Difference between revisions of "User:Tohline/Appendix/CGH/KAH2001"
Line 127: | Line 127: | ||
</table> | </table> | ||
Note that all three of the exponential terms in this expression can be found in equation (7) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001]. | Note that all three of the exponential terms in this expression can be found in equation (7) of [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001]. | ||
<table border="1" align="center" width="85%" cellpadding="8"><tr><td align="left"> | |||
As a point of comparison, in our [[User:Tohline/Appendix/CGH/ParallelAperturesConsolidate#Case_1|accompanying discussion of 1D parallel apertures (specifically, the subsection titled, '''Case 1''')]], we have presented the following expression for the y-coordinate variation of the optical field immediately in front of the aperture: | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
e^{i 2\pi L/\lambda }\biggl[ \frac{w}{2\beta_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot e^{-i \Theta } d\Theta | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{\beta_1}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{\lambda L}{\pi y_1w} \, ,</math> | |||
</td> | |||
<td align="center"> </td> | |||
<td align="right"> | |||
<math>~L</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
Z \biggl[1 + \frac{y_1^2}{Z^2} \biggr]^{1 / 2} \, , | |||
</math> | |||
</td> | |||
<td align="center"> and, </td> | |||
<td align="right"> | |||
<math>~\Theta</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl(\frac{2\pi y_1 Y}{\lambda L} \biggr) \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
In other words, making the substitution, <math>~(2\pi/\lambda) \rightarrow k</math>, and recognizing that, <math>~d \leftrightarrow Z</math>, our expression becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~I(y) \equiv \biggl[i k d e^{-i k d} \biggr] A(y_1)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ \biggl[i k d e^{-i k d} \biggr] | |||
e^{i kL }\biggl[ \frac{L}{k y_1} \biggr] \int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i \frac{2\pi y_1 Y}{\lambda L} \biggr] \biggl[ \frac{k y_1 }{L} \biggr] dY </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ (i k Z) e^{i k (L-Z)} | |||
\int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i 2\pi Y \biggl(\frac{y_1 }{\lambda L}\biggr) \biggr] dY | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~\approx</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ (i k Z) \exp\biggl[i k \biggl( L-Z \biggr)\biggr] | |||
\int a_0(\Theta) e^{i\phi(\Theta)} \cdot \exp\biggl[-i 2\pi Y \biggl(\frac{y_1 }{\lambda L}\biggr) \biggr] dY | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
=See Also= | =See Also= |
Revision as of 19:33, 25 March 2020
Hologram Reconstruction Using a Digital Micromirror Device
In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical Center at Dallas that Richard Muffoletto and I visited circa 2004.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Optical Field in the Image Plane
Labeling it as their equation (5), KAH2001 present the following Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the" aperture:
<math>~B(x,y)</math> |
<math>~=</math> |
<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math> |
with,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math> |
<math>~I_\eta(y)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, , </math> |
and where <math>~U(\xi,\eta)</math> is "… the optical field immediately in front of the DMD" — i.e., the aperture. Following KAH2001, if we evaluate the square and substitute <math>~\mu = x/(d \lambda)</math>, the expression for <math>~I_\xi(x)</math> may be written as,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi x^2}{d \lambda} \biggl(1 - \frac{2 \xi}{x} + \frac{\xi^2}{x^2} \biggr) \biggr] d\xi </math> |
|
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi x^2}{d \lambda} \biggr] \times \exp\biggl[- \frac{i \pi x^2}{d \lambda} \biggl(\frac{2 \xi}{x} \biggr) \biggr] \times \exp\biggl[ \frac{i \pi x^2}{d \lambda} \biggl( \frac{\xi^2}{x^2} \biggr) \biggr] d\xi </math> |
|
<math>~=</math> |
<math>~ \exp( i \pi d \lambda \mu^2 ) \int_{-\infty}^{\infty} U(\xi) \times \exp (- i 2\pi \mu \xi ) \times \exp \biggl[\biggl( \frac{i \pi }{d \lambda}\biggr) \xi^2 \biggr] d\xi \, . </math> |
Note that all three of the exponential terms in this expression can be found in equation (7) of KAH2001.
As a point of comparison, in our accompanying discussion of 1D parallel apertures (specifically, the subsection titled, Case 1), we have presented the following expression for the y-coordinate variation of the optical field immediately in front of the aperture:
where,
In other words, making the substitution, <math>~(2\pi/\lambda) \rightarrow k</math>, and recognizing that, <math>~d \leftrightarrow Z</math>, our expression becomes,
|
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
© 2014 - 2021 by Joel E. Tohline |