Difference between revisions of "User:Tohline/Appendix/Mathematics/ToroidalConfusion"
Line 151: | Line 151: | ||
==Specific Application== | ==Specific Application== | ||
I stumbled into this dilemma when I tried to explicitly demonstrate how | I stumbled into this dilemma when I tried to explicitly demonstrate how <math>~Q_{-1 / 2}(\cosh\eta)</math> can be derived from <math>~P_{-1 / 2}(z)</math> where, from §8.13 of [https://books.google.com/books?id=MtU8uP7XMvoC&printsec=frontcover&dq=Abramowitz+and+stegun&hl=en&sa=X&ved=0ahUKEwialra5xNbaAhWKna0KHcLAASAQ6AEILDAA#v=onepage&q=Abramowitz%20and%20stegun&f=false M. Abramowitz & I. A. Stegun (1995)], we find, | ||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
Line 158: | Line 157: | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
<math>~Q_{-1 / 2}( | <math>~Q_{-1 / 2}(\cosh\eta)</math> | ||
</td> | </td> | ||
<td align="center"> | <td align="center"> | ||
Line 164: | Line 163: | ||
</td> | </td> | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~2 e^{- \eta / 2} | ||
~K(e^{-\eta} ) \, , | |||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="center" colspan="3">Abramowitz & Stegun (1995), eq. (8.13.4)</td> | |||
<td align="center" | |||
</tr> | </tr> | ||
</table> | </table> | ||
and, | |||
<table border="0" cellpadding="5" align="center"> | <table border="0" cellpadding="5" align="center"> | ||
<tr> | <tr> | ||
<td align="right"> | <td align="right"> | ||
Line 196: | Line 184: | ||
<td align="left"> | <td align="left"> | ||
<math>~ | <math>~ | ||
\frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, | \frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, . | ||
</math> | </math> | ||
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td align="center" colspan="3">Abramowitz & Stegun (1995), eq. (8.13.1)</td> | |||
<td align="center" | |||
</tr> | </tr> | ||
</table> | </table> |
Revision as of 17:54, 9 May 2018
Confusion Regarding Whipple Formulae
May, 2018 (J.E.Tohline): I am trying to figure out what the correct relationship is between half-integer degree, associated Legendre functions of the first and second kinds. In order to illustrate my current confusion, here I will restrict my presentation to expressions that give <math>~Q^m_{n - 1 / 2}(\cosh\eta)</math> in terms of <math>~P^n_{m - 1 / 2}(\coth\eta)</math>.
| Tiled Menu | Tables of Content | Banner Video | Tohline Home Page | |
Published Expressions
From equation (34) of H. S. Cohl, J. E. Tohline, A. R. P. Rau, & H. M. Srivastiva (2000, Astronomische Nachrichten, 321, no. 5, 363 - 372) I find:
<math>~Q^m_{n - 1 / 2}(\cosh\eta)</math> |
<math>~=</math> |
<math>~ \frac{(-1)^n \pi}{\Gamma(n - m + \tfrac{1}{2})} \biggl[ \frac{\pi}{2\sinh\eta} \biggr]^{1 / 2} P^n_{m - 1 / 2}(\coth\eta) \, . </math> |
From Howard Cohl's online overview of toroidal functions, I find:
<math>~Q^n_{m- 1 / 2}(\cosh\alpha)</math> |
<math>~=</math> |
<math>~(-1)^n ~\Gamma(n-m + \tfrac{1}{2}) \biggl[ \frac{\pi}{2\sinh\alpha} \biggr]^{1 / 2} P^m_{n- 1 / 2}(\coth\alpha)\, , </math> |
Copying the Whipple's formula from §14.19 of DLMF,
<math>~\boldsymbol{Q}^{m}_{n-\frac{1}{2}}\left(\cosh\xi\right)</math> |
<math>~=</math> |
<math>~ \frac{\Gamma\left(m-n+ \tfrac{1}{2}\right)}{\Gamma\left(m+n+\tfrac{1}{2}\right)}\left(\frac{\pi}{2 \sinh\xi}\right)^{1 / 2}P^{n}_{m-\frac{1}{2}}\left(\coth\xi\right) \, . </math> |
As per equation (8) in A. Gil, J. Segura, & N. M. Temme (2000, JCP, 161, 204 - 217), the relationship is:
<math>~Q_{n-1 / 2}^m (\lambda)</math> |
<math>~=</math> |
<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (x^2-1)^{1 / 4} P_{m-1 / 2}^n(x) \, , </math> |
where, <math>~\lambda \equiv x/\sqrt{x^2-1}</math>. This expression from Gil et al. (2000) means, for example, that by identifying <math>~x</math> with <math>~\coth\eta</math>, we have <math>~\lambda = \cosh\eta</math>, and,
<math>~Q_{n-1 / 2}^m (\cosh\eta)</math> |
<math>~=</math> |
<math>~(-1)^n \frac{\pi^{3/2}}{\sqrt{2} \Gamma(n-m+1 / 2)} (\coth^2\eta-1)^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math> |
|
<math>~=</math> |
<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{\cosh^2\eta}{\sinh^2\eta}-1 \biggr]^{1 / 4} P_{m-1 / 2}^n(\coth\eta) </math> |
|
<math>~=</math> |
<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl( \frac{\pi}{2}\biggr)^{1 / 2} \biggl[\frac{1}{\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) </math> |
|
<math>~=</math> |
<math>~ \frac{(-1)^n ~\pi}{\Gamma(n-m+1 / 2)} \biggl[\frac{\pi}{2\sinh\eta}\biggr]^{1 / 2} P_{m-1 / 2}^n(\coth\eta) \, , </math> |
which matches the above expression drawn from Cohl et al. (2000), but which does not match either of the other two "published" (online) expressions.
Specific Application
I stumbled into this dilemma when I tried to explicitly demonstrate how <math>~Q_{-1 / 2}(\cosh\eta)</math> can be derived from <math>~P_{-1 / 2}(z)</math> where, from §8.13 of M. Abramowitz & I. A. Stegun (1995), we find,
<math>~Q_{-1 / 2}(\cosh\eta)</math> |
<math>~=</math> |
<math>~2 e^{- \eta / 2} ~K(e^{-\eta} ) \, , </math> |
Abramowitz & Stegun (1995), eq. (8.13.4) |
and,
<math>~P_{-1 / 2}(z)</math> |
<math>~=</math> |
<math>~ \frac{2}{\pi} \biggl[\frac{2}{z+1}\biggr]^{1 / 2} ~K\biggl( \sqrt{ \frac{z-1}{z+1}} \biggr) \, . </math> |
Abramowitz & Stegun (1995), eq. (8.13.1) |
See Also
© 2014 - 2021 by Joel E. Tohline |