Difference between revisions of "User:Tohline/Appendix/Ramblings/BiPolytrope51ContinueSearch"
(Created page with '__FORCETOC__ <!-- __NOTOC__ will force TOC off --> =Continue Search for Marginally Unstable (5,1) Bipolytropes= This ''Ramblings Appendix'' chapter provides some detailed trial…') |
|||
(24 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
=Continue Search for Marginally Unstable (5,1) Bipolytropes= | =Continue Search for Marginally Unstable (5,1) Bipolytropes= | ||
This ''Ramblings Appendix'' chapter | This ''Ramblings Appendix'' chapter — see also, [[User:Tohline/Appendix/Ramblings/BiPolytrope51AnalyticStability|various trials]] — provides some detailed trial derivations in support of the [[User:Tohline/SSC/Stability/BiPolytropes#Eigenvectors_for_Marginally_Unstable_Models_with_.28.CE.B3c.2C_.CE.B3e.29_.3D_.286.2F5.2C_2.29|accompanying, thorough discussion of this topic]]. | ||
{{LSU_HBook_header}} | {{LSU_HBook_header}} | ||
== | ==Key Differential Equation== | ||
In an [[User:Tohline/SSC/Perturbations#2ndOrderODE|accompanying discussion]], we derived the so-called, | |||
<div align="center" id="2ndOrderODE"> | |||
<font color="#770000">'''Linear Adiabatic Wave''' (or ''Radial Pulsation'') '''Equation'''</font><br /> | |||
{{User:Tohline/Math/EQ_RadialPulsation01}} | |||
</div> | |||
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. After adopting an appropriate set of variable normalizations — as detailed [[User:Tohline/SSC/Stability/BiPolytropes#Foundation|here]] — this becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} | |||
+ \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, <math>~\alpha_g \equiv (3 - 4/\gamma_g)</math>. Alternatively — see, for example, our [[User:Tohline/SSC/Stability/Polytropes#Numerical_Integration_from_the_Center.2C_Outward|introductory discussion]] — for polytropic configurations we may write, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0 </math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1) \biggl(- \frac{d\ln \theta}{d\ln \xi} \biggr)\biggr] \frac{1}{\xi} \frac{dx}{d\xi} + | |||
\biggl\{ \frac{(n+1)}{\theta} \biggl[ \frac{\sigma_c^2}{6\gamma_g}\biggr] | |||
- | |||
(n+1) \biggl(- \frac{d\ln \theta}{d\ln \xi} \biggr) \frac{\alpha_g}{\xi^2 } \biggr\} x \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
===Applied to the Core=== | |||
As we have already summarized in an [[User:Tohline/SSC/Stability/BiPolytropes#Profile|accompanying discussion]], throughout the core we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^*</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi \, ;</math> | |||
</td> | |||
<td align="center"> </td> | |||
<td align="right"> | |||
<math>~\frac{\rho^*}{P^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \, ;</math> | |||
</td> | |||
<td align="center"> </td> | |||
<td align="right"> | |||
<math>~\frac{M_r^*}{r^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
So the relevant ''core'' LAWE becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{2\pi}{3} \biggr) \frac{d^2x}{d\xi^2} | |||
+ \biggl( \frac{2\pi}{3} \biggr) \biggl\{ 4 - \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr]\biggr\}\frac{1}{\xi} \frac{dx}{d\xi} | |||
+ \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\biggl( \frac{2\pi}{3} \biggr)\frac{\alpha_\mathrm{g} }{\xi^2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \biggl( \frac{3}{4\pi} \biggr) \cdot 0</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{2}\cdot \frac{d^2x}{d\xi^2} | |||
+ \biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] \frac{1}{\xi} \frac{dx}{d\xi} | |||
+ \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] x \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Now, following our [[User:Tohline/SSC/Stability/BiPolytropes#Is_There_an_Analytic_Expression_for_the_Eigenfunction.3F|separate discussion of an analytic solution to this LAWE]], we try, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P\biggr|_\mathrm{core}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~1 - \frac{\xi^2}{15}</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{dx_P}{d\xi}\biggr|_\mathrm{core}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{2\xi}{15} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow~~~\frac{d\ln x_P}{d\ln \xi}\biggr|_\mathrm{core}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{2\xi^2}{15} \biggl[ \frac{(15 - \xi^2)}{15} \biggr]^{-1} = - \frac{2\xi^2}{(15 - \xi^2)} \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Plugging this trial function into the relevant LAWE gives, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{2} \biggl( -\frac{2}{3\cdot 5}\biggr) | |||
+ \biggl( -\frac{2}{3\cdot 5}\biggr)\biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] | |||
+ \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{3} | |||
+ \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] | |||
+ \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
Now, if we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_c = \tfrac{6}{5} ~~\Rightarrow ~~ \alpha_g = -1/3</math>, we find that the terms on the RHS sum to zero. It therefore appears that we have identified a dimensionless displacement function that satisfies the ''core'' LAWE. | |||
<!-- SHOW THAT LAWE IS SATISFIED IN THE CORE | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
LAWE | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{3} | |||
+ \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] | |||
+ \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \cancelto{0}{\frac{\sigma_c^2}{2\gamma_\mathrm{g}}} ~+~\frac{1}{3} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{3} | |||
+ \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] | |||
+ \frac{1}{3} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} | |||
- \frac{\xi^2}{3^2\cdot 5} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{3} | |||
+ \biggl(1 + \frac{\xi^2}{3}\biggr)^{-1} \biggl\{ | |||
\biggl( \frac{2}{3 \cdot 5}\biggr)\xi^2 + \frac{1}{3} - \frac{\xi^2}{3^2\cdot 5} | |||
\biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
- \frac{1}{3} | |||
+ \biggl(1 + \frac{\xi^2}{3}\biggr)^{-1} \biggl\{ | |||
\xi^2 + 3 | |||
\biggr\} \biggl( \frac{5}{3^2\cdot 5}\biggr) | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~0 \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
END SHOWING THAT LAWE SUMS TO ZERO --> | |||
===Applied to the Envelope=== | |||
And as we have also summarized in the same [[User:Tohline/SSC/Stability/BiPolytropes#Profile|accompanying discussion]], throughout the envelope we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~r^*</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \, ;</math> | |||
</td> | |||
<td align="center"> </td> | |||
<td align="right"> | |||
<math>~\frac{\rho^*}{P^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} | |||
\, ; | |||
</math> | |||
</td> | |||
<td align="center"> </td> | |||
<td align="right"> | |||
<math>~\frac{M_r^*}{r^*}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) | |||
\, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
So the relevant ''envelope'' LAWE becomes, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\mathrm{LAWE}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{r^*}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} | |||
+ \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{d^2x}{d\eta^2} | |||
+ \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] | |||
\biggr\}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{1}{\eta} \frac{dx}{d\eta} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g}}{\eta^2} | |||
\biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\Rightarrow ~~~ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} \cdot~ \mathrm{LAWE}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} | |||
+ \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] | |||
\biggr\} \frac{1}{\eta} \frac{dx}{d\eta} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
| |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
+ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} | |||
~-~\frac{\alpha_\mathrm{g}}{\eta^2} | |||
\biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} | |||
+ \biggl\{ 4 - \biggl[ 2 \biggl(-\frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] | |||
\biggr\} \frac{1}{\eta} \frac{dx}{d\eta} | |||
+ \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] | |||
~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl(- \frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} | |||
+ \biggl\{ 4 - 2Q_\eta | |||
\biggr\} \frac{1}{\eta} \frac{dx}{d\eta} | |||
+ \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] | |||
~-~(2Q_\eta)\frac{\alpha_\mathrm{g}}{\eta^2} \biggr\} x | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
where, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\phi(\eta)</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{A\sin(\eta - B)}{\eta}</math> | |||
</td> | |||
<td align="center"> and </td> | |||
<td align="right"> | |||
<math>~Q_\eta</math> | |||
</td> | |||
<td align="center"> | |||
<math>~\equiv</math> | |||
</td> | |||
<td align="left"> | |||
<math>~- \frac{d\ln \phi}{d\ln\eta} = \biggl[1 - \eta\cot(\eta-B) \biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
If we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_e = 2 ~~\Rightarrow ~~ \alpha_g = +1</math>, the envelope LAWE simplifies to the form, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~ \biggl(\frac{r^*}{\eta}\biggr)^2 \cdot~ \mathrm{LAWE}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d^2x}{d\eta^2} | |||
+ \biggl\{ 4 - 2Q_\eta | |||
\biggr\} \frac{1}{\eta} \frac{dx}{d\eta} | |||
- \biggl\{ \frac{2Q_\eta}{\eta^2} \biggr\} x \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
In [[User:Tohline/Appendix/Ramblings/BiPolytrope51AnalyticStability#Attempt_4B|yet another ''Ramblings Appendix'' derivation]] we have explored a trial dimensionless displacement for the envelope of the form, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~x_P\biggr|_\mathrm{env} </math> | |||
</td> | |||
<td align="left"> | |||
<math>~= \frac{3c_0}{\eta^2} \cdot Q_\eta \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
In this case, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{3c_0}\cdot \frac{dx_P}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{1}{\eta^2} \frac{dQ_\eta}{d\eta} - \frac{2Q_\eta}{\eta^3} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\eta^2}\biggl[\eta -\cot(\eta - B) | |||
+\eta\cot^2(\eta - B) | |||
\biggr] | |||
- \frac{2Q_\eta}{\eta^3} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\eta^3 \sin^2(\eta-B)} \biggl[\eta^2 + \eta\sin(\eta-B)\cos(\eta-B) -2\sin^2(\eta-B)\biggr] | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{\eta\sin^2(\eta - B)} + \frac{\cot(\eta-B)}{\eta^2} - \frac{2}{\eta^3} | |||
\, ;</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{1}{3c_0}\cdot \frac{d^2x_P}{d\eta^2}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{d}{d\eta}\biggl[\frac{1}{\eta\sin^2(\eta - B)} + \frac{\cot(\eta-B)}{\eta^2} - \frac{2}{\eta^3} \biggr] </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{6}{\eta^4} - \frac{2\cot(\eta-B)}{\eta^3} - \frac{2}{\eta^2\sin^2(\eta-B)} - \frac{2\cos(\eta-B)}{\eta \sin^3(\eta-B)} | |||
\, , | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
and [[User:Tohline/Appendix/Ramblings/BiPolytrope51AnalyticStability#proof|it can be shown]] that the simplified ''envelope'' LAWE is perfectly satisfied. Notice that, with this adopted segment of the eigenfunction for the envelope, we have, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\ln x_P}{d\ln\eta}\biggr|_\mathrm{env} = \frac{\eta^3}{3c_0 Q_\eta}\cdot \frac{dx_P}{d\eta}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{\eta^3}{Q_\eta} \biggl\{ \frac{1}{\eta^2}\biggl[\eta -\cot(\eta - B) | |||
+\eta\cot^2(\eta - B) | |||
\biggr] | |||
- \frac{2Q_\eta}{\eta^3} \biggr\} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{1}{Q_\eta} \biggl[\eta^2 - \eta \cot(\eta - B) | |||
+\eta^2 \cot^2(\eta - B) | |||
\biggr] | |||
- 2 | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{[\eta^2 - 2 + \eta \cot(\eta - B)+\eta^2 \cot^2(\eta - B) ] }{[1 - \eta\cot(\eta-B)]} | |||
</math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~ | |||
\frac{[\eta^2 - 2\sin^2(\eta-B) + \eta \sin(\eta-B) \cos(\eta - B) ] }{[\sin^2(\eta-B) - \eta \sin(\eta-B) \cos(\eta-B)]} \, . | |||
</math> | |||
</td> | |||
</tr> | |||
</table> | |||
==Interface Matching== | |||
According to our [[User:Tohline/SSC/Stability/BiPolytropes#Interface_Conditions|accompanying discussion]] of the interface matching condition — as we presently understand it — the proper eigenfunction will exhibit a discontinuity in the slope of the dimensionless displacement function such that, | |||
<table border="0" cellpadding="5" align="center"> | |||
<tr> | |||
<td align="right"> | |||
<math>~\frac{d\ln x_\mathrm{env}}{d\ln \eta} \biggr|_{\eta=\eta_i}</math> | |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~3\biggl(\frac{\gamma_c}{\gamma_e} -1\biggr) + \frac{\gamma_c}{\gamma_e} \biggl( \frac{d\ln x_\mathrm{core}}{d\ln \xi} \biggr)_{\xi=\xi_i} </math> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td align="right"> | |||
| |||
</td> | |||
<td align="center"> | |||
<math>~=</math> | |||
</td> | |||
<td align="left"> | |||
<math>~\frac{3}{5}\biggl[ \biggl( \frac{d\ln x_\mathrm{core}}{d\ln \xi} \biggr)_{\xi=\xi_i} -2 \biggr] \, .</math> | |||
</td> | |||
</tr> | |||
</table> | |||
=See Also= | =See Also= |
Latest revision as of 16:04, 19 May 2019
Continue Search for Marginally Unstable (5,1) Bipolytropes
This Ramblings Appendix chapter — see also, various trials — provides some detailed trial derivations in support of the accompanying, thorough discussion of this topic.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Key Differential Equation
In an accompanying discussion, we derived the so-called,
Linear Adiabatic Wave (or Radial Pulsation) Equation
<math>~ \frac{d^2x}{dr_0^2} + \biggl[\frac{4}{r_0} - \biggl(\frac{g_0 \rho_0}{P_0}\biggr) \biggr] \frac{dx}{dr_0} + \biggl(\frac{\rho_0}{\gamma_\mathrm{g} P_0} \biggr)\biggl[\omega^2 + (4 - 3\gamma_\mathrm{g})\frac{g_0}{r_0} \biggr] x = 0 </math> |
whose solution gives eigenfunctions that describe various radial modes of oscillation in spherically symmetric, self-gravitating fluid configurations. After adopting an appropriate set of variable normalizations — as detailed here — this becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{(r^*)}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x \, , </math> |
where, <math>~\alpha_g \equiv (3 - 4/\gamma_g)</math>. Alternatively — see, for example, our introductory discussion — for polytropic configurations we may write,
<math>~0 </math> |
<math>~=</math> |
<math>~\frac{d^2x}{d\xi^2} + \biggl[4 - (n+1) \biggl(- \frac{d\ln \theta}{d\ln \xi} \biggr)\biggr] \frac{1}{\xi} \frac{dx}{d\xi} + \biggl\{ \frac{(n+1)}{\theta} \biggl[ \frac{\sigma_c^2}{6\gamma_g}\biggr] - (n+1) \biggl(- \frac{d\ln \theta}{d\ln \xi} \biggr) \frac{\alpha_g}{\xi^2 } \biggr\} x \, .</math> |
Applied to the Core
As we have already summarized in an accompanying discussion, throughout the core we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{3}{2\pi} \biggr)^{1/2} \xi \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~\biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \, ;</math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3/2} \, . </math> |
So the relevant core LAWE becomes,
<math>~0</math> |
<math>~=</math> |
<math>~ \biggl( \frac{2\pi}{3} \biggr) \frac{d^2x}{d\xi^2} + \biggl( \frac{2\pi}{3} \biggr) \biggl\{ 4 - \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr]\biggr\}\frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\biggl( \frac{2\pi}{3} \biggr)\frac{\alpha_\mathrm{g} }{\xi^2} \biggl[ 2 \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggr\} x </math> |
<math>~\Rightarrow ~~~ \biggl( \frac{3}{4\pi} \biggr) \cdot 0</math> |
<math>~=</math> |
<math>~ \frac{1}{2}\cdot \frac{d^2x}{d\xi^2} + \biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] \frac{1}{\xi} \frac{dx}{d\xi} + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] x \, . </math> |
Now, following our separate discussion of an analytic solution to this LAWE, we try,
<math>~x_P\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~1 - \frac{\xi^2}{15}</math> |
<math>~\Rightarrow~~~\frac{dx_P}{d\xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi}{15} </math> |
<math>~\Rightarrow~~~\frac{d\ln x_P}{d\ln \xi}\biggr|_\mathrm{core}</math> |
<math>~\equiv</math> |
<math>~- \frac{2\xi^2}{15} \biggl[ \frac{(15 - \xi^2)}{15} \biggr]^{-1} = - \frac{2\xi^2}{(15 - \xi^2)} \, .</math> |
Plugging this trial function into the relevant LAWE gives,
LAWE |
<math>~=</math> |
<math>~ \frac{1}{2} \biggl( -\frac{2}{3\cdot 5}\biggr) + \biggl( -\frac{2}{3\cdot 5}\biggr)\biggl[ 2 - \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
|
<math>~=</math> |
<math>~ - \frac{1}{3} + \biggl( \frac{2}{3\cdot 5}\biggr)\biggl[ \xi^2 \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-1} \biggr] + \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{1 / 2}\biggl[ \frac{\sigma_c^2}{2\gamma_\mathrm{g}} ~-~\alpha_\mathrm{g} \biggl( 1 + \frac{1}{3}\xi^2 \biggr)^{-3 / 2} \biggr] \biggl[1 - \frac{\xi^2}{15}\biggr] </math> |
Now, if we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_c = \tfrac{6}{5} ~~\Rightarrow ~~ \alpha_g = -1/3</math>, we find that the terms on the RHS sum to zero. It therefore appears that we have identified a dimensionless displacement function that satisfies the core LAWE.
Applied to the Envelope
And as we have also summarized in the same accompanying discussion, throughout the envelope we have,
<math>~r^*</math> |
<math>~=</math> |
<math>~\biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2}\eta \, ;</math> |
<math>~\frac{\rho^*}{P^*}</math> |
<math>~=</math> |
<math>~ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi(\eta)^{-1} \, ; </math> |
<math>~\frac{M_r^*}{r^*}</math> |
<math>~=</math> |
<math>~ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \, . </math> |
So the relevant envelope LAWE becomes,
<math>~\mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{dr*^2} + \biggl\{ 4 -\biggl(\frac{\rho^*}{P^*}\biggr)\frac{ M_r^*}{r^*}\biggr\}\frac{1}{r^*} \frac{dx}{dr*} + \biggl(\frac{\rho^*}{ P^* } \biggr)\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g} M_r^*}{(r^*)^3}\biggr\} x </math> |
|
<math>~=</math> |
<math>~ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\frac{1}{\eta} \frac{dx}{d\eta} </math> |
|
|
<math>~ + \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}} ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-2}_i (2\pi)^{-1/2} \biggr]^{-2}\biggr\} x </math> |
<math>~\Rightarrow ~~~ \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} \cdot~ \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr] \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} </math> |
|
|
<math>~ + \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr) \theta^{-1}_i \phi^{-1}\biggr]\biggl\{ \frac{2\pi \sigma_c^2}{3\gamma_\mathrm{g}}\biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{2} \theta^{4}_i (2\pi) \biggr]^{-1} ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta_i \biggl(-\eta \frac{d\phi}{d\eta} \biggr) \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - \biggl[ 2 \biggl(-\frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} + \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] ~-~\frac{\alpha_\mathrm{g}}{\eta^2} \biggl[ 2 \biggl(- \frac{d\ln \phi}{d\ln \eta} \biggr) \biggr] \biggr\} x </math> |
|
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - 2Q_\eta \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} + \biggl\{ \frac{\sigma_c^2}{3\gamma_\mathrm{g}} \biggl[ \biggl( \frac{\mu_e}{\mu_c} \biggr)^{-1} \theta^{-5}_i \phi^{-1}\biggr] ~-~(2Q_\eta)\frac{\alpha_\mathrm{g}}{\eta^2} \biggr\} x </math> |
where,
<math>~\phi(\eta)</math> |
<math>~=</math> |
<math>~\frac{A\sin(\eta - B)}{\eta}</math> |
and |
<math>~Q_\eta</math> |
<math>~\equiv</math> |
<math>~- \frac{d\ln \phi}{d\ln\eta} = \biggl[1 - \eta\cot(\eta-B) \biggr] \, .</math> |
If we set <math>~\sigma_c^2 = 0</math> and <math>~\gamma_g = \gamma_e = 2 ~~\Rightarrow ~~ \alpha_g = +1</math>, the envelope LAWE simplifies to the form,
<math>~ \biggl(\frac{r^*}{\eta}\biggr)^2 \cdot~ \mathrm{LAWE}</math> |
<math>~=</math> |
<math>~ \frac{d^2x}{d\eta^2} + \biggl\{ 4 - 2Q_\eta \biggr\} \frac{1}{\eta} \frac{dx}{d\eta} - \biggl\{ \frac{2Q_\eta}{\eta^2} \biggr\} x \, . </math> |
In yet another Ramblings Appendix derivation we have explored a trial dimensionless displacement for the envelope of the form,
<math>~x_P\biggr|_\mathrm{env} </math> |
<math>~= \frac{3c_0}{\eta^2} \cdot Q_\eta \, .</math> |
In this case,
<math>~\frac{1}{3c_0}\cdot \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~\frac{1}{\eta^2} \frac{dQ_\eta}{d\eta} - \frac{2Q_\eta}{\eta^3} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\eta^2}\biggl[\eta -\cot(\eta - B) +\eta\cot^2(\eta - B) \biggr] - \frac{2Q_\eta}{\eta^3} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\eta^3 \sin^2(\eta-B)} \biggl[\eta^2 + \eta\sin(\eta-B)\cos(\eta-B) -2\sin^2(\eta-B)\biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{1}{\eta\sin^2(\eta - B)} + \frac{\cot(\eta-B)}{\eta^2} - \frac{2}{\eta^3} \, ;</math> |
<math>~\frac{1}{3c_0}\cdot \frac{d^2x_P}{d\eta^2}</math> |
<math>~=</math> |
<math>~ \frac{d}{d\eta}\biggl[\frac{1}{\eta\sin^2(\eta - B)} + \frac{\cot(\eta-B)}{\eta^2} - \frac{2}{\eta^3} \biggr] </math> |
|
<math>~=</math> |
<math>~ \frac{6}{\eta^4} - \frac{2\cot(\eta-B)}{\eta^3} - \frac{2}{\eta^2\sin^2(\eta-B)} - \frac{2\cos(\eta-B)}{\eta \sin^3(\eta-B)} \, , </math> |
and it can be shown that the simplified envelope LAWE is perfectly satisfied. Notice that, with this adopted segment of the eigenfunction for the envelope, we have,
<math>~\frac{d\ln x_P}{d\ln\eta}\biggr|_\mathrm{env} = \frac{\eta^3}{3c_0 Q_\eta}\cdot \frac{dx_P}{d\eta}</math> |
<math>~=</math> |
<math>~ \frac{\eta^3}{Q_\eta} \biggl\{ \frac{1}{\eta^2}\biggl[\eta -\cot(\eta - B) +\eta\cot^2(\eta - B) \biggr] - \frac{2Q_\eta}{\eta^3} \biggr\} </math> |
|
<math>~=</math> |
<math>~ \frac{1}{Q_\eta} \biggl[\eta^2 - \eta \cot(\eta - B) +\eta^2 \cot^2(\eta - B) \biggr] - 2 </math> |
|
<math>~=</math> |
<math>~ \frac{[\eta^2 - 2 + \eta \cot(\eta - B)+\eta^2 \cot^2(\eta - B) ] }{[1 - \eta\cot(\eta-B)]} </math> |
|
<math>~=</math> |
<math>~ \frac{[\eta^2 - 2\sin^2(\eta-B) + \eta \sin(\eta-B) \cos(\eta - B) ] }{[\sin^2(\eta-B) - \eta \sin(\eta-B) \cos(\eta-B)]} \, . </math> |
Interface Matching
According to our accompanying discussion of the interface matching condition — as we presently understand it — the proper eigenfunction will exhibit a discontinuity in the slope of the dimensionless displacement function such that,
<math>~\frac{d\ln x_\mathrm{env}}{d\ln \eta} \biggr|_{\eta=\eta_i}</math> |
<math>~=</math> |
<math>~3\biggl(\frac{\gamma_c}{\gamma_e} -1\biggr) + \frac{\gamma_c}{\gamma_e} \biggl( \frac{d\ln x_\mathrm{core}}{d\ln \xi} \biggr)_{\xi=\xi_i} </math> |
|
<math>~=</math> |
<math>~\frac{3}{5}\biggl[ \biggl( \frac{d\ln x_\mathrm{core}}{d\ln \xi} \biggr)_{\xi=\xi_i} -2 \biggr] \, .</math> |
See Also
- K. De et al. (12 October 2018, Science, Vol. 362, No. 6411, pp. 201 - 206), A Hot and Fast Ultra-stripped Supernova that likely formed a Compact Neutron Star Binary.
© 2014 - 2021 by Joel E. Tohline |