Difference between revisions of "User:Tohline/AxisymmetricConfigurations/PGE"
m (Move title image) |
|||
(34 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<!-- __FORCETOC__ will force the creation of a Table of Contents --> | <!-- __FORCETOC__ will force the creation of a Table of Contents --> | ||
<!-- __NOTOC__ will force TOC off --> | <!-- __NOTOC__ will force TOC off --> | ||
=Axisymmetric Configurations ( | =Axisymmetric Configurations (Governing Equations)= | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs. Here we | If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our [[User:Tohline/PGE|principal governing equations]] can be simplified to a coupled set of two-dimensional PDEs. | ||
==Cylindrical Coordinate Base== | |||
Here we choose to … | |||
<ol> | <ol> | ||
<li> | <li>Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in cylindrical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>: | ||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
Line 29: | Line 32: | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 649, Eq. (1B-37) | |||
</td> | |||
</tr> | </tr> | ||
Line 45: | Line 53: | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-50) | |||
</td> | |||
</tr> | </tr> | ||
Line 77: | Line 90: | ||
<math> | <math> | ||
\frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; | \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; | ||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-45) | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
(\vec{F} \cdot \nabla )\vec{B} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\hat{e}_\varpi \biggl[ F_\varpi \frac{\partial B_\varpi}{\partial\varpi} + \cancel{\frac{F_\varphi}{\varpi} \frac{\partial B_\varpi}{\partial\varphi}} + F_z \frac{\partial B_\varpi}{\partial z} - \frac{F_\varphi B_\varphi}{\varpi} \biggr] | |||
+ \hat{e}_\varphi \biggl[ F_\varpi \frac{\partial B_\varphi}{\partial \varpi} + \cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_\varphi}{\partial\varphi}} + F_z \frac{\partial B_\varphi}{\partial z} + \frac{F_\varphi B_\varpi}{\varpi} \biggr] | |||
+ \hat{e}_z \biggl[ F_\varpi \frac{\partial B_z}{\partial\varpi} +\cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_z}{\partial \varphi}} + F_z \frac{\partial B_z}{\partial z} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 651, Eq. (1B-54) | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="CYLconvectiveOperator">From this last expression — the so-called ''convective operator'' — we conclude as well that, for axisymmetric systems,</span> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
(\vec{v} \cdot \nabla )\vec{v} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\hat{e}_\varpi \biggl[ v_\varpi \frac{\partial v_\varpi}{\partial\varpi} + v_z \frac{\partial v_\varpi}{\partial z} - \frac{v_\varphi v_\varphi}{\varpi} \biggr] | |||
+ \hat{e}_\varphi \biggl[ v_\varpi \frac{\partial v_\varphi}{\partial \varpi} + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_\varphi v_\varpi}{\varpi} \biggr] | |||
+ \hat{e}_z \biggl[ v_\varpi \frac{\partial v_z}{\partial\varpi} + v_z \frac{\partial v_z}{\partial z} \biggr] \, . | |||
</math> | </math> | ||
</td> | </td> | ||
Line 82: | Line 148: | ||
</table> | </table> | ||
<li> | |||
<li>Express all vector time-derivatives in cylindrical coordinates: | |||
<table align="center" border="0" cellpadding="5"> | <table align="center" border="0" cellpadding="5"> | ||
Line 137: | Line 204: | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 647, Eq. (1B-23) | |||
</td> | |||
</tr> | </tr> | ||
</table> | </table> | ||
Line 143: | Line 215: | ||
</ol> | </ol> | ||
==Governing Equations== | ===Governing Equations (CYL.)=== | ||
Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives, | Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives, | ||
Line 178: | Line 250: | ||
</div> | </div> | ||
==Conservation of Specific Angular Momentum== | ===Conservation of Specific Angular Momentum (CYL.)=== | ||
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows. | The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows. | ||
Line 196: | Line 268: | ||
</div> | </div> | ||
<span id="RelevantCylindricalComponents">So, for axisymmetric configurations, the <math>\hat{e}_\varpi</math> and <math>\hat{e}_z</math> components of the Euler equation become, respectively,</span> | |||
<table border="1" align="center" cellpadding="10"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"><math>~{\hat{e}}_\varpi</math>: </td> | |||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
Line 215: | Line 289: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="right"><math>~{\hat{e}}_z</math>: </td> | |||
<td align="right"> | <td align="right"> | ||
<math> | <math> | ||
Line 230: | Line 305: | ||
</tr> | </tr> | ||
</table> | </table> | ||
</td></tr></table> | |||
===Eulerian Formulation (CYL.)=== | |||
==Eulerian Formulation== | |||
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>, | Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>, | ||
Line 243: | Line 318: | ||
\biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . | \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . | ||
</math> | </math> | ||
</div> | |||
Making this substitution throughout the set of governing relations gives: | |||
<div align="center"> | |||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span> | |||
<math>\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr] | |||
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math><br /> | |||
<span id="PGE:Euler">The Two Relevant Components of the<br /> | |||
<font color="#770000">'''Euler Equation'''</font> | |||
</span> | |||
<table border="0" cellpadding="5"> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_\varpi</math>: </td> | |||
<td align="right"> | |||
<math>~ | |||
\frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + | |||
\biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_z</math>: </td> | |||
<td align="right"> | |||
<math>~ | |||
\frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + | |||
\biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br /> | |||
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | |||
<math>~ | |||
\biggl\{\frac{\partial \epsilon}{\partial t} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + | |||
P \biggl\{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr) + | |||
\biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + | |||
\biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 | |||
</math> | |||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | |||
<math> | |||
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho . | |||
</math><br /> | |||
</div> | |||
==Spherical Coordinate Base== | |||
Here we choose to … | |||
<ol> | |||
<li>Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the [http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates Wikipedia discussion of vector calculus formulae in spherical coordinates]) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>: | |||
<table align="center" border="0" cellpadding="5"> | |||
<tr> | |||
<td colspan="3" align="center"> | |||
<font color="#770000"><b>Spatial Operators in Spherical Coordinates</b></font> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\nabla f | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
{\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr] | |||
+ {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr] | |||
+ {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 649, Eq. (1B-38) | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\nabla^2 f | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr] | |||
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr) | |||
+ \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-51) | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
(\vec{v}\cdot\nabla)f | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\biggl[ v_r \frac{\partial f}{\partial r} \biggr] | |||
+ \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] | |||
+ \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\nabla \cdot \vec{F} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} | |||
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr) | |||
+ \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 650, Eq. (1B-46) | |||
</td> | |||
</tr> | |||
</table> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
(\vec{F} \cdot \nabla )\vec{B} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\hat{e}_r \biggl[ F_r \frac{\partial B_r}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_r}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_r}{\partial \varphi} } - \frac{(F_\theta B_\theta + F_\varphi B_\varphi)}{r}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math> | |||
+ \hat{e}_\theta \biggl[ F_r \frac{\partial B_\theta}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\theta}{\partial \theta } + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\theta}{\partial \varphi} } | |||
+ \frac{F_\theta B_r}{r} - \frac{F_\varphi B_\varphi \cot\theta}{r} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math> | |||
+ \hat{e}_\varphi \biggl[ F_r \frac{\partial B_\varphi}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\varphi}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} } | |||
+ \frac{F_\varphi B_r}{r} + \frac{F_\varphi B_\theta \cot\theta}{r} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 651, Eq. (1B-55) | |||
</td> | |||
</tr> | |||
</table> | |||
From this last expression — the so-called ''convective operator'' — we conclude as well that, for axisymmetric systems, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
(\vec{v} \cdot \nabla )\vec{v} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\hat{e}_r \biggl[ v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{(v_\theta^2 + v_\varphi^2 )}{r}\biggr] | |||
+ \hat{e}_\theta \biggl[ v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta } | |||
+ \frac{v_\theta v_r}{r} - \frac{v_\varphi^2 \cot\theta}{r} \biggr] | |||
+ \hat{e}_\varphi \biggl[ v_r \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta} | |||
+ \frac{v_\varphi v_r}{r} + \frac{v_\varphi v_\theta \cot\theta}{r} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<li>Express all vector time-derivatives in spherical coordinates: | |||
<table align="center" border="0" cellpadding="5"> | |||
<tr> | |||
<td colspan="3" align="center"> | |||
<font color="#770000"><b>Vector Time-Derivatives in Spherical Coordinates</b></font> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\frac{d}{dt}\vec{F} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
{\hat{e}}_r \frac{dF_r}{dt} + F_r \frac{d{\hat{e}}_r}{dt} + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \frac{d{\hat{e}}_\theta}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
{\hat{e}}_r \frac{dF_r}{dt} + F_r \biggl[ {\hat{e}}_\theta \dot\theta + {\hat{e}}_\varphi \dot\varphi \sin\theta \biggr] | |||
+ {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \biggl[ - {\hat{e}}_r \dot\theta + {\hat{e}}_\varphi \dot\varphi \cos\theta \biggr] | |||
+ {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \biggl[ - {\hat{e}}_r \dot\varphi \sin\theta - {\hat{e}}_\theta \dot\varphi \cos\theta \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
{\hat{e}}_r \biggl[ \frac{dF_r}{dt} - F_\theta \dot\theta - F_\varphi \dot\varphi \sin\theta \biggr] | |||
+ {\hat{e}}_\theta \biggl[ \frac{dF_\theta}{dt} + F_r \dot\theta - F_\varphi \dot\varphi \cos\theta \biggr] | |||
+ {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_r \dot\varphi \sin\theta + F_\theta \dot\varphi \cos\theta \biggr] ; | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math> | |||
\vec{v} = \frac{d\vec{x}}{dt} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
\frac{d}{dt}\biggl[ \hat{e}_r r \biggr] | |||
= {\hat{e}}_r \dot{r} | |||
+ {\hat{e}}_\theta~ r \dot\theta | |||
+ {\hat{e}}_\varphi ~r \sin\theta ~ \dot\varphi . | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="center" colspan="3"> | |||
[<b>[[User:Tohline/Appendix/References#BT87|<font color="red">BT87</font>]]</b>], p. 648, Eq. (1B-30) | |||
</td> | |||
</tr> | |||
</table> | |||
</ol> | |||
===Governing Equations (SPH.)=== | |||
Introducing the above expressions into the [[User:Tohline/PGE|principal governing equations]] gives, | |||
<div align="center"> | |||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\rho}{dt} + \rho \biggl[ \frac{1}{r^2} \frac{\partial (r^2 \dot{r})}{\partial r} | |||
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \dot\theta r \sin\theta \biggr) | |||
\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:Euler"> | |||
<font color="#770000">'''Euler Equation'''</font> | |||
</span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<!-- | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\vec{v}}{dt}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{1}{\rho} \nabla P - \nabla\Phi</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
{\hat{e}}_r \biggl[ \frac{dv_r}{dt} - v_\theta \dot\theta - v_\varphi \dot\varphi \sin\theta \biggr] | |||
+ {\hat{e}}_\theta \biggl[ \frac{dv_\theta}{dt} + v_r \dot\theta - v_\varphi \dot\varphi \cos\theta \biggr] | |||
+ {\hat{e}}_\varphi \biggl[ \frac{dv_\varphi}{dt} + v_r \dot\varphi \sin\theta + v_\theta \dot\varphi \cos\theta \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] | |||
- {\hat{e}}_\theta \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
--> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
{\hat{e}}_r \biggl[ \frac{d\dot{r}}{dt} - r {\dot\theta}^2 - r {\dot\varphi}^2 \sin^2\theta \biggr] | |||
+ {\hat{e}}_\theta \biggl[ \frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - r { \dot\varphi }^2 \sin\theta \cos\theta \biggr] | |||
+ {\hat{e}}_\varphi \biggl[ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta \biggr] | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] | |||
- {\hat{e}}_\theta \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br /> | |||
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | |||
{{User:Tohline/Math/EQ_FirstLaw02}} | |||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] | |||
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi G\rho</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | |||
===Conservation of Specific Angular Momentum (SPH.)=== | |||
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>~j</math>, as follows. | |||
<div align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{r\sin\theta} \biggl[ r\sin\theta\frac{d(r \sin\theta \dot\varphi)}{dt} + r\sin\theta \dot\varphi ( \dot{r}\sin\theta + r\dot\theta \cos\theta) \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{r\sin\theta} \biggl[\frac{d(r^2 \sin^2\theta \dot\varphi )}{dt} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<math> | |||
\Rightarrow ~~~~~ j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time}) | |||
</math><br /> | |||
</div> | |||
<span id="RelevantSphericalComponents">So, for axisymmetric configurations, the <math>\hat{e}_r</math> and <math>\hat{e}_\theta</math> components of the Euler equation become, respectively,</span> | |||
<table border="1" align="center" cellpadding="10"><tr><td align="center"> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_r</math>: </td> | |||
<td align="right"> | |||
<math> | |||
\frac{d\dot{r}}{dt} - r {\dot\theta}^2 - \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr]\sin\theta | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] \, , | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_\theta</math>: </td> | |||
<td align="right"> | |||
<math> | |||
\frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
- \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</td></tr></table> | |||
===Eulerian Formulation (SPH.)=== | |||
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>, | |||
<div align="center"> | |||
<math> | |||
\frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = | |||
\frac{\partial f}{\partial t} + | |||
\biggl[ v_r \frac{\partial f}{\partial r} \biggr] | |||
+ \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] = | |||
\frac{\partial f}{\partial t} + | |||
\biggl[ \dot{r} \frac{\partial f}{\partial r} \biggr] | |||
+ \biggl[ \dot\theta \frac{\partial f}{\partial\theta} \biggr] | |||
\, . | |||
</math> | |||
</div> | |||
Making this substitution throughout the set of governing relations gives: | |||
<div align="center"> | |||
<span id="Continuity"><font color="#770000">'''Equation of Continuity'''</font></span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{\partial \rho}{\partial t} | |||
+ \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r} | |||
+ \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr) | |||
\biggr]</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:Euler">The Two Relevant Components of the<br /> | |||
<font color="#770000">'''Euler Equation'''</font> | |||
</span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_r</math>: </td> | |||
<td align="right"> | |||
<math> | |||
\biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} | |||
- r {\dot\theta}^2 | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
- \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"><math>~{\hat{e}}_\theta</math>: </td> | |||
<td align="right"> | |||
<math> | |||
r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{\theta}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta | |||
</math> | |||
</td> | |||
<td align="center"> | |||
= | |||
</td> | |||
<td align="left"> | |||
<math> | |||
- \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:AdiabaticFirstLaw">Adiabatic Form of the<br /> | |||
<font color="#770000">'''First Law of Thermodynamics'''</font></span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr] \biggr\} | |||
+ P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr) | |||
+ \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr] | |||
+ \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr] \biggr\} | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0</math> | |||
</td> | |||
</tr> | |||
</table> | |||
<span id="PGE:Poisson"><font color="#770000">'''Poisson Equation'''</font></span><br /> | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ | |||
\frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] | |||
+ \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) | |||
</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~4\pi G\rho</math> | |||
</td> | |||
</tr> | |||
</table> | |||
</div> | </div> | ||
=See Also= | =See Also= | ||
{{LSU_HBook_footer}} | {{LSU_HBook_footer}} |
Latest revision as of 22:15, 8 August 2019
Axisymmetric Configurations (Governing Equations)
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
If the self-gravitating configuration that we wish to construct is axisymmetric, then the coupled set of multidimensional, partial differential equations that serve as our principal governing equations can be simplified to a coupled set of two-dimensional PDEs.
Cylindrical Coordinate Base
Here we choose to …
- Express each of the multidimensional spatial operators in cylindrical coordinates (<math>\varpi, \varphi, z</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in cylindrical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
Spatial Operators in Cylindrical Coordinates
<math> \nabla f </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{\partial f}{\partial\varpi} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[ \frac{1}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + {\hat{e}}_z \biggl[ \frac{\partial f}{\partial z} \biggr] ; </math>
[BT87], p. 649, Eq. (1B-37)
<math> \nabla^2 f </math>
=
<math> \frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\frac{1}{\varpi^2} \frac{\partial^2 f}{\partial\varphi^2}} + \frac{\partial^2 f}{\partial z^2} ; </math>
[BT87], p. 650, Eq. (1B-50)
<math> (\vec{v}\cdot\nabla)f </math>
=
<math> \biggl[ v_\varpi \frac{\partial f}{\partial\varpi} \biggr] + \cancel{\biggl[ \frac{v_\varphi}{\varpi} \frac{\partial f}{\partial\varphi} \biggr]} + \biggl[ v_z \frac{\partial f}{\partial z} \biggr] ; </math>
<math> \nabla \cdot \vec{F} </math>
=
<math> \frac{1}{\varpi} \frac{\partial (\varpi F_\varpi)}{\partial\varpi} + \cancel{\frac{1}{\varpi} \frac{\partial F_\varphi}{\partial\varphi}} + \frac{\partial F_z}{\partial z} ; </math>
[BT87], p. 650, Eq. (1B-45)
<math> (\vec{F} \cdot \nabla )\vec{B} </math>
=
<math> \hat{e}_\varpi \biggl[ F_\varpi \frac{\partial B_\varpi}{\partial\varpi} + \cancel{\frac{F_\varphi}{\varpi} \frac{\partial B_\varpi}{\partial\varphi}} + F_z \frac{\partial B_\varpi}{\partial z} - \frac{F_\varphi B_\varphi}{\varpi} \biggr] + \hat{e}_\varphi \biggl[ F_\varpi \frac{\partial B_\varphi}{\partial \varpi} + \cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_\varphi}{\partial\varphi}} + F_z \frac{\partial B_\varphi}{\partial z} + \frac{F_\varphi B_\varpi}{\varpi} \biggr] + \hat{e}_z \biggl[ F_\varpi \frac{\partial B_z}{\partial\varpi} +\cancel{ \frac{F_\varphi}{\varpi} \frac{\partial B_z}{\partial \varphi}} + F_z \frac{\partial B_z}{\partial z} \biggr] \, . </math>
[BT87], p. 651, Eq. (1B-54)
From this last expression — the so-called convective operator — we conclude as well that, for axisymmetric systems,
<math> (\vec{v} \cdot \nabla )\vec{v} </math>
=
<math> \hat{e}_\varpi \biggl[ v_\varpi \frac{\partial v_\varpi}{\partial\varpi} + v_z \frac{\partial v_\varpi}{\partial z} - \frac{v_\varphi v_\varphi}{\varpi} \biggr] + \hat{e}_\varphi \biggl[ v_\varpi \frac{\partial v_\varphi}{\partial \varpi} + v_z \frac{\partial v_\varphi}{\partial z} + \frac{v_\varphi v_\varpi}{\varpi} \biggr] + \hat{e}_z \biggl[ v_\varpi \frac{\partial v_z}{\partial\varpi} + v_z \frac{\partial v_z}{\partial z} \biggr] \, . </math>
- Express all vector time-derivatives in cylindrical coordinates:
Vector Time-Derivatives in Cylindrical Coordinates
<math> \frac{d}{dt}\vec{F} </math>
=
<math> {\hat{e}}_\varpi \frac{dF_\varpi}{dt} + F_\varpi \frac{d{\hat{e}}_\varpi}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} + {\hat{e}}_z \frac{dF_z}{dt} + F_z \frac{d{\hat{e}}_z}{dt} </math>
=
<math> {\hat{e}}_\varpi \biggl[ \frac{dF_\varpi}{dt} - F_\varphi \dot\varphi \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_\varpi \dot\varphi \biggr] + {\hat{e}}_z \frac{dF_z}{dt} ; </math>
<math> \vec{v} = \frac{d\vec{x}}{dt} = \frac{d}{dt}\biggl[ \hat{e}_\varpi \varpi + \hat{e}_z z \biggr] </math>
=
<math> {\hat{e}}_\varpi \biggl[ \dot\varpi \biggr] + {\hat{e}}_\varphi \biggl[ \varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \dot{z} \biggr] . </math>
[BT87], p. 647, Eq. (1B-23)
Governing Equations (CYL.)
Introducing the above expressions into the principal governing equations gives,
Equation of Continuity
<math>\frac{d\rho}{dt} + \frac{\rho}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \varpi \dot\varpi \biggr]
+ \rho \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
Euler Equation
<math>
{\hat{e}}_\varpi \biggl[ \frac{d \dot\varpi}{dt} - \varpi {\dot\varphi}^2 \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi \biggr] + {\hat{e}}_z \biggl[ \frac{d \dot{z}}{dt} \biggr] = -
{\hat{e}}_\varpi \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] - {\hat{e}}_z \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr]
</math>
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
Conservation of Specific Angular Momentum (CYL.)
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>j</math>, as follows.
<math>
\frac{d(\varpi\dot\varphi)}{dt} + \dot\varpi \dot\varphi = \frac{1}{\varpi}\biggl[ \varpi \frac{d(\varpi\dot\varphi)}{dt} + \varpi \dot\varpi \dot\varphi \biggr] =0
</math>
<math>
\Rightarrow ~~~~~ \frac{d(\varpi^2 \dot\varphi)}{dt} = 0
</math>
<math>
\Rightarrow ~~~~~ j(\varpi,z) \equiv \varpi^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time})
</math>
So, for axisymmetric configurations, the <math>\hat{e}_\varpi</math> and <math>\hat{e}_z</math> components of the Euler equation become, respectively,
|
Eulerian Formulation (CYL.)
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,
<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ \dot\varpi \frac{\partial f}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial f}{\partial z} \biggr] . </math>
Making this substitution throughout the set of governing relations gives:
Equation of Continuity
<math>\frac{\partial\rho}{\partial t} + \frac{1}{\varpi} \frac{\partial}{\partial\varpi} \biggl[ \rho \varpi \dot\varpi \biggr]
+ \frac{\partial}{\partial z} \biggl[ \rho \dot{z} \biggr] = 0 </math>
The Two Relevant Components of the
Euler Equation
<math>~{\hat{e}}_\varpi</math>: |
<math>~ \frac{\partial \dot\varpi}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot\varpi}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot\varpi}{\partial z} \biggr] </math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial\varpi} + \frac{\partial \Phi}{\partial\varpi}\biggr] + \frac{j^2}{\varpi^3} </math> |
<math>~{\hat{e}}_z</math>: |
<math>~ \frac{\partial \dot{z}}{\partial t} + \biggl[ \dot\varpi \frac{\partial \dot{z}}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \dot{z}}{\partial z} \biggr] </math> |
<math>~=</math> |
<math>~ - \biggl[ \frac{1}{\rho}\frac{\partial P}{\partial z} + \frac{\partial \Phi}{\partial z} \biggr] </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>~ \biggl\{\frac{\partial \epsilon}{\partial t} + \biggl[ \dot\varpi \frac{\partial \epsilon}{\partial\varpi} \biggr] + \biggl[ \dot{z} \frac{\partial \epsilon}{\partial z} \biggr]\biggr\} + P \biggl\{\frac{\partial }{\partial t}\biggl(\frac{1}{\rho}\biggr) + \biggl[ \dot\varpi \frac{\partial }{\partial\varpi}\biggl(\frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot{z} \frac{\partial }{\partial z}\biggl(\frac{1}{\rho}\biggr) \biggr] \biggr\} = 0 </math>
Poisson Equation
<math>
\frac{1}{\varpi} \frac{\partial }{\partial\varpi} \biggl[ \varpi \frac{\partial \Phi}{\partial\varpi} \biggr] + \frac{\partial^2 \Phi}{\partial z^2} = 4\pi G \rho .
</math>
Spherical Coordinate Base
Here we choose to …
- Express each of the multidimensional spatial operators in spherical coordinates (<math>r, \theta, \varphi</math>) (see, for example, the Wikipedia discussion of vector calculus formulae in spherical coordinates) and set to zero all spatial derivatives that are taken with respect to the angular coordinate <math>\varphi</math>:
Spatial Operators in Spherical Coordinates
<math> \nabla f </math>
=
<math> {\hat{e}}_r \biggl[ \frac{\partial f}{\partial r} \biggr] + {\hat{e}}_\theta \biggl[ \frac{1}{r} \frac{\partial f}{\partial\theta} \biggr] + {\hat{e}}_\varphi \cancel{\biggl[\frac{1}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>
[BT87], p. 649, Eq. (1B-38)
<math> \nabla^2 f </math>
=
<math> \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial f}{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta \frac{\partial f}{\partial\theta}\biggr) + \cancel{ \biggl[\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \varphi^2} \biggr]} ; </math>
[BT87], p. 650, Eq. (1B-51)
<math> (\vec{v}\cdot\nabla)f </math>
=
<math> \biggl[ v_r \frac{\partial f}{\partial r} \biggr] + \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] + \cancel{\biggl[\frac{v_\varphi}{r\sin\theta}~ \frac{\partial f}{\partial \varphi} \biggr]} ; </math>
<math> \nabla \cdot \vec{F} </math>
=
<math> \frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( F_\theta \sin\theta \biggr) + \cancel{ \biggl[ \frac{1}{r\sin\theta}~\frac{\partial F_\varphi}{\partial \varphi} \biggr]} ; </math>
[BT87], p. 650, Eq. (1B-46)
<math> (\vec{F} \cdot \nabla )\vec{B} </math>
=
<math> \hat{e}_r \biggl[ F_r \frac{\partial B_r}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_r}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_r}{\partial \varphi} } - \frac{(F_\theta B_\theta + F_\varphi B_\varphi)}{r}\biggr] </math>
<math> + \hat{e}_\theta \biggl[ F_r \frac{\partial B_\theta}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\theta}{\partial \theta } + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\theta}{\partial \varphi} } + \frac{F_\theta B_r}{r} - \frac{F_\varphi B_\varphi \cot\theta}{r} \biggr] </math>
<math> + \hat{e}_\varphi \biggl[ F_r \frac{\partial B_\varphi}{\partial r} + \frac{F_\theta}{r} \frac{\partial B_\varphi}{\partial \theta} + \cancel{ \frac{F_\varphi}{r\sin\theta} \frac{\partial B_\varphi}{\partial \varphi} } + \frac{F_\varphi B_r}{r} + \frac{F_\varphi B_\theta \cot\theta}{r} \biggr] \, . </math>
[BT87], p. 651, Eq. (1B-55)
From this last expression — the so-called convective operator — we conclude as well that, for axisymmetric systems,
<math> (\vec{v} \cdot \nabla )\vec{v} </math>
=
<math> \hat{e}_r \biggl[ v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{(v_\theta^2 + v_\varphi^2 )}{r}\biggr] + \hat{e}_\theta \biggl[ v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta } + \frac{v_\theta v_r}{r} - \frac{v_\varphi^2 \cot\theta}{r} \biggr] + \hat{e}_\varphi \biggl[ v_r \frac{\partial v_\varphi}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\varphi}{\partial \theta} + \frac{v_\varphi v_r}{r} + \frac{v_\varphi v_\theta \cot\theta}{r} \biggr] \, . </math>
- Express all vector time-derivatives in spherical coordinates:
Vector Time-Derivatives in Spherical Coordinates
<math> \frac{d}{dt}\vec{F} </math>
=
<math> {\hat{e}}_r \frac{dF_r}{dt} + F_r \frac{d{\hat{e}}_r}{dt} + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \frac{d{\hat{e}}_\theta}{dt} + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \frac{d{\hat{e}}_\varphi}{dt} </math>
=
<math> {\hat{e}}_r \frac{dF_r}{dt} + F_r \biggl[ {\hat{e}}_\theta \dot\theta + {\hat{e}}_\varphi \dot\varphi \sin\theta \biggr] + {\hat{e}}_\theta \frac{dF_\theta}{dt} + F_\theta \biggl[ - {\hat{e}}_r \dot\theta + {\hat{e}}_\varphi \dot\varphi \cos\theta \biggr] + {\hat{e}}_\varphi \frac{dF_\varphi}{dt} + F_\varphi \biggl[ - {\hat{e}}_r \dot\varphi \sin\theta - {\hat{e}}_\theta \dot\varphi \cos\theta \biggr] </math>
=
<math> {\hat{e}}_r \biggl[ \frac{dF_r}{dt} - F_\theta \dot\theta - F_\varphi \dot\varphi \sin\theta \biggr] + {\hat{e}}_\theta \biggl[ \frac{dF_\theta}{dt} + F_r \dot\theta - F_\varphi \dot\varphi \cos\theta \biggr] + {\hat{e}}_\varphi \biggl[ \frac{dF_\varphi}{dt} + F_r \dot\varphi \sin\theta + F_\theta \dot\varphi \cos\theta \biggr] ; </math>
<math> \vec{v} = \frac{d\vec{x}}{dt} </math>
=
<math> \frac{d}{dt}\biggl[ \hat{e}_r r \biggr] = {\hat{e}}_r \dot{r} + {\hat{e}}_\theta~ r \dot\theta + {\hat{e}}_\varphi ~r \sin\theta ~ \dot\varphi . </math>
[BT87], p. 648, Eq. (1B-30)
Governing Equations (SPH.)
Introducing the above expressions into the principal governing equations gives,
Equation of Continuity
<math>~\frac{d\rho}{dt} + \rho \biggl[ \frac{1}{r^2} \frac{\partial (r^2 \dot{r})}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \dot\theta r \sin\theta \biggr) \biggr]</math> |
<math>~=</math> |
<math>~0</math> |
Euler Equation
<math>~ {\hat{e}}_r \biggl[ \frac{d\dot{r}}{dt} - r {\dot\theta}^2 - r {\dot\varphi}^2 \sin^2\theta \biggr] + {\hat{e}}_\theta \biggl[ \frac{d(r\dot\theta)}{dt} + \dot{r} \dot\theta - r { \dot\varphi }^2 \sin\theta \cos\theta \biggr] + {\hat{e}}_\varphi \biggl[ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta \biggr] </math> |
<math>~=</math> |
<math>~- {\hat{e}}_r \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] - {\hat{e}}_\theta \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>
Poisson Equation
<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math> |
<math>~=</math> |
<math>~4\pi G\rho</math> |
Conservation of Specific Angular Momentum (SPH.)
The <math>\hat{e}_\varphi</math> component of the Euler equation leads to a statement of conservation of specific angular momentum, <math>~j</math>, as follows.
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d(r \sin\theta \dot\varphi)}{dt} + \dot{r} \dot\varphi \sin\theta + r \dot\theta \dot\varphi \cos\theta </math> |
|
<math>~=</math> |
<math>~ \frac{1}{r\sin\theta} \biggl[ r\sin\theta\frac{d(r \sin\theta \dot\varphi)}{dt} + r\sin\theta \dot\varphi ( \dot{r}\sin\theta + r\dot\theta \cos\theta) \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{1}{r\sin\theta} \biggl[\frac{d(r^2 \sin^2\theta \dot\varphi )}{dt} \biggr] \, . </math> |
<math>
\Rightarrow ~~~~~ j(r,\theta) \equiv (r\sin\theta)^2 \dot\varphi = \mathrm{constant} ~(\mathrm{i.e.,}~\mathrm{independent~of~time})
</math>
So, for axisymmetric configurations, the <math>\hat{e}_r</math> and <math>\hat{e}_\theta</math> components of the Euler equation become, respectively,
|
Eulerian Formulation (SPH.)
Each of the above simplified governing equations has been written in terms of Lagrangian time derivatives. An Eulerian formulation of each equation can be obtained by replacing each Lagrangian time derivative by its Eulerian counterpart. Specifically, for any scalar function, <math>f</math>,
<math> \frac{df}{dt} \rightarrow \frac{\partial f}{\partial t} + (\vec{v}\cdot \nabla)f = \frac{\partial f}{\partial t} + \biggl[ v_r \frac{\partial f}{\partial r} \biggr] + \biggl[ \frac{v_\theta}{r} \frac{\partial f}{\partial\theta} \biggr] = \frac{\partial f}{\partial t} + \biggl[ \dot{r} \frac{\partial f}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial f}{\partial\theta} \biggr] \, . </math>
Making this substitution throughout the set of governing relations gives:
Equation of Continuity
<math>~ \frac{\partial \rho}{\partial t} + \biggl[ \frac{1}{r^2} \frac{\partial (\rho r^2 \dot{r})}{\partial r} + \frac{1}{r\sin\theta} \frac{\partial }{\partial\theta} \biggl( \rho \dot\theta r \sin\theta \biggr) \biggr]</math> |
<math>~=</math> |
<math>~0</math> |
The Two Relevant Components of the
Euler Equation
<math>~{\hat{e}}_r</math>: |
<math> \biggl\{ \frac{\partial \dot{r}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{r}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{r}}{\partial\theta} \biggr] \biggr\} - r {\dot\theta}^2 </math> |
= |
<math> - \biggl[ \frac{1}{\rho} \frac{\partial P}{\partial r}+ \frac{\partial \Phi }{\partial r} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^2\theta} \biggr] </math> |
<math>~{\hat{e}}_\theta</math>: |
<math> r \biggl\{ \frac{\partial \dot{\theta}}{\partial t} + \biggl[ \dot{r} \frac{\partial \dot{\theta}}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \dot{\theta}}{\partial\theta} \biggr] \biggr\} + 2\dot{r} \dot\theta </math> |
= |
<math> - \biggl[ \frac{1}{\rho r} \frac{\partial P}{\partial\theta} + \frac{1}{r} \frac{\partial \Phi}{\partial\theta} \biggr] + \biggl[ \frac{j^2}{r^3 \sin^3\theta} \biggr] \cos\theta </math> |
Adiabatic Form of the
First Law of Thermodynamics
<math>~ \biggl\{ \frac{\partial \epsilon}{\partial t} + \biggl[ \dot{r} \frac{\partial \epsilon}{\partial r} \biggr] + \biggl[ \dot\theta \frac{\partial \epsilon}{\partial\theta} \biggr] \biggr\} + P\biggl\{ \frac{\partial }{\partial t} \biggl( \frac{1}{\rho}\biggr) + \biggl[ \dot{r} \frac{\partial }{\partial r} \biggl( \frac{1}{\rho}\biggr) \biggr] + \biggl[ \dot\theta \frac{\partial }{\partial\theta} \biggl( \frac{1}{\rho}\biggr) \biggr] \biggr\} </math> |
<math>~=</math> |
<math>~0</math> |
Poisson Equation
<math>~ \frac{1}{r^2} \frac{\partial }{\partial r} \biggl[ r^2 \frac{\partial \Phi }{\partial r} \biggr] + \frac{1}{r^2 \sin\theta} \frac{\partial }{\partial \theta}\biggl(\sin\theta ~ \frac{\partial \Phi}{\partial\theta}\biggr) </math> |
<math>~=</math> |
<math>~4\pi G\rho</math> |
See Also
© 2014 - 2021 by Joel E. Tohline |