Difference between revisions of "User:Tohline/Appendix/Ramblings/InsideOut"

From VistrailsWiki
Jump to navigation Jump to search
(Created page with '__FORCETOC__ <!-- will force the creation of a Table of Contents --> <!-- __NOTOC__ will force TOC off --> =Looking Outward, From Inside a Black Hole= {{LSU_HBook_header}} The…')
 
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
{{LSU_HBook_header}}
{{LSU_HBook_header}}


The relationship between the mass, <math>~M</math>, and radius, <math>~R</math>, of a black hole is,
[Written by J. E. Tohline, early morning of 13 October 2017] &nbsp;The relationship between the mass, <math>~M</math>, and radius, <math>~R</math>, of a black hole is,
<div align="center">
<div align="center">
<table border="0" cellpadding="5" align="center">
<table border="0" cellpadding="5" align="center">
Line 12: Line 12:
<tr>
<tr>
   <td align="right">
   <td align="right">
<math>~\frac{GM}{c^2 R}</math>
<math>~\frac{2GM}{c^2 R}</math>
   </td>
   </td>
   <td align="center">
   <td align="center">
Line 36: Line 36:
   <td align="left">
   <td align="left">
<math>~  
<math>~  
\frac{3M}{4\pi R^3}
\frac{3M}{4\pi R^3} =
\frac{3M}{4\pi} \biggl[ \frac{2GM}{c^2}\biggr]^{-3} =
\frac{3c^6}{2^5\pi G^3 M^2}  
</math>
</math>
   </td>
   </td>
Line 46: Line 48:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{(3 \times 10^{10})^6}{2^5 (\tfrac{2}{3}\times 10^{-7})^3 (2\times 10^{33})^2 M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
  </td>
  <td align="left">
<math>~
\biggl[\frac{3^{6+3} \times 10^{60}}{2^{10} (10^{66-21}) M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3}
</math>
  </td>
</tr>
 
<tr>
  <td align="right">
&nbsp;
  </td>
  <td align="center">
<math>~\approx</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~  
<math>~  
\frac{3M}{4\pi} \biggl[ \frac{GM}{c^2}\biggr]^{-3}
\biggl[\frac{3^{9} \times 10^{60}}{2^{10} (10^{45}) M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3}
</math>
</math>
   </td>
   </td>
Line 60: Line 90:
   </td>
   </td>
   <td align="center">
   <td align="center">
<math>~=</math>
<math>~\approx</math>
   </td>
   </td>
   <td align="left">
   <td align="left">
<math>~  
<math>~  
\frac{3c^6}{4\pi G^3 M^2} \, .
\biggl[\frac{2 \times 10^{16}}{M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3} \, .
</math>
</math>
   </td>
   </td>
Line 70: Line 100:
</table>
</table>
</div>
</div>
We are accustomed to imagining that the interior of a black hole (BH) must be an exotic environment because a one solar-mass BH has a mean density that is on the order of, but larger than, the density of nuclear matter.  From the above expression, however, we see that a <math>~10^9 M_\odot</math> BH has a mean density that is less than that of water (1 gm/cm<sup>3</sup>).  And the mean density of a BH having the mass of the entire universe must be very small indeed.  This leads us to the following list of questions.


==Enumerated Questions==


 
<ol>
==Leading Questions==
  <li>Can we construct a ''Newtonian'' structure out of normal matter that has a mass of, say, <math>~10^9 M_\odot</math> whose equilibrium radius is much less than the radius of the BH horizon associated with that object?  Does it necessarily have a mean temperature whose associated sound speed is super-relativistic?</li>
 
  <li>Who else in the published literature has explored questions along these lines?
 
</ol>


=See Also=
=See Also=

Latest revision as of 11:47, 13 October 2017

Looking Outward, From Inside a Black Hole

Whitworth's (1981) Isothermal Free-Energy Surface
|   Tiled Menu   |   Tables of Content   |  Banner Video   |  Tohline Home Page   |

[Written by J. E. Tohline, early morning of 13 October 2017]  The relationship between the mass, <math>~M</math>, and radius, <math>~R</math>, of a black hole is,

<math>~\frac{2GM}{c^2 R}</math>

<math>~=</math>

<math>~1 \, .</math>

The mean density of matter inside a black hole of mass <math>~M</math> is, therefore,

<math>~\bar\rho</math>

<math>~=</math>

<math>~ \frac{3M}{4\pi R^3} = \frac{3M}{4\pi} \biggl[ \frac{2GM}{c^2}\biggr]^{-3} = \frac{3c^6}{2^5\pi G^3 M^2} </math>

 

<math>~\approx</math>

<math>~ \biggl[\frac{(3 \times 10^{10})^6}{2^5 (\tfrac{2}{3}\times 10^{-7})^3 (2\times 10^{33})^2 M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3} </math>

 

<math>~\approx</math>

<math>~ \biggl[\frac{3^{6+3} \times 10^{60}}{2^{10} (10^{66-21}) M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3} </math>

 

<math>~\approx</math>

<math>~ \biggl[\frac{3^{9} \times 10^{60}}{2^{10} (10^{45}) M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3} </math>

 

<math>~\approx</math>

<math>~ \biggl[\frac{2 \times 10^{16}}{M_\odot^2}\biggr] ~\mathrm{g}~\mathrm{cm}^{-3} \, . </math>

We are accustomed to imagining that the interior of a black hole (BH) must be an exotic environment because a one solar-mass BH has a mean density that is on the order of, but larger than, the density of nuclear matter. From the above expression, however, we see that a <math>~10^9 M_\odot</math> BH has a mean density that is less than that of water (1 gm/cm3). And the mean density of a BH having the mass of the entire universe must be very small indeed. This leads us to the following list of questions.

Enumerated Questions

  1. Can we construct a Newtonian structure out of normal matter that has a mass of, say, <math>~10^9 M_\odot</math> whose equilibrium radius is much less than the radius of the BH horizon associated with that object? Does it necessarily have a mean temperature whose associated sound speed is super-relativistic?
  2. Who else in the published literature has explored questions along these lines?

See Also


 

Whitworth's (1981) Isothermal Free-Energy Surface

© 2014 - 2021 by Joel E. Tohline
|   H_Book Home   |   YouTube   |
Appendices: | Equations | Variables | References | Ramblings | Images | myphys.lsu | ADS |
Recommended citation:   Tohline, Joel E. (2021), The Structure, Stability, & Dynamics of Self-Gravitating Fluids, a (MediaWiki-based) Vistrails.org publication, https://www.vistrails.org/index.php/User:Tohline/citation