Difference between revisions of "User:Tohline/Apps/RotatingPolytropes"

From VistrailsWiki
Jump to navigation Jump to search
Line 12: Line 12:


* [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1069C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1069
* [https://ui.adsabs.harvard.edu/abs/1962ApJ...136.1069C/abstract S. Chandrasekhar & N. R. Lebovitz (1962)], ApJ, 136, 1069
<table border="0" align="center" width="100%" cellpadding="1"><tr>
<td align="center" width="5%">&nbsp;</td><td align="left">
<font color="green">If one ''assumes'' that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids.  This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids.</font>
</td></tr></table>
* [https://ui.adsabs.harvard.edu/abs/1970A%26A.....4..423T/abstract J. - L. Tassoul &amp; J. P. Ostriker (1970)], Astron. Ap., 4, 423
* [https://ui.adsabs.harvard.edu/abs/1970A%26A.....4..423T/abstract J. - L. Tassoul &amp; J. P. Ostriker (1970)], Astron. Ap., 4, 423
* [https://ui.adsabs.harvard.edu/abs/1981ApJ...249..746C/abstract M. J. Clement (1981)], ApJ, 249, 746
* [https://ui.adsabs.harvard.edu/abs/1981ApJ...249..746C/abstract M. J. Clement (1981)], ApJ, 249, 746

Revision as of 04:26, 16 June 2019

Rotationally Flattened Polytropes

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

Example Equilibrium Configurations

Reviews

Uniform Rotation

 

If one assumes that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids. This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids.

Differential Rotation

 

If one assumes that the mass is distributed uniformly, the equilibrium configurations are the well-known Maclaurin spheroids. This paper will be devoted to finding the oscillation frequencies of the Maclaurin spheroids.

See Also


Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation