Difference between revisions of "User:Tohline/Math/EQ PminusHalf01"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '<table border="0" cellpadding="5" align="center"> <tr> <td align="right"> [[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templat…')
 
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
<tr>
<tr>
<td align="right">
<td align="right">
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Special_Function_Relationships]]
[[Image:LSU_Key.png|25px|link=http://www.vistrails.org/index.php/User:Tohline/Appendix/Equation_templates#Toroidal_Function_Evaluations]]
</td>  
</td>  
   <td align="right">
   <td align="right">
<math>~P_{-1 / 2}(z)</math>
<math>~P_{-\frac{1}{2}}(z)</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 13: Line 13:
   <td align="left">
   <td align="left">
<math>~
<math>~
\frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, .
\frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr)  
</math>
</math>
   </td>
   </td>
  <td align="center" rowspan="2" width="20%">&nbsp; &nbsp; &nbsp; for example &hellip;</td>
  <td align="right">
<math>~P_{-\frac{1}{2}}(\cosh\eta)</math>
  </td>
  <td align="center">
<math>~=</math>
  </td>
  <td align="left">
<math>~
\biggl[ \frac{\pi}{2} \cdot \cosh \frac{\eta}{2} \biggr]^{-1} K\biggl( \tanh \frac{\eta}{2} \biggr)
</math>
  </td>
</tr>
</tr>
<tr>
<tr>
   <td align="center" colspan="4">
   <td align="center" colspan="4">
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], eq. (8.13.1)
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], p. 337, eq. (8.13.1)
  </td>
  <td align="center" colspan="3">
[https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false Abramowitz &amp; Stegun (1995)], p. 337, eq. (8.13.2)
   </td>
   </td>
</tr>
</tr>
</table>
</table>

Latest revision as of 21:41, 1 July 2018

LSU Key.png

<math>~P_{-\frac{1}{2}}(z)</math>

<math>~=</math>

<math>~ \frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) </math>

      for example …

<math>~P_{-\frac{1}{2}}(\cosh\eta)</math>

<math>~=</math>

<math>~ \biggl[ \frac{\pi}{2} \cdot \cosh \frac{\eta}{2} \biggr]^{-1} K\biggl( \tanh \frac{\eta}{2} \biggr) </math>

Abramowitz & Stegun (1995), p. 337, eq. (8.13.1)

Abramowitz & Stegun (1995), p. 337, eq. (8.13.2)