(z^2-1)} \biggr]K(k_0)\cdot E(k_0) | ||
-~\biggl[ \frac{z}{(z+1)} \biggr] K(k_0)\cdot K(k_0) | |||
-~\biggl[ \frac{ 5z}{(z-1)} \biggr] E(k_0)\cdot E(k_0) | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,803: | Line 1,777: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~(z_0^2-1)C_1(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2(3z^2 - 1) K(k_0)\cdot E(k_0) | |||
-~z_0(z_0-1) K(k_0)\cdot K(k_0) | |||
-~5z_0(z_0+1) E(k_0)\cdot E(k_0) \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Hence, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,825: | Line 1,803: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
\ | - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] | ||
\ | \boldsymbol{E}(k) \, . | ||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<tr> | ====Third (n = 2) Term==== | ||
<td align="right"> | |||
=====Part A===== | |||
The third (n = 2) term in [[User:Tohline/Apps/Wong1973Potential#D0andCn|Wong's (1973) expression for the exterior potential]] is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-D_0 | |||
(\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos(2\theta) \cdot C_2(\cosh\eta_0)P_{+\frac{3}{2}}(\cosh\eta) \, , | |||
\ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
where, <math>~D_0</math> is the same as [[#Setup|above]], and, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~C_2(\cosh\eta_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\tfrac{5}{2}Q_{+\frac{5}{2}}(\cosh \eta_0) Q_{+\frac{3}{2}}^2(\cosh \eta_0) | ||
- \tfrac{1}{2} Q_{+\frac{3}{2}}(\cosh \eta_0)~Q^2_{+ \frac{5}{2}}(\cosh \eta_0) \, . | |||
+ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<table border="1" align="center" width="80%" cellpadding="10"> | |||
<tr><td align="left"> | |||
In order to evaluate <math>~C_2(z)</math>, we will need the following pair of expressions in addition to the ones already used: | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| <math>~Q^0_{m-\tfrac{1}{2}}</math> [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|recurrence]] with m = 3, gives: | ||
<math>~Q_{+\tfrac{5}{2}}(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math> | <math>~\frac{8}{5} z~Q_{+\tfrac{3}{2}}(z_0) - \frac{3}{5} Q_{+\tfrac{1}{2}}(z_0)</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Rightarrow~~~15Q_{+\tfrac{5}{2}}(z_0)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,896: | Line 1,878: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~8 z~\biggl[ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr] | ||
z | - | ||
-~ | 9 \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr]</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 1,908: | Line 1,889: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z~k_0 K(k_0) \biggl[ 8(4z^2 - 1 ) - 9 \biggr] | |||
+ | |||
+ | [2(z+1)]^{1 / 2} E(k_0) \biggl[-32z^2 + 9 \biggr] | ||
\biggr | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,922: | Line 1,902: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,929: | Line 1,909: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z k_0 | z~k_0 K(k_0) [ 32z^2 - 17 ] | ||
- | + | ||
[2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,937: | Line 1,918: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| Hence, <math>~Q_{+\frac{5}{2}}(3)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0.002080867 \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
And, setting m = 2 in the [[#Qrecurrence|above recurrence relation for]] <math>~Q^2_{m+\frac{1}{2}}(z)</math> gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\biggl[ (m - \tfrac{3}{2})Q^{2}_{m+\tfrac{1}{2}} (z) \biggr]_{m=2}</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,961: | Line 1,941: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ \ | \biggl[ (2m)z Q_{m-\tfrac{1}{2}}^{2}(z) - (m + \tfrac{3}{2})Q^{2}_{m - \tfrac{3}{2}}(z) \biggr]_{m=2} | ||
- | |||
</math> | </math> | ||
</td> | </td> | ||
Line 1,970: | Line 1,948: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ | <math>~\Rightarrow ~~~ Q^{2}_{+\tfrac{5}{2}} (z) </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,977: | Line 1,955: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2 | 8z Q_{+\tfrac{3}{2}}^{2}(z) - 7 Q^{2}_{+ \tfrac{1}{2}}(z) | ||
- | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 1,997: | Line 1,969: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
8z \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] - 7 Q^{2}_{+ \tfrac{1}{2}}(z) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,019: | Line 1,983: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | 40z Q^{2}_{- \tfrac{1}{2}}(z_0) | ||
- [32z^2 +7]Q_{+\tfrac{1}{2}}^{2}(z_0) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
- | 40z \biggl\{ | ||
[2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
+ \frac{[32z^2 +7]}{4} \biggl\{ | |||
z k_0~K ( k_0 ) | |||
~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow~~~ | <math>~\Rightarrow ~~~ 4Q^{2}_{+\tfrac{5}{2}} (z) </math> </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | 2^5\cdot 5z \biggl\{ 2^{1 / 2} | ||
[(z-1)(z^2-1)]^{-1 / 2} [zE(k_0) ] | |||
- | |||
2^{-3 / 2}[(z-1)(z^2-1)]^{-1 / 2} [(z-1)K(k_0)] | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,082: | Line 2,047: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z~ | + [32z^2 +7] \biggl\{ | ||
z k_0~K ( k_0 ) | |||
~-~2^{1 / 2}(z^2+3) [ (z-1)(z^2-1) ]^{-1 / 2} E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,102: | Line 2,068: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z | \biggl\{ | ||
+ | 2^{11 / 2}\cdot 5 [z^2 ] - 2^{1 / 2} [32z^2 +7] (z^2+3) | ||
[ | \biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0) | ||
</math> | </math> | ||
</td> | </td> | ||
Line 2,111: | Line 2,077: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-~2^{7 / 2}\cdot 5 \biggl\{ [(z-1)(z^2-1)]^{-1 / 2} (z-1) \biggr\} z K(k_0) | |||
+ [32z^2 +7] \biggl\{ 2^{1 / 2}[z + 1]^{-1 / 2} \biggr\} z K ( k_0 ) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,134: | Line 2,099: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl | 2^{1 / 2}\biggl\{ 32z^2 - 33 \biggr\} z [z + 1]^{-1 / 2} K ( k_0 ) | ||
-~2^{1 / 2} | |||
\biggl\{ | |||
32z^4 - 57 z^2 + 21 | |||
\biggr\}[(z-1)(z^2-1)]^{-1 / 2} E(k_0) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,141: | Line 2,110: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,148: | Line 2,117: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33) z (z-1) K ( k_0 ) | |||
-~(32z^4 - 57 z^2 + 21)E(k_0) \biggr] | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,155: | Line 2,126: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| Hence, <math>~Q^2_{+\frac{5}{2}}(3)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,161: | Line 2,132: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~0.03377378 \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<tr> | </td></tr></table> | ||
<td align="right"> | |||
=====Part B===== | |||
</td> | |||
Let's evaluate <math>~C_2(z)</math> specifically for the case where <math>~z = \cosh\eta_0 = 3</math>, using the already separately evaluated values of the four relevant toroidal functions. We find, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~2C_2(3)</math> | |||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~5Q_{+\frac{5}{2}}(3) Q_{+\frac{3}{2}}^2(3) | ||
- Q_{+\frac{3}{2}}(3)~Q^2_{+ \frac{5}{2}}(3) | |||
- | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,191: | Line 2,167: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
5\cdot ( 0.002080867 ) \times ( 0.132453829 ) - ( 0.014544576 ) \times (0.03377378 ) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,203: | Line 2,177: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
8.868687\times 10^{-4} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,216: | Line 2,187: | ||
</table> | </table> | ||
Next, let's develop a consolidated expression for <math>~C_2(z_0)</math> that replaces all the toroidal functions with complete elliptic integrals of the first and second kind. | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~2C_2(z_0)</math> | ||
</td> | |||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~5Q_{+\frac{5}{2}}(z_0) Q_{+\frac{3}{2}}^2(z_0) | ||
- Q_{+\frac{3}{2}}(z_0)~Q^2_{+ \frac{5}{2}}(z_0) | |||
</math> | |||
- | </td> | ||
</math> | |||
</td> | |||
</tr> | </tr> | ||
Line 2,240: | Line 2,209: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ [32z^2 | \frac{1}{3}\biggl\{ | ||
z~k_0 K(k_0) [ 32z^2 - 17 ] | |||
+ | |||
\biggr\} | [2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] | ||
\biggr\} | |||
\times \biggl\{ | |||
2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2 - 5 ]K(k_0) | |||
-~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,257: | Line 2,231: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ | - \frac{1}{2^2\cdot 3} | ||
2^{ | \biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr\} | ||
\times \biggl\{ | |||
2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33) z (z-1) K ( k_0 ) | |||
-~(32z^4 - 57 z^2 + 21)E(k_0) \biggr] | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\Rightarrow ~~~ 2^{2} \cdot 3 (z^2-1) C_2(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ | |||
K(k_0) z[ 32z^2 - 17 ] | |||
+ | |||
(z+1) E(k_0) [9 -32z^2 ] | |||
\biggr\} | |||
\times \biggl\{ | |||
(z-1) [4 z^2 - 5 ]K(k_0) | |||
-~4 (z^2 - 2)z E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,288: | Line 2,275: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
2 | - ~ | ||
-~ | \biggl\{ (4z^2 - 1 ) K(k_0) - 4 z(z+1) E(k_0) \biggr\} | ||
\times \biggl\{ | |||
32z^4 - 57 z^2 + 21 | (32z^2 - 33) z (z-1) K ( k_0 ) | ||
\biggr\} | -~(32z^4 - 57 z^2 + 21)E(k_0) | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,310: | Line 2,298: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl\{ | |||
-~( | (z-1)[ 32z^2 - 17 ] [4 z^2 - 5 ]z K(k_0) \cdot K(k_0) | ||
\ | -~4 (z^2 - 2)z^2 [ 32z^2 - 17 ] K(k_0) \cdot E(k_0) | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,319: | Line 2,308: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ \biggl\{ | |||
(z-1) (z+1) [9 -32z^2 ] [4 z^2 - 5 ]K(k_0) \cdot E(k_0) | |||
-~4 (z^2 - 2)z (z+1) [9 -32z^2 ] E(k_0) \cdot E(k_0) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | + ~ | ||
\biggl\{ | |||
(32z^4 - 57 z^2 + 21)(4z^2 - 1 ) K(k_0) \cdot E(k_0) | |||
-~(32z^2 - 33) z (z-1)(4z^2 - 1 ) K ( k_0 ) \cdot K(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,356: | Line 2,346: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ ~ | |||
\biggl\{ | |||
4 z(z+1)(32z^2 - 33) z (z-1) K ( k_0 ) \cdot E(k_0) | |||
-~4 z(z+1)(32z^4 - 57 z^2 + 21)E(k_0) \cdot E(k_0) | |||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,373: | Line 2,367: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(z-1)\biggl\{ | ||
\biggl[ | |||
( 32z^2 - 17 ) (4 z^2 - 5 )z \biggr] | |||
-~\biggl[ (32z^2 - 33) z (4z^2 - 1 ) \biggr] \biggr\} K ( k_0 ) \cdot K(k_0) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | + \biggl\{ \biggl[ | ||
(z-1) (z+1) (9 -32z^2 ) (4 z^2 - 5 )\biggr] | |||
-~\biggl[ 4 (z^2 - 2)z^2 ( 32z^2 - 17 ) \biggr] | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,402: | Line 2,396: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ ~ | |||
\biggl[ | |||
(32z^4 - 57 z^2 + 21)(4z^2 - 1 ) \biggr] | |||
+ ~ \biggl[ 4 z(z+1)(32z^2 - 33) z (z-1)\biggr]\biggr\} K ( k_0 ) \cdot E(k_0) | |||
\biggr | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,428: | Line 2,417: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- | -~2z(z+1) \biggl\{ \biggl[ 2 (32z^4 - 57 z^2 + 21) \biggr] | ||
\biggl\{ ( | +~2\biggl[ (z^2 - 2) (9 -32z^2 )\biggr] \biggr\} E(k_0) \cdot E(k_0) | ||
</math> | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,450: | Line 2,432: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
z(z-1)\biggl\{[ 52 - 64z^2 ] \biggr\} K ( k_0 ) \cdot K(k_0) | |||
-~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) | |||
\biggr\} | |||
( | |||
-~ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,472: | Line 2,447: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
+ \biggl\{ | |||
\biggl\{ | \biggl[ 5(32z^4 - 41z^2 + 9 ) \biggr] | ||
- \biggl[ (32z^4 - 57 z^2 + 21)\biggr] | |||
(32z^2 | |||
- | |||
\biggr | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,487: | Line 2,459: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl | + ~ | ||
( | 4z^2\biggl[ (32z^4 - 57 z^2 + 21) | ||
- | + (32z^4 - 65z^2 + 33) + (-32z^4 + 41z^2 -9 ) +~( -32z^4 + 81z^2 - 34 ) | ||
\biggr]\biggr\} K ( k_0 ) \cdot E(k_0) | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Line 2,504: | Line 2,475: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
4z(z-1)\biggl\{ 13 - 16z^2 \biggr\} K ( k_0 ) \cdot K(k_0) | |||
(z-1) | -~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) | ||
-~ | + 8\biggl\{ | ||
\biggr\} | 16z^4 -13z^2 + 3 \biggr\} K ( k_0 ) \cdot E(k_0) \, . | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Finally, let's evaluate this consolidated expression for the specific case of <math>~z_0 = \cosh\eta_0 = 3</math>, remembering that in this specific case <math>~k_0 = 2^{-1 / 2}</math>, <math>~K(k_0) = 1.854074677</math>, and <math>~E(k_0) = 1.350643881</math>. We find, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~2C_2(z_0)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
[2 \cdot 3 (z^2-1) ]^{-1} \biggl\{ | |||
\biggl\{ | 4z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) | ||
( | -~4z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) | ||
-~( | + 8[ | ||
\biggr\} | 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) | ||
\biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,539: | Line 2,515: | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
[48 ]^{-1} \biggl\{ | |||
\biggl\{ | -24[ 131 ] K ( k_0 ) \cdot K(k_0) | ||
-~48 [ 147] E(k_0) \cdot E(k_0) | |||
+ 8[ 1182 ] K ( k_0 ) \cdot E(k_0) | |||
\biggr\} | \biggr\} | ||
</math> | </math> | ||
</td> | </td> | ||
Line 2,560: | Line 2,536: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | 8.8708 \times 10^{-4} \, . | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
<font color="red">This matches the numerically evaluated expression, from above (6/30/2020)</font>. There is a tremendous amount of cancellation between the three key terms in this expression, so the match is only to three significant digits.</tr> | |||
=====Part C===== | |||
Next … | |||
<table border="1" cellpadding="8" align="center" width="60%"> | |||
<tr><td align="left"> | |||
<div align="center">'''Useful Relations from Above'''</div> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\cosh\eta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{r_1^2 + r_2^2}{2r_1 r_2} \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,586: | Line 2,569: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\sinh\eta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{r_1^2 - r_2^2}{2r_1 r_2} \, ;</math> | ||
\ | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,603: | Line 2,581: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\varpi</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{r_1^2 - r_2^2}{2a} \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,618: | Line 2,593: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\cosh\eta - \cos\theta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,624: | Line 2,599: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{2a^2}{r_1 r_2} \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,633: | Line 2,605: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ \cos\theta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{r_1^2 + r_2^2-4a^2}{2r_1 r_2} \, ;</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,649: | Line 2,617: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{2}{\coth\eta + 1}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{4a\varpi}{r_1^2} \, .</math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
</td></tr> | |||
</table> | |||
Now, from our tabulation of [[User:Tohline/Appendix/Equation_templates#Example_Recurrence_Relations|example recurrence relations]], we see that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ P_{+\frac{3}{2}}(\cosh\eta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,671: | Line 2,643: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{4}{3} \cdot \cosh\eta ~P_{+\frac{1}{2}}(\cosh\eta) - \frac{1}{3} ~ P_{-\frac{1}{2}}(\cosh\eta) </math> | ||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,692: | Line 2,655: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\frac{4}{3} \cdot \cosh\eta \biggl[ \frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) \biggr] | ||
[2 \ | - | ||
\frac{1}{3} ~ \biggl[ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr]</math> | |||
-~ | |||
\biggr | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,711: | Line 2,669: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{2^{1 / 2}}{3\pi} | |||
\biggl[ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) | |||
- | |||
(\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr] | |||
\, ,</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, as above, | |||
<div align="center"> | |||
<math>~ | <math>~ | ||
[ | k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} | ||
= | |||
- | \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} | ||
= | |||
\biggr\ | \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} \, . | ||
</math> | </math> | ||
</div> | |||
< | So we have, | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,730: | Line 2,700: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-\frac{2^{5/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
C_2(\cosh\eta_0)\cos(2\theta) | |||
\biggl\{ (\cosh\eta - \cos\theta)^{1 / 2}P_{+\frac{3}{2}}(\cosh\eta) \biggr\} | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,756: | Line 2,715: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{r_1^2 + | <math>~ | ||
-\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} | |||
\biggl\{ | |||
4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) | |||
- | |||
(\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,762: | Line 2,729: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,768: | Line 2,735: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
-\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,774: | Line 2,744: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{r_1^2 - r_2^2}{2a} \ | <math>~ | ||
\times | |||
\biggl\{ | |||
4 \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \biggl[\frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{+1 / 2} \biggl[ \frac{4a}{r_1^2} \biggl( \frac{r_1^2 - r_2^2}{2a} \biggr)\biggr]^{-1 / 2} \boldsymbol{E}(k) | |||
- | |||
\biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{-1 / 2} ~\biggl[ \frac{4a}{r_1^2}\biggl( \frac{r_1^2 - r_2^2}{2a} \biggr) \biggr]^{1 / 2} \boldsymbol{K}(k) | |||
\biggr\} | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,786: | Line 2,763: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,792: | Line 2,769: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{ | <math>~ | ||
-\frac{2^{9/2} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] | |||
C_2(\cosh\eta_0)\cos(2\theta) | |||
\times | |||
\biggl\{ | |||
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) | |||
- | |||
\frac{a}{r_1} \cdot \boldsymbol{K}(k) | |||
\biggr\} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Finally, inserting the expression for <math>~\sinh^2\eta_0~ C_2(\cosh\eta_0) = (z_0^2-1)C_2(z_0)</math> that we have derived, above, gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ \ | <math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,804: | Line 2,795: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{r_1^2 + r_2 | <math>~ | ||
</td> | -\frac{2^{9/2} }{3^3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | ||
\times \cos(2\theta) | |||
\biggl\{ | |||
\biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) | |||
- | |||
\frac{a}{r_1} \cdot \boldsymbol{K}(k) | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\times \biggl\{ | |||
z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) | |||
-~z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) | |||
+ 2 [ 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) | |||
\biggr\} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
====Summary==== | |||
Once the major ( R ) and minor ( d ) radii of the torus have been specified, two key model parameters can be immediately determined, namely, | |||
<div align="center"> | |||
<math>~a^2 \equiv R^2 - d^2\, ,</math> and, <math>~\cosh\eta_0 \equiv \frac{R}{d} \, ,</math> | |||
</div> | |||
in which case also, <math>~\sinh\eta_0 = a/d \, .</math> Once the mass-density ( ρ<sub>0</sub> ) of the torus has been specified, the torus mass is given by the expression, | |||
<div align="center"> | |||
<math>~M = 2\pi^2 \rho_0 d^2 R \, .</math> | |||
</div> | |||
In addition to the principal pair of meridional-plane coordinates, <math>~(\varpi, z)</math>, it is useful to define the pair of distances, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~r_1^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 2,842: | Line 2,853: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~r_2^2</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math> | ||
- | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
where, the equatorial plane of the torus is located at <math>~z = Z_0</math>. As we have shown above, the leading (n = 0) term in Wong's (1973) series-expression for the gravitational potential anywhere outside the torus is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,862: | Line 2,875: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\frac{2^{ | <math>~ | ||
\biggl[ | - \frac{2^{3} }{3\pi^3} | ||
\biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | |||
\frac{a}{ r_1 } \cdot \boldsymbol{K}(k) | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | |||
< | <td align="right"> | ||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | <math>~ | ||
\times \biggl\{ | |||
K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] | |||
\ | + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] | ||
- E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] | |||
\ | \biggr\} \, . | ||
</math> | </math> | ||
</ | </td> | ||
</tr> | |||
</table> | |||
where, the two distinctly different arguments — one with, and one without a zero subscript — of the complete elliptic-integral functions are, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} | |||
= | |||
\biggl\{ | \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} | ||
= \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} | |||
= \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} \, , | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,902: | Line 2,925: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~k_0</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, . | |||
</math> | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
As we also have shown above, the second (n = 1) term in Wong's (1973) series-expression for the exterior gravitational potential is, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,929: | Line 2,950: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-\frac{2^{3} }{3 | - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot | ||
\boldsymbol{E}(k) | |||
</math> | </math> | ||
</td> | </td> | ||
Line 2,943: | Line 2,964: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~\times | ||
\times | \biggl\{ | ||
\biggl\{ | K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] | ||
+~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] | |||
-~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] | |||
\biggr\} | \biggr\} | ||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
Note that a transformation from the <math>~(r_1, r_2)</math> coordinate pair to the toroidal-coordinate pair <math>~(\eta, \theta)</math> includes the expression, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\cos\theta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 2,963: | Line 2,987: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, . | |||
</math> | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
So this (n = 1) term's explicit dependence on "cos(nθ)" is clear. Finally, the third (n = 2) term in Wong's (1973) series-expression for the exterior gravitational potential is, | |||
Finally, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 2,989: | Line 3,005: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
-\frac{2^{ | -\frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] | ||
\times \cos(2\theta) | \times \cos(2\theta) | ||
\biggl\{ | \biggl\{ | ||
Line 3,009: | Line 3,025: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\times \biggl\{ | \times \frac{2^{3 / 2}}{3^2}\biggl\{ | ||
K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13] | |||
+ 2 K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ] | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
| |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
| |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~(\ | <math>~ | ||
-~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ] | |||
\biggr\} \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
{{LSU_WorkInProgress}} | |||
===The Huré, ''et al'' (2020) Presentation=== | |||
====Notation==== | |||
The major and minor radii of the torus surface ("shell") are, respectively, R<sub>c</sub> and b, and their ratio is denoted, | |||
<div align="center"> | |||
<math>~e \equiv \frac{b}{R_c} \, .</math> | |||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §2, p. 5826, Eq. (1) | |||
</div> | |||
The authors work in cylindrical coordinates, <math>~(R, Z)</math>, whereas we refer to this same coordinate-pair as, <math>~(\varpi, z)</math>. The quantity, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Delta^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,052: | Line 3,072: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~(\ | <math>~ | ||
[R + (R_c + b\cos\theta_H)]^2 + [Z - b\sin\theta_H]^2 \, . | |||
</math> | |||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §2, p. 5826, Eqs. (1) & (7) | |||
</div> | |||
We have affixed the subscript "H" to their meridional-plane angle, θ, to clarify that it has a different coordinate-base definition from the meridional-plane angle, θ, that appears in our discussion of [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong's (1973)] work, below. The subscript "0" is used in the case of an infinitesimally thin hoop <math>~(b \rightarrow 0)</math>, that is to say, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Delta_0^2</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,069: | Line 3,094: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
[R + R_c]^2 + Z^2 \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §3, p. 5827, Eq. (13) | |||
</div> | |||
Generally, the argument (modulus) of the complete elliptic integral functions is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~k_H</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \frac{2}{\Delta}\biggl[ R (R_c + b\cos\theta_H) \biggr]^{1 / 2} \, . | ||
\biggr | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §2, p. 5826, Eq. (4) | |||
</div> | |||
(Again, we have affixed the subscript "H" in order to differentiate from the modulus employed by [http://adsabs.harvard.edu/abs/1973AnPhy..77..279W Wong (1973)].) And in the case of an infinitesimally thin hoop <math>~(b\rightarrow 0)</math>, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~k</math> | <math>~[k^2_H]_0</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~=</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{4R R_c}{\Delta_0^2} \, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §3, p. 5827, Eq. (12) | |||
</div> | |||
====Key Finding==== | |||
On an initial reading, it appears as though the most relevant section of the [https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)] paper is §8 titled, ''The Solid Torus.'' They write the gravitational potential in terms of the series expansion, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~\Psi_\mathrm{grav}(\vec{r})</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\ | <math>~\approx</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\ | \Psi_0 + \sum\limits_{n=1}^N \Psi_n \, , | ||
</math> | </math> | ||
</td> | </td> | ||
Line 3,131: | Line 3,163: | ||
</table> | </table> | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §7, p. 5831, Eq. (42) | |||
</div> | |||
where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\ | <math>~\Psi_0 </math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 3,143: | Line 3,178: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
- \frac{ | - \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr] | ||
\boldsymbol{ | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | |||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §8, p. 5832, Eqs. (52) & (53) | |||
</div> | |||
and, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~=</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~\ | <math>~ | ||
\ | - \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{ | ||
[\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k) | |||
\biggr\} \, . | |||
\biggr\} | |||
\, . | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §8, p. 5832, Eq. (54) | |||
</div> | |||
Note that the argument of the elliptic integral functions is, | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~ | <math>~k</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~ | <math>~\equiv</math> | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{2\sqrt{\varpi R}}{\Delta} | |||
</math> | </math> | ||
</td> | </td> | ||
< | <td align="center"> where, </td> | ||
< | |||
<td align="right"> | <td align="right"> | ||
<math>~\Delta</math> | |||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
<math>~\equiv</math> | |||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, . | |||
+ | |||
</math> | </math> | ||
</td> | </td> | ||
Line 3,241: | Line 3,240: | ||
</table> | </table> | ||
[https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.5825H/abstract Huré, et al. (2020)], §2, p. 5826, Eqs. (4) & (5) | |||
</div> | |||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Revision as of 16:23, 4 July 2020
Université de Bordeaux
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Spheroid-Ring Systems
Through a research collaboration at the Université de Bordeaux, B. Basillais & J. -M. Huré (2019), MNRAS, 487, 4504-4509 have published a paper titled, Rigidly Rotating, Incompressible Spheroid-Ring Systems: New Bifurcations, Critical Rotations, and Degenerate States.
Exterior Gravitational Potential of Toroids
J. -M. Huré, B. Basillais, V. Karas, A. Trova, & O. Semerák (2020), MNRAS, 494, 5825-5838 have published a paper titled, The Exterior Gravitational Potential of Toroids. Here we examine how their work relates to the published work by C.-Y. Wong (1973, Annals of Physics, 77, 279), which we have separately discussed in detail.
Our Presentation of Wong's (1973) Result
Summary: First three terms in Wong's (1973) expression for the gravitational potential at any point, P(ϖ, z), outside of a uniform-density torus. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
where, once the major ( R ) and minor ( d ) radii of the torus — as well as the vertical location of its equatorial plane (Z0) — have been specified, we have,
NOTE: In evaluating these "leading coefficient expressions" for the case, <math>~R/d = 3</math>, we have used the complete elliptic integral evaluations, K(k0) = 1.854074677 and E(k0) = 1.350643881. |
Setup
From our accompanying discussion of Wong's (1973) derivation, the exterior potential is given by the expression,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~\sum_{n=0}^{\mathrm{nmax}} \epsilon_n \cos(n\theta) C_n(\cosh\eta_0)P_{n-\frac{1}{2}}(\cosh\eta) \, , </math> |
Wong (1973), §II.D, p. 294, Eqs. (2.59) & (2.61)
where,
<math>~D_0 </math> |
<math>~\equiv</math> |
<math>~ \frac{2^{3/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] = \frac{2^{3/2} }{3\pi^2} \biggl[\frac{(R^2 - d^2)^{3 / 2}}{d^2 R} \biggr] \, ,</math> |
<math>~C_n(\cosh\eta_0)</math> |
<math>~\equiv</math> |
<math>~(n+\tfrac{1}{2})Q_{n+\frac{1}{2}}(\cosh \eta_0) Q_{n - \frac{1}{2}}^2(\cosh \eta_0) - (n - \tfrac{3}{2}) Q_{n - \frac{1}{2}}(\cosh \eta_0)~Q^2_{n + \frac{1}{2}}(\cosh \eta_0) \, </math> |
Wong (1973), §II.D, p. 294, Eq. (2.63)
and where, in terms of the major ( R ) and minor ( d ) radii of the torus — or their ratio, ε ≡ d/R,
<math>~\cosh\eta_0</math> |
<math>~=</math> |
<math>~\frac{R}{d} = \frac{1}{\epsilon} \, ,</math> |
<math>~\sinh\eta_0</math> |
<math>~=</math> |
<math>~\frac{a}{d} = \frac{1}{d}\biggl[ R^2 - d^2 \biggr]^{1 / 2} = \frac{1}{\epsilon} \biggl[1 - \epsilon^2 \biggr]^{1 / 2} \, .</math> |
These expressions incorporate a number of basic elements of a toroidal coordinate system. In what follows, we will also make use of the following relations:
Once the primary scale factor, <math>~a</math>, has been specified, the illustration shown at the bottom of this inset box — see also our accompanying set of similar figures used by other researchers — helps in explaining how transformations can be made between any two of the referenced coordinate pairs: <math>~(\varpi, z)</math>, <math>~(\eta, \theta)</math>, <math>~(r_1, r_2)</math>.
Given that (sin2θ + cos2θ) = 1, we have,
We deduce as well that,
Given the definitions,
we can use the transformations,
Or we can use the transformations,
Additional potentially useful relations can be found in an accompanying chapter wherein we present a variety of basic elements of a toroidal coordinate system. |
Leading (n = 0) Term
Wong's Expression
Now, from our separate derivation we have,
<math>~P_{-1 / 2}(\cosh\eta)</math> |
<math>~=</math> |
<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} Q_{-1 / 2}(\coth\eta) \, . </math> |
And if we make the function-argument substitution, <math>~z \rightarrow \coth\eta</math>, in the "Key Equation,"
<math>~Q_{-\frac{1}{2}}(z)</math> |
<math>~=</math> |
<math>~ \sqrt{ \frac{2}{z+1} } ~K\biggl( \sqrt{ \frac{2}{z+1}} \biggr) </math> |
|
Abramowitz & Stegun (1995), p. 337, eq. (8.13.3) |
we can write,
<math>~P_{-1 / 2}(\cosh\eta)</math> |
<math>~=</math> |
<math>~ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \, , </math> |
where, from above, we recognize that,
<math>~ k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} \, . </math>
So, the leading (n = 0) term gives,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} ~C_0(\cosh\eta_0)P_{-\frac{1}{2}}(\cosh\eta) </math> |
|
<math>~=</math> |
<math>~ -D_0~C_0(\cosh\eta_0) \biggl[ \frac{a \sinh\eta}{\varpi} \biggr]^{1 / 2} ~\frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) </math> |
|
<math>~=</math> |
<math>~ -\frac{D_0~C_0(\cosh\eta_0)}{\pi} \biggl[ \frac{2a }{\varpi} \biggr]^{1 / 2} ~ k \boldsymbol{K}(k) </math> |
|
<math>~=</math> |
<math>~ - C_0(\cosh\eta_0) \cdot \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math> |
Thin-Ring Evaluation of C0
In an accompanying discussion of the thin-ring approximation, we showed that as <math>~\cosh\eta_0 \rightarrow \infty</math>
<math>~C_0(x)\biggr|_{x\rightarrow \infty}</math> |
<math>~=</math> |
<math>~\biggl( \frac{3 \pi^2}{2^2} \biggr) \frac{1}{\cosh^2\eta_0} \, . </math> |
Hence, in this limit we can write,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{thin-ring}</math> |
<math>~=</math> |
<math>~ - \frac{2 }{\pi} \cancelto{1}{\biggl[\frac{\sinh\eta_0}{\cosh\eta_0}\biggr]^3 } \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) \, . </math> |
More General Evaluation of C0
NOTE of CAUTION: In our above evaluation of the toroidal function, <math>~Q_{-\frac{1}{2}}(z)</math>, we appropriately associated the function argument, <math>~z</math>, with the hyperbolic-cotangent of <math>~\eta</math>; that is, we made the substitution, <math>~z \rightarrow \coth\eta</math>. Here, as we assess the behavior of, and evaluate, the leading coefficient, <math>~C_0</math>, an alternate substitution is appropriate, namely, <math>~z_0 \rightarrow \cosh\eta_0</math>; we affix the subscript zero to this function argument in an effort to minimize possible confusion with the argument, <math>~z</math>. |
Drawing from our accompanying tabulation of Toroidal Function Evaluations, we have more generally,
<math>~2C_0(\cosh\eta_0)</math> |
<math>~=</math> |
<math>~ \biggl[ Q_{+\frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q_{ - \frac{1}{2}}^2(\cosh \eta_0) \biggr] + 3 \biggl[ Q_{ - \frac{1}{2}}(\cosh \eta_0) \biggr] \biggl[ Q^2_{ + \frac{1}{2}}(\cosh \eta_0) \biggr] </math> |
|
<math>~=</math> |
<math>~ \biggl[ \cosh\eta_0 ~k_0~K(k_0) ~-~ [2(\cosh\eta_0+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{3} (\cosh\eta_0+1) (\cosh\eta_0-1)^{2} ]^{1 / 2}} \biggr\} </math> |
|
|
<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{2}{(\cosh\eta_0 - 1)(\cosh^2\eta_0 -1)} \biggr]^{1 / 2} E(k_0) \biggr\} \, , </math> |
where,
<math>~k_0</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{2}{\cosh\eta_0+1}\biggr]^{1 / 2} ~~~\Rightarrow ~~~ (\cosh\eta_0 + 1) = \frac{2}{k_0^2} \, .</math> |
Looking back at our previous numerical evaluation of <math>~C_0(\cosh\eta_0)</math> when <math>~z_0 = \cosh\eta_0 = 3 ~~\Rightarrow ~~~ k_0 = 2^{-1 / 2}</math>, we see that,
|
Attempting to simplify this expression, we have,
<math>~2C_0(\cosh\eta_0)</math> |
<math>~=</math> |
<math>~ \biggl\{ \cosh\eta_0 ~k_0~K(k_0) ~-~ \biggl(\frac{2}{k_0}\biggr) E(k_0) \biggr\} \times \biggl\{ \frac{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) }{ [2^{2} k_0^{-1} (\cosh\eta_0-1) ]} \biggr\} </math> |
|
|
<math>~ - \frac{3}{2^2} \biggl[ k_0 ~K ( k_0) \biggr] \times \biggl\{ \cosh\eta_0~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) \biggl[ \frac{k_0^2}{(\cosh\eta_0 - 1)^2} \biggr]^{1 / 2} E(k_0) \biggr\} </math> |
<math>~\Rightarrow ~~~ 2^3(\cosh\eta_0 - 1)C_0(\cosh\eta_0)</math> |
<math>~=</math> |
<math>~ \biggl\{ \cosh\eta_0 ~k_0^2~K(k_0) ~-~ 2 E(k_0) \biggr\} \times \biggl\{ 4 \cosh\eta_0 ~E(k_0) - (\cosh\eta_0-1) K(k_0) \biggr\} </math> |
|
|
<math>~ - 3 k_0 ~K ( k_0) \times \biggl\{ \cosh\eta_0(\cosh\eta_0 - 1)~ k_0~K ( k_0 ) ~-~(\cosh^2\eta_0+3) k_0 E(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 ~k_0^2 + 3\cosh\eta_0~ (\cosh\eta_0~-1)k_0^2\biggr] </math> |
|
|
<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 ~k_0^2 + 2(\cosh\eta_0 ~-1) + 3k_0^2 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[2^3\cosh\eta_0 \biggr] </math> |
<math>~\Rightarrow ~~~ \biggl[ \frac{ 2^3(\cosh\eta_0 - 1)}{k_0^2} \biggr] C_0(\cosh\eta_0)</math> |
<math>~=</math> |
<math>~ -~K(k_0)\cdot K(k_0) \biggl[ (\cosh\eta_0-1) \cdot \cosh\eta_0 + 3\cosh\eta_0~ (\cosh\eta_0~-1) \biggr] </math> |
|
|
<math>~ + K(k_0)\cdot E(k_0) \biggl[ 2^2 \cosh^2\eta_0 + \frac{2}{k_0^2}(\cosh\eta_0 ~-1) + 3 (\cosh^2\eta_0 ~ + 3)\biggr] - E(k_0)\cdot E(k_0) \biggl[\frac{2^3\cosh\eta_0}{k_0^2} \biggr] </math> |
<math>~\Rightarrow ~~~ (\cosh^2\eta_0 - 1) C_0(\cosh\eta_0)</math> |
<math>~=</math> |
<math>~ K(k_0)\cdot K(k_0) \biggl[ \cosh\eta_0(1 - \cosh\eta_0) \biggr] + 2K(k_0)\cdot E(k_0) \biggl[ \cosh^2\eta_0 + 1\biggr] - E(k_0)\cdot E(k_0) \biggl[ \cosh\eta_0(1 + \cosh\eta_0) \biggr] </math> |
This last, simplifed expression gives, as above, <math>~C_0(3) = 0.945933523</math>. TERRIFIC!
Finally then, for any choice of <math>~\eta_0</math>,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\eta,\theta)\biggr|_\mathrm{exterior}</math> |
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ [ (\varpi + a)^2 + (z - Z_0)^2 ]^{1 / 2} } \cdot \boldsymbol{K}(k) </math> |
|
|
<math>~ \times \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, . </math> |
Second (n = 1) Term
The second (n = 1) term in Wong's (1973) expression for the exterior potential is,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos\theta \cdot C_1(\cosh\eta_0)P_{+\frac{1}{2}}(\cosh\eta) \, , </math> |
where, <math>~D_0</math> is the same as above, and,
<math>~C_1(\cosh\eta_0)</math> |
<math>~\equiv</math> |
<math>~\tfrac{3}{2} Q_{+\frac{3}{2}}(\cosh \eta_0) Q_{+\frac{1}{2}}^2(\cosh \eta_0) + \tfrac{1}{2} Q_{+\frac{1}{2}}(\cosh \eta_0)~Q^2_{+ \frac{3}{2}}(\cosh \eta_0) \, . </math> |
Now, from our accompanying table of "Toroidal Function Evaluations", it appears as though,
<math>~P_{+\frac{1}{2}}(\cosh\eta)</math> |
<math>~=</math> |
<math>~\frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} E(k) \, ,</math> |
where, as above,
<math>~k</math> |
<math>~\equiv</math> |
<math>~\biggl[ \frac{2}{\coth\eta+1} \biggr]^{1 / 2} \, .</math> |
Hence, we have,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \cos\theta \cdot (\cosh\eta - \cos\theta)^{1 / 2} (\sinh\eta)^{+1 / 2} \biggr] k^{-1} E(k) </math> |
|
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \frac{a\sinh^2\eta}{\varpi} \cdot \frac{\coth\eta + 1}{2} \biggr\}^{1 / 2} E(k) </math> |
|
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \biggl( \frac{a}{2\varpi} \biggr) \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} E(k) </math> |
|
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \cdot \cos\theta \biggl\{ \biggl( \frac{a}{2} \biggr)\biggl[ \frac{4a}{r_1^2 - r_2^2} \biggr] \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^2 \cdot \biggl[ \frac{2r_1^2}{r_1^2 - r_2^2} \biggr] \biggr\}^{1 / 2} E(k) </math> |
|
<math>~=</math> |
<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \frac{\cos\theta}{r_2} \biggr] E(k) = - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[ \frac{\cos\theta}{\sqrt{ (\varpi - a)^2 + (z-Z_0)^2 }} \biggr] E(k) </math> |
|
<math>~=</math> |
<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] \boldsymbol{E}(k) \, . </math> |
From the above function tabulations & evaluations — for example, <math>~ K(k_0) = 1.854074677</math> and <math>~ E(k_0) = 1.350643881</math> — and a separate listing of Example Recurrence Relations, we have,
Then, letting <math>~\mu \rightarrow 2</math> and, for all m ≥ 2, letting <math>~\nu \rightarrow (m - \tfrac{1}{2})</math> in the "Key Equation,"
we have,
Therefore, specifically for m = 1, we obtain the recurrence relation,
|
While keeping in mind that,
<math>~z_0</math> |
<math>~=</math> |
<math>~\cosh\eta_0 \, ,</math> |
and, |
<math>~k_0^2</math> |
<math>~=</math> |
<math>~\frac{2}{\cosh\eta_0 + 1} = \frac{2}{z_0 + 1} \, ,</math> |
let's attempt to express this leading coefficient, <math>~C_1(\cosh\eta_0)</math>, entirely in terms of the pair of complete elliptic integral functions.
<math>~2C_1(z_0)</math> |
<math>~=</math> |
<math>~3 \biggl[ Q_{+\frac{3}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] + \biggl[ Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ 5 Q^{2}_{- \tfrac{1}{2}}(z_0)-4z Q_{+\tfrac{1}{2}}^{2}(z_0) \biggr] </math> |
|
<math>~=</math> |
<math>~\biggl[3 Q_{+\frac{3}{2}}(z_0) -4z Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q_{+\frac{1}{2}}^2(z_0) \biggr] + \biggl[ 5Q_{+\frac{1}{2}}(z_0) \biggr]\times \biggl[ Q^{2}_{- \tfrac{1}{2}}(z_0) \biggr] </math> |
|
<math>~=</math> |
<math>~-~\frac{1}{2^2}\biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) -4z \biggl[ z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \biggr\} \times \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) \biggr\} </math> |
|
|
<math>~ + 5\biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ [2^3(z-1)(z^2-1)]^{-1 / 2} [4zE(k_0) - (z-1)K(k_0)] \biggr\} </math> |
|
<math>~=</math> |
<math>~\frac{1}{2^2} \cdot k_0 K(k_0) \times \biggl\{ z k_0~K ( k_0 ) ~-~(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} E(k_0) \biggr\} </math> |
|
|
<math>~ + 5[2^3(z-1)(z^2-1)]^{-1 / 2} \biggl[ ~z~k_0 K(k_0) - [2(z+1)]^{1 / 2} E(k_0) \biggr] \times \biggl\{ 4zE(k_0) - (z-1)K(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~ K(k_0)\cdot K(k_0) \biggl\{ \frac{z k_0^2}{2^2} - 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot zk_0(z-1)\biggr\} + E(k_0)\cdot E(k_0) \biggl\{ -5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot 4z \biggr\} </math> |
|
|
<math>~ +~K(k_0)\cdot E(k_0) \biggl\{ -~\frac{1}{2^2} \cdot k_0(z^2+3) \biggl[ \frac{2}{(z-1)(z^2-1)} \biggr]^{1 / 2} + 5[2^3(z-1)(z^2-1)]^{-1 / 2} \cdot 4z^2k_0 + 5[2^3(z-1)(z^2-1)]^{-1 / 2}\cdot [2(z+1)]^{1 / 2} \cdot (z-1) \biggr\} \, . </math> |
Hence,
<math>~2[(z-1)(z^2-1)]^{1 / 2} C_1(z_0)</math> |
<math>~=</math> |
<math>~ z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[(z-1)(z^2-1) \biggr]^{1 / 2} - \frac{5(z-1)}{2^{3/2}} \biggr\} -~10 z(z+1)^{1 / 2} \cdot E(k_0)\cdot E(k_0) </math> |
|
|
<math>~ +~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ k_0[19z^2 - 3 ] + 5(z-1) [2(z+1)]^{1 / 2} \biggr\} </math> |
<math>~\Rightarrow ~~~2^{3/2}\biggl[ \frac{(z-1)}{k_0} \biggr] C_1(z_0)</math> |
<math>~=</math> |
<math>~ z k_0 \cdot K(k_0)\cdot K(k_0) \biggl\{ \frac{k_0}{2^2} \biggl[\frac{2^{1 / 2}(z-1)}{k_0} \biggr] - \frac{5(z-1)}{2^{3/2}} \biggr\} -~\biggl[ \frac{2^{3 / 2} \cdot 5z}{k_0} \biggr] E(k_0)\cdot E(k_0) </math> |
|
|
<math>~ +~2^{-3/2} K(k_0)\cdot E(k_0) \biggl\{ k_0[19z^2 - 3 ] + \frac{10 (z-1)}{k_0} \biggr\} </math> |
<math>~\Rightarrow ~~~C_1(z_0)</math> |
<math>~=</math> |
<math>~ \biggl[ \frac{2(3z^2 - 1)}{(z^2-1)} \biggr]K(k_0)\cdot E(k_0) -~\biggl[ \frac{z}{(z+1)} \biggr] K(k_0)\cdot K(k_0) -~\biggl[ \frac{ 5z}{(z-1)} \biggr] E(k_0)\cdot E(k_0) </math> |
<math>~\Rightarrow ~~~(z_0^2-1)C_1(z_0)</math> |
<math>~=</math> |
<math>~ 2(3z^2 - 1) K(k_0)\cdot E(k_0) -~z_0(z_0-1) K(k_0)\cdot K(k_0) -~5z_0(z_0+1) E(k_0)\cdot E(k_0) \, . </math> |
Hence, we have,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ - \frac{2^{3} a}{3\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_1(\cosh\eta_0) \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2^2} \biggr] \boldsymbol{E}(k) \, . </math> |
Third (n = 2) Term
Part A
The third (n = 2) term in Wong's (1973) expression for the exterior potential is,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -D_0 (\cosh\eta - \cos\theta)^{1 / 2} \cdot 2 \cos(2\theta) \cdot C_2(\cosh\eta_0)P_{+\frac{3}{2}}(\cosh\eta) \, , </math> |
where, <math>~D_0</math> is the same as above, and,
<math>~C_2(\cosh\eta_0)</math> |
<math>~\equiv</math> |
<math>~\tfrac{5}{2}Q_{+\frac{5}{2}}(\cosh \eta_0) Q_{+\frac{3}{2}}^2(\cosh \eta_0) - \tfrac{1}{2} Q_{+\frac{3}{2}}(\cosh \eta_0)~Q^2_{+ \frac{5}{2}}(\cosh \eta_0) \, . </math> |
In order to evaluate <math>~C_2(z)</math>, we will need the following pair of expressions in addition to the ones already used:
And, setting m = 2 in the above recurrence relation for <math>~Q^2_{m+\frac{1}{2}}(z)</math> gives,
|
Part B
Let's evaluate <math>~C_2(z)</math> specifically for the case where <math>~z = \cosh\eta_0 = 3</math>, using the already separately evaluated values of the four relevant toroidal functions. We find,
<math>~2C_2(3)</math> |
<math>~=</math> |
<math>~5Q_{+\frac{5}{2}}(3) Q_{+\frac{3}{2}}^2(3) - Q_{+\frac{3}{2}}(3)~Q^2_{+ \frac{5}{2}}(3) </math> |
|
<math>~=</math> |
<math>~ 5\cdot ( 0.002080867 ) \times ( 0.132453829 ) - ( 0.014544576 ) \times (0.03377378 ) </math> |
|
<math>~=</math> |
<math>~ 8.868687\times 10^{-4} \, . </math> |
Next, let's develop a consolidated expression for <math>~C_2(z_0)</math> that replaces all the toroidal functions with complete elliptic integrals of the first and second kind.
<math>~2C_2(z_0)</math> |
<math>~=</math> |
<math>~5Q_{+\frac{5}{2}}(z_0) Q_{+\frac{3}{2}}^2(z_0) - Q_{+\frac{3}{2}}(z_0)~Q^2_{+ \frac{5}{2}}(z_0) </math> |
|
<math>~=</math> |
<math>~ \frac{1}{3}\biggl\{ z~k_0 K(k_0) [ 32z^2 - 17 ] + [2(z+1)]^{1 / 2} E(k_0) [9 -32z^2 ] \biggr\} \times \biggl\{ 2^{-3 / 2}(z+1)^{-1 / 2} [4 z^2 - 5 ]K(k_0) -~2^{1 / 2}[ (z-1)(z^2-1) ]^{- 1 / 2} (z^2 - 2)z E(k_0) \biggr\} </math> |
|
|
<math>~ - \frac{1}{2^2\cdot 3} \biggl\{ (4z^2 - 1 )k_0 K(k_0) - 4 z[2(z+1)]^{1 / 2} E(k_0) \biggr\} \times \biggl\{ 2^{1 / 2}[z + 1]^{-1 / 2} [z-1]^{-1 }\biggl[ (32z^2 - 33) z (z-1) K ( k_0 ) -~(32z^4 - 57 z^2 + 21)E(k_0) \biggr] \biggr\} </math> |
<math>~\Rightarrow ~~~ 2^{2} \cdot 3 (z^2-1) C_2(z_0)</math> |
<math>~=</math> |
<math>~ \biggl\{ K(k_0) z[ 32z^2 - 17 ] + (z+1) E(k_0) [9 -32z^2 ] \biggr\} \times \biggl\{ (z-1) [4 z^2 - 5 ]K(k_0) -~4 (z^2 - 2)z E(k_0) \biggr\} </math> |
|
|
<math>~ - ~ \biggl\{ (4z^2 - 1 ) K(k_0) - 4 z(z+1) E(k_0) \biggr\} \times \biggl\{ (32z^2 - 33) z (z-1) K ( k_0 ) -~(32z^4 - 57 z^2 + 21)E(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~ \biggl\{ (z-1)[ 32z^2 - 17 ] [4 z^2 - 5 ]z K(k_0) \cdot K(k_0) -~4 (z^2 - 2)z^2 [ 32z^2 - 17 ] K(k_0) \cdot E(k_0) \biggr\} </math> |
|
|
<math>~ + \biggl\{ (z-1) (z+1) [9 -32z^2 ] [4 z^2 - 5 ]K(k_0) \cdot E(k_0) -~4 (z^2 - 2)z (z+1) [9 -32z^2 ] E(k_0) \cdot E(k_0) \biggr\} </math> |
|
|
<math>~ + ~ \biggl\{ (32z^4 - 57 z^2 + 21)(4z^2 - 1 ) K(k_0) \cdot E(k_0) -~(32z^2 - 33) z (z-1)(4z^2 - 1 ) K ( k_0 ) \cdot K(k_0) \biggr\} </math> |
|
|
<math>~ + ~ \biggl\{ 4 z(z+1)(32z^2 - 33) z (z-1) K ( k_0 ) \cdot E(k_0) -~4 z(z+1)(32z^4 - 57 z^2 + 21)E(k_0) \cdot E(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~(z-1)\biggl\{ \biggl[ ( 32z^2 - 17 ) (4 z^2 - 5 )z \biggr] -~\biggl[ (32z^2 - 33) z (4z^2 - 1 ) \biggr] \biggr\} K ( k_0 ) \cdot K(k_0) </math> |
|
|
<math>~ + \biggl\{ \biggl[ (z-1) (z+1) (9 -32z^2 ) (4 z^2 - 5 )\biggr] -~\biggl[ 4 (z^2 - 2)z^2 ( 32z^2 - 17 ) \biggr] </math> |
|
|
<math>~ + ~ \biggl[ (32z^4 - 57 z^2 + 21)(4z^2 - 1 ) \biggr] + ~ \biggl[ 4 z(z+1)(32z^2 - 33) z (z-1)\biggr]\biggr\} K ( k_0 ) \cdot E(k_0) </math> |
|
|
<math>~ -~2z(z+1) \biggl\{ \biggl[ 2 (32z^4 - 57 z^2 + 21) \biggr] +~2\biggl[ (z^2 - 2) (9 -32z^2 )\biggr] \biggr\} E(k_0) \cdot E(k_0) </math> |
|
<math>~=</math> |
<math>~ z(z-1)\biggl\{[ 52 - 64z^2 ] \biggr\} K ( k_0 ) \cdot K(k_0) -~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) </math> |
|
|
<math>~ + \biggl\{ \biggl[ 5(32z^4 - 41z^2 + 9 ) \biggr] - \biggl[ (32z^4 - 57 z^2 + 21)\biggr] </math> |
|
|
<math>~ + ~ 4z^2\biggl[ (32z^4 - 57 z^2 + 21) + (32z^4 - 65z^2 + 33) + (-32z^4 + 41z^2 -9 ) +~( -32z^4 + 81z^2 - 34 ) \biggr]\biggr\} K ( k_0 ) \cdot E(k_0) </math> |
|
<math>~=</math> |
<math>~ 4z(z-1)\biggl\{ 13 - 16z^2 \biggr\} K ( k_0 ) \cdot K(k_0) -~4z(z+1) \biggl\{ [ 3 +16z^2 ]\biggr\} E(k_0) \cdot E(k_0) + 8\biggl\{ 16z^4 -13z^2 + 3 \biggr\} K ( k_0 ) \cdot E(k_0) \, . </math> |
Finally, let's evaluate this consolidated expression for the specific case of <math>~z_0 = \cosh\eta_0 = 3</math>, remembering that in this specific case <math>~k_0 = 2^{-1 / 2}</math>, <math>~K(k_0) = 1.854074677</math>, and <math>~E(k_0) = 1.350643881</math>. We find,
<math>~2C_2(z_0)</math> |
<math>~=</math> |
<math>~ [2 \cdot 3 (z^2-1) ]^{-1} \biggl\{ 4z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) -~4z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) + 8[ 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~ [48 ]^{-1} \biggl\{ -24[ 131 ] K ( k_0 ) \cdot K(k_0) -~48 [ 147] E(k_0) \cdot E(k_0) + 8[ 1182 ] K ( k_0 ) \cdot E(k_0) \biggr\} </math> |
|
<math>~=</math> |
<math>~ 8.8708 \times 10^{-4} \, . </math> |
This matches the numerically evaluated expression, from above (6/30/2020). There is a tremendous amount of cancellation between the three key terms in this expression, so the match is only to three significant digits.
Part C
Next …
Useful Relations from Above
|
Now, from our tabulation of example recurrence relations, we see that,
<math>~ P_{+\frac{3}{2}}(\cosh\eta)</math> |
<math>~=</math> |
<math>~\frac{4}{3} \cdot \cosh\eta ~P_{+\frac{1}{2}}(\cosh\eta) - \frac{1}{3} ~ P_{-\frac{1}{2}}(\cosh\eta) </math> |
|
<math>~=</math> |
<math>~\frac{4}{3} \cdot \cosh\eta \biggl[ \frac{\sqrt{2}}{\pi} (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) \biggr] - \frac{1}{3} ~ \biggl[ \frac{\sqrt{2}}{\pi}~ (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr]</math> |
|
<math>~=</math> |
<math>~\frac{2^{1 / 2}}{3\pi} \biggl[ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) - (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k)\biggr] \, ,</math> |
where, as above,
<math>~ k \equiv \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} \, . </math>
So we have,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -\frac{2^{5/2} }{3\pi^2} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta) \biggl\{ (\cosh\eta - \cos\theta)^{1 / 2}P_{+\frac{3}{2}}(\cosh\eta) \biggr\} </math> |
|
<math>~=</math> |
<math>~ -\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} \biggl\{ 4 \cosh\eta (\sinh\eta)^{+1 / 2} k^{-1} \boldsymbol{E}(k) - (\sinh\eta)^{-1 / 2} ~k \boldsymbol{K}(k) \biggr\} </math> |
|
<math>~=</math> |
<math>~ -\frac{2^{3} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta)\biggl( \frac{2a^2}{r_1 r_2}\biggr)^{1 / 2} </math> |
|
|
<math>~ \times \biggl\{ 4 \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \biggl[\frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{+1 / 2} \biggl[ \frac{4a}{r_1^2} \biggl( \frac{r_1^2 - r_2^2}{2a} \biggr)\biggr]^{-1 / 2} \boldsymbol{E}(k) - \biggl[ \frac{r_1^2 - r_2^2}{2r_1 r_2} \biggr]^{-1 / 2} ~\biggl[ \frac{4a}{r_1^2}\biggl( \frac{r_1^2 - r_2^2}{2a} \biggr) \biggr]^{1 / 2} \boldsymbol{K}(k) \biggr\} </math> |
|
<math>~=</math> |
<math>~ -\frac{2^{9/2} }{3^2\pi^3} \biggl[ \frac{\sinh^3\eta_0}{\cosh\eta_0}\biggr] C_2(\cosh\eta_0)\cos(2\theta) \times \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} \, . </math> |
Finally, inserting the expression for <math>~\sinh^2\eta_0~ C_2(\cosh\eta_0) = (z_0^2-1)C_2(z_0)</math> that we have derived, above, gives,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -\frac{2^{9/2} }{3^3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \times \cos(2\theta) \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} </math> |
|
|
<math>~ \times \biggl\{ z(z-1) [ 13 - 16z^2 ] K ( k_0 ) \cdot K(k_0) -~z(z+1) [ 3 +16z^2 ] E(k_0) \cdot E(k_0) + 2 [ 16z^4 -13z^2 + 3 ] K ( k_0 ) \cdot E(k_0) \biggr\} \, . </math> |
Summary
Once the major ( R ) and minor ( d ) radii of the torus have been specified, two key model parameters can be immediately determined, namely,
<math>~a^2 \equiv R^2 - d^2\, ,</math> and, <math>~\cosh\eta_0 \equiv \frac{R}{d} \, ,</math>
in which case also, <math>~\sinh\eta_0 = a/d \, .</math> Once the mass-density ( ρ0 ) of the torus has been specified, the torus mass is given by the expression,
<math>~M = 2\pi^2 \rho_0 d^2 R \, .</math>
In addition to the principal pair of meridional-plane coordinates, <math>~(\varpi, z)</math>, it is useful to define the pair of distances,
<math>~r_1^2</math> |
<math>~\equiv</math> |
<math>~(\varpi + a)^2 + (z - Z_0)^2 \, ,</math> |
<math>~r_2^2</math> |
<math>~\equiv</math> |
<math>~(\varpi - a)^2 + (z - Z_0)^2 \, ,</math> |
where, the equatorial plane of the torus is located at <math>~z = Z_0</math>. As we have shown above, the leading (n = 0) term in Wong's (1973) series-expression for the gravitational potential anywhere outside the torus is,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W0}(\varpi,z)\biggr|_\mathrm{exterior}</math> |
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \frac{a}{ r_1 } \cdot \boldsymbol{K}(k) </math> |
|
|
<math>~ \times \biggl\{ K(k_0)\cdot K(k_0) [ \cosh\eta_0(1 - \cosh\eta_0) ] + 2K(k_0)\cdot E(k_0) [ \cosh^2\eta_0 + 1 ] - E(k_0)\cdot E(k_0) [ \cosh\eta_0(1 + \cosh\eta_0) ] \biggr\} \, . </math> |
where, the two distinctly different arguments — one with, and one without a zero subscript — of the complete elliptic-integral functions are,
<math>~k</math> |
<math>~\equiv</math> |
<math>~ \biggl[ \frac{2}{\coth\eta + 1} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{(\varpi + a)^2 + (z - Z_0)^2} \biggr]^{1 / 2} = \biggl[ \frac{4a\varpi}{r_1^2} \biggr]^{1 / 2} = \biggl[ \frac{r_1^2 - r_2^2}{r_1^2} \biggr]^{1 / 2} \, , </math> |
<math>~k_0</math> |
<math>~\equiv</math> |
<math>~ \biggl[ \frac{2}{\cosh\eta_0 + 1} \biggr]^{1 / 2} \, . </math> |
As we also have shown above, the second (n = 1) term in Wong's (1973) series-expression for the exterior gravitational potential is,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W1}(\varpi,z)\biggr|_\mathrm{exterior}</math> |
<math>~=</math> |
<math>~ - \frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \biggl[\frac{ r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) </math> |
|
|
<math>~\times \biggl\{ K(k_0)\cdot K(k_0) [\cosh\eta_0(1 - \cosh\eta_0)] +~2K(k_0)\cdot E(k_0) [(3\cosh^2\eta_0 - 1)] -~5 E(k_0)\cdot E(k_0) [\cosh\eta_0(1+\cosh\eta_0)] \biggr\} \, . </math> |
Note that a transformation from the <math>~(r_1, r_2)</math> coordinate pair to the toroidal-coordinate pair <math>~(\eta, \theta)</math> includes the expression,
<math>~\cos\theta</math> |
<math>~=</math> |
<math>~ \frac{r_1^2 + r_2^2 - 4a^2}{2r_1 r_2} \, . </math> |
So this (n = 1) term's explicit dependence on "cos(nθ)" is clear. Finally, the third (n = 2) term in Wong's (1973) series-expression for the exterior gravitational potential is,
<math>~\biggl( \frac{a}{GM} \biggr) \Phi_\mathrm{W2}(\eta,\theta)</math> |
<math>~=</math> |
<math>~ -\frac{2^{3} }{3\pi^3} \biggl[ \frac{\sinh\eta_0}{\cosh\eta_0}\biggr] \times \cos(2\theta) \biggl\{ \biggl[ \frac{r_1^2 + r_2^2}{2r_1 r_2} \biggr] \frac{a}{r_2} \cdot \boldsymbol{E}(k) - \frac{a}{r_1} \cdot \boldsymbol{K}(k) \biggr\} </math> |
|
|
<math>~ \times \frac{2^{3 / 2}}{3^2}\biggl\{ K ( k_0 ) \cdot K(k_0) \cdot \cosh\eta_0(1 - \cosh\eta_0) [ 16\cosh^2\eta_0 - 13] + 2 K ( k_0 ) \cdot E(k_0) [ 16\cosh^4\eta_0 -13\cosh^2\eta_0 + 3 ] </math> |
|
|
<math>~ -~E(k_0) \cdot E(k_0) \cdot \cosh\eta_0 (1 + \cosh\eta_0) [ 3 +16\cosh^2\eta_0 ] \biggr\} \, . </math> |
Material that appears after this point in our presentation is under development and therefore
may contain incorrect mathematical equations and/or physical misinterpretations.
| Go Home |
The Huré, et al (2020) Presentation
Notation
The major and minor radii of the torus surface ("shell") are, respectively, Rc and b, and their ratio is denoted,
<math>~e \equiv \frac{b}{R_c} \, .</math>
Huré, et al. (2020), §2, p. 5826, Eq. (1)
The authors work in cylindrical coordinates, <math>~(R, Z)</math>, whereas we refer to this same coordinate-pair as, <math>~(\varpi, z)</math>. The quantity,
<math>~\Delta^2</math> |
<math>~\equiv</math> |
<math>~ [R + (R_c + b\cos\theta_H)]^2 + [Z - b\sin\theta_H]^2 \, . </math> |
Huré, et al. (2020), §2, p. 5826, Eqs. (1) & (7)
We have affixed the subscript "H" to their meridional-plane angle, θ, to clarify that it has a different coordinate-base definition from the meridional-plane angle, θ, that appears in our discussion of Wong's (1973) work, below. The subscript "0" is used in the case of an infinitesimally thin hoop <math>~(b \rightarrow 0)</math>, that is to say,
<math>~\Delta_0^2</math> |
<math>~=</math> |
<math>~ [R + R_c]^2 + Z^2 \, . </math> |
Huré, et al. (2020), §3, p. 5827, Eq. (13)
Generally, the argument (modulus) of the complete elliptic integral functions is,
<math>~k_H</math> |
<math>~=</math> |
<math>~ \frac{2}{\Delta}\biggl[ R (R_c + b\cos\theta_H) \biggr]^{1 / 2} \, . </math> |
Huré, et al. (2020), §2, p. 5826, Eq. (4)
(Again, we have affixed the subscript "H" in order to differentiate from the modulus employed by Wong (1973).) And in the case of an infinitesimally thin hoop <math>~(b\rightarrow 0)</math>,
<math>~[k^2_H]_0</math> |
<math>~=</math> |
<math>~ \frac{4R R_c}{\Delta_0^2} \, . </math> |
Huré, et al. (2020), §3, p. 5827, Eq. (12)
Key Finding
On an initial reading, it appears as though the most relevant section of the Huré, et al. (2020) paper is §8 titled, The Solid Torus. They write the gravitational potential in terms of the series expansion,
<math>~\Psi_\mathrm{grav}(\vec{r})</math> |
<math>~\approx</math> |
<math>~ \Psi_0 + \sum\limits_{n=1}^N \Psi_n \, , </math> |
Huré, et al. (2020), §7, p. 5831, Eq. (42)
where, after setting <math>~M_\mathrm{tot} = 2\pi^2\rho_0 b^2 R_c </math> and acknowledging that <math>~V_{0,0} = 1 \, ,</math> we can write,
<math>~\Psi_0 </math> |
<math>~=</math> |
<math>~ - \frac{GM_\mathrm{tot}}{r} \biggl[ \frac{r}{\Delta_0} \cdot \frac{2}{\pi} \boldsymbol{K}(k_0) \biggr] </math> |
Huré, et al. (2020), §8, p. 5832, Eqs. (52) & (53)
and,
<math>~\frac{1}{e^2} \biggl[ \Psi_1 + \Psi_2 \biggr]</math> |
<math>~=</math> |
<math>~ - \frac{G\pi \rho_0 R_c b^2}{4 (k')^2 \Delta_0^3} \biggl\{ [\Delta_0^2 - 2R_c(R_c + R)]\boldsymbol{E}(k) - (k')^2 \Delta_0^2 \boldsymbol{K}(k) \biggr\} \, . </math> |
Huré, et al. (2020), §8, p. 5832, Eq. (54)
Note that the argument of the elliptic integral functions is,
<math>~k</math> |
<math>~\equiv</math> |
<math>~ \frac{2\sqrt{\varpi R}}{\Delta} </math> |
where, |
<math>~\Delta</math> |
<math>~\equiv</math> |
<math>~ \biggl[ (R + \varpi)^2 + (Z-z)^2 \biggr]^{1 / 2} \, . </math> |
Huré, et al. (2020), §2, p. 5826, Eqs. (4) & (5)
© 2014 - 2021 by Joel E. Tohline |