Difference between revisions of "User:Tohline/Appendix/CGH/KAH2001"
(Created page with '__FORCETOC__ <!-- will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Hologram Reconstruction Using a Digital Micromirror Device= In a pape…') |
|||
Line 4: | Line 4: | ||
=Hologram Reconstruction Using a Digital Micromirror Device= | =Hologram Reconstruction Using a Digital Micromirror Device= | ||
In a paper titled, ''Hologram reconstruction using a digital micromirror device'', [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract T. Kreis, P. Aswendt, & R. Höfling (2001)] | In a paper titled, ''Hologram reconstruction using a digital micromirror device'', [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract T. Kreis, P. Aswendt, & R. Höfling (2001)] — Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical University in Dallas that Richard Muffoletto and I visited circa 2004. | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
==Optical Field in the Image Plane== | |||
== | Labeling it as their equation (5), [https://ui.adsabs.harvard.edu/abs/2001OptEn..40..926K/abstract KAH2001] present the following ''Fresnel transform'' expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the" aperture: | ||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~B(x,y)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
with, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~I_\xi(x)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~I_\eta(y)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\int_{-\infty}^{\infty} U(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=See Also= | =See Also= |
Revision as of 04:02, 25 March 2020
Hologram Reconstruction Using a Digital Micromirror Device
In a paper titled, Hologram reconstruction using a digital micromirror device, T. Kreis, P. Aswendt, & R. Höfling (2001) — Optical Engineering, vol. 40, no. 6, 926 - 933), hereafter, KAH2001 — present some background theoretical development that was used to underpin work of the group at UT's Southwestern Medical University in Dallas that Richard Muffoletto and I visited circa 2004.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Optical Field in the Image Plane
Labeling it as their equation (5), KAH2001 present the following Fresnel transform expression for the "optical field, <math>~B(x, y)</math>, in the image plane at a distance <math>~d</math> from the" aperture:
<math>~B(x,y)</math> |
<math>~=</math> |
<math>~ \frac{e^{i k d}}{i k d} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U(\xi,\eta) \times \exp\biggl\{ \frac{i \pi}{d \lambda} \biggl[ (x - \xi)^2 + (y-\eta)^2 \biggr] \biggr\} d\xi d\eta </math> |
|
<math>~=</math> |
<math>~ \biggl[\frac{e^{i k d}}{i k d} \biggr] I_\xi(x) \cdot I_\eta(y) \, , </math> |
with,
<math>~I_\xi(x)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\xi) \times \exp\biggl[ \frac{i \pi}{d \lambda} (x - \xi)^2 \biggr] d\xi \, , </math> |
<math>~I_\eta(y)</math> |
<math>~=</math> |
<math>~ \int_{-\infty}^{\infty} U(\eta) \times \exp\biggl[ \frac{i \pi}{d \lambda} (y - \eta)^2 \biggr] d\eta \, . </math> |
See Also
- Updated Table of Contents
- Tohline, J. E., (2008) Computing in Science & Engineering, vol. 10, no. 4, pp. 84-85 — Where is My Digital Holographic Display? [ PDF ]
© 2014 - 2021 by Joel E. Tohline |