Difference between revisions of "User:Tohline/PGE/FirstLawOfThermodynamics"

From VistrailsWiki
Jump to navigation Jump to search
Line 6: Line 6:




Following the detailed discussion of the laws of thermodynamics that can be found, for example in Chapter I of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] we know that, "<font color="#007700">for an infinitesimal quasi-statical change of state,</font>" the change <math>~dQ</math> in the total heat content <math>~Q</math> of a fluid element is given by, what we will label as,
==Standard Presentation==
Following the detailed discussion of the laws of thermodynamics that can be found, for example, in Chapter I of [<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>] we know that, "<font color="#007700">for an infinitesimal quasi-statical change of state,</font>" the change <math>~dQ</math> in the total heat content <math>~Q</math> of a fluid element is given by, what we will label as,


<div align="center">
<div align="center">
Line 60: Line 61:
[<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter II, Eq. (2)
[<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter II, Eq. (2)
</div>
</div>
If the state changes occur in such a way that no heat seeps into or leaks out of the fluid element, then <math>~ds/dt = 0</math> and the changes are said to have been made ''adiabatically.''  For an adiabatically evolving system, therefore, the ''First Law'' assumes who henceforth will be referred to as the,
<div align="center">
<span id="Standard Form"><font color="#770000">'''Adiabatic Form'''</font></span><br />
of the First Law of Thermodyamics
{{ User:Tohline/Math/EQ_FirstLaw02 }}
[<b>[[User:Tohline/Appendix/References#C67|<font color="red">C67</font>]]</b>], Chapter II, Eq. (2)
</div>
Clearly this form of the ''First Law'' also may be viewed as a statement of ''specific entropy conservation.''
==Entropy Tracer==
Multiplying the ''Adiabatic Form of the First Law of Thermodynamics'' through by {{ User:Tohline/Math/VAR_Density01 }} and rearranging terms, we find that,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\rho\frac{d\epsilon}{dt} + \rho P \frac{d}{dt}\biggl(\frac{1}{\rho} \biggr)
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{d(\rho\epsilon)}{dt} - \epsilon \frac{d\rho}{dt} -  \frac{P}{\rho} \frac{d\rho}{dt}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon) \frac{1}{\rho}\frac{d\rho}{dt}
</math>
  </td>
</tr>
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon)\frac{d\ln\rho}{dt}
</math>
  </td>
</tr>
</table>
is an equally valid statement of the conservation of specific entropy in an adiabatic flow.  In combination with Form B of the ideal gas equation of state, namely,
<div align="center">
{{ User:Tohline/Math/EQ_EOSideal02 }}
</div>
we may furthermore write,
<table border="0" cellpadding="5" align="center">
<tr>
  <td align="right">
<math>~0</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\frac{d(\rho\epsilon)}{dt} - \gamma_g (\rho\epsilon)\frac{d\ln\rho}{dt}
</math>
  </td>
</tr>
</table>
''Lagrangian Form of the Equation of Continuity,'' we may furthermore write,


&nbsp;<br />
&nbsp;<br />
{{LSU_HBook_footer}}
{{LSU_HBook_footer}}

Revision as of 22:29, 23 October 2018

First Law of Thermodynamics

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |


Standard Presentation

Following the detailed discussion of the laws of thermodynamics that can be found, for example, in Chapter I of [C67] we know that, "for an infinitesimal quasi-statical change of state," the change <math>~dQ</math> in the total heat content <math>~Q</math> of a fluid element is given by, what we will label as,

Form A
of the First Law of Thermodyamics

<math>~dQ</math>

<math>~=</math>

<math>~ d\epsilon + PdV \, , </math>

[C67], Chapter II, Eq. (2)

where, <math>~\epsilon</math> is the specific internal energy, <math>~P</math> is the pressure, and <math>~V</math><math>~= 1/</math><math>~\rho</math> is the specific volume of the fluid element. Generally, the change in the total heat content can be rewritten in terms of the gas temperature, <math>~T</math>, and the specific entropy of the fluid, <math>~s</math>, via the expression,

<math>~dQ</math>

<math>~=</math>

<math>~T ds \, .</math>

[C67], Chapter II, Eq. (44)


If, in addition, it is understood that the specified changes are occurring over a certain interval of time <math>~dt</math>, then from this pair of expressions we derive what will henceforth be referred to as the,

Standard Form
of the First Law of Thermodyamics

LSU Key.png

<math>T \frac{ds}{dt} = \frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr)</math>

[C67], Chapter II, Eq. (2)

If the state changes occur in such a way that no heat seeps into or leaks out of the fluid element, then <math>~ds/dt = 0</math> and the changes are said to have been made adiabatically. For an adiabatically evolving system, therefore, the First Law assumes who henceforth will be referred to as the,

Adiabatic Form
of the First Law of Thermodyamics

<math>~\frac{d\epsilon}{dt} + P \frac{d}{dt} \biggl(\frac{1}{\rho}\biggr) = 0</math>

[C67], Chapter II, Eq. (2)

Clearly this form of the First Law also may be viewed as a statement of specific entropy conservation.

Entropy Tracer

Multiplying the Adiabatic Form of the First Law of Thermodynamics through by <math>~\rho</math> and rearranging terms, we find that,

<math>~0</math>

<math>~=</math>

<math>~ \rho\frac{d\epsilon}{dt} + \rho P \frac{d}{dt}\biggl(\frac{1}{\rho} \biggr) </math>

 

<math>~=</math>

<math>~ \frac{d(\rho\epsilon)}{dt} - \epsilon \frac{d\rho}{dt} - \frac{P}{\rho} \frac{d\rho}{dt} </math>

 

<math>~=</math>

<math>~ \frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon) \frac{1}{\rho}\frac{d\rho}{dt} </math>

 

<math>~=</math>

<math>~ \frac{d(\rho\epsilon)}{dt} - (P + \rho\epsilon)\frac{d\ln\rho}{dt} </math>

is an equally valid statement of the conservation of specific entropy in an adiabatic flow. In combination with Form B of the ideal gas equation of state, namely,

<math>~P = (\gamma_\mathrm{g} - 1)\epsilon \rho </math>

we may furthermore write,

<math>~0</math>

<math>~=</math>

<math>~ \frac{d(\rho\epsilon)}{dt} - \gamma_g (\rho\epsilon)\frac{d\ln\rho}{dt} </math>


Lagrangian Form of the Equation of Continuity, we may furthermore write,


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation